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The stability of lightweight space structures composed of longitudinal thin-shell elements connected trans-
versely by thin rods is investigated, extending recent work on the stability of cylindrical and spherical shells.
The role of localization in the buckling of these structures is investigated and early transitions into the post-
buckling regime are unveiled using a probe that locally displaces the structure. Multiple probe locations are
studied and the probe force versus probe displacement curves are analyzed and plotted to assess the structure’s
stability. The probing method enables the computation of the energy input needed to transition early into

a post-buckling state, which is central to determining the critical buckling mechanism for the structure.
A stability landscape is finally plotted for the critical buckling mechanism. It gives insight into the post-
buckling stability of the structure and the existence of localized post-buckling states in the close vicinity of
the fundamental equilibrium path.

1. Introduction

Thin-shell structures are used extensively in engineering applica-
tions. In the aerospace sector, they are a key enabler of lightweight air
and space vehicles. While the use of thin-shell structures dramatically
reduces the structural mass, their mode of failure is often governed
by buckling, which is hard to predict. Buckling of thin-shell structures
is characterized by a sub-critical bifurcation, which means that the
structure exhibits a falling unstable post-buckling path right after the
bifurcation point is reached. This sudden drop in load-carrying capa-
bilities leads to a dramatic collapse if the post-buckling path never
regains stability. Buckling is to be avoided at all cost in these cases.
However, in recent adaptive structures and materials, buckling is no
longer seen as failure but as a key shape-changing mechanism, which
enables switching among multiple functional configurations (Hu and
Burguefio, 2015; Medina et al., 2020). Whether buckling is used or
to be avoided, understanding its cause and predicting its occurrence
is crucial, and this has been the subject of numerous research studies
over the past one hundred years.

From the early 1920s, many shell buckling experiments were con-
ducted, and experimental buckling loads were consistently observed to
be lower than linearized classical buckling predictions. This discrep-
ancy was later linked to the presence of initial imperfections in the
shell geometry (Von Karman and Tsien, 1941; Donnell and Wan, 1950;
Koiter, 1945). Indeed, for sub-critical bifurcations, there exists a range
of loading for which the structure’s fundamental (unbuckled) state is
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meta-stable, which makes the transition into post-buckling extremely
sensitive to imperfections and disturbances. On the upside, this can
also offer opportunities to build complex meta-stable structures (Zareei
et al., 2020) by using buckled thin-shells as the main building blocks.
In order to deal with the extremely sensitive buckling behavior in
engineering applications, the design process relies heavily on buckling
knockdown factors applied to the classical buckling load. Determin-
ing the adequate knockdown factor, unique for each structure/load
combination, is of utter importance. It led to the NASA space vehicle
design criteria for the buckling of thin-walled circular cylinders (NASA,
1965). These criteria, widely seen as very conservative, have been
revisited by NASA’s Shell Buckling Knockdown Factor (SBKF) Project,
which has focused on testing shells with known imperfections and non-
uniformities in loading and boundary conditions (Hilburger, 2012). It
has been shown that knowing accurately the structure’s initial geometry
enables the accurate prediction of the buckling event (Lee et al., 2016).
However, in many applications, measuring the shape of the structure
before use can be both expensive and in some cases impossible, and
the traditional buckling and post-buckling predictions rely on seeding
a linear combination of the first buckling modes as imperfections (Riks,
1979; Rahman and Jansen, 2010).

Another complication arising from unstable bifurcations is the lo-
calization of buckling deformations. This is observed for instance for
beams on an elastic foundation (Wadee et al., 1997) and more im-
portantly for thin-shell structures such as the compressed cylindrical
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shell (Hunt and Neto, 1991) as well as the spherical shell under
pressure (Hutchinson, 2016). The nature of localization itself gener-
ates a large number of post-buckling solutions even for a small set
of classical buckling modes, since the deformations can localize at
many different locations on the structure. This is referred to as spatial
chaos (Thompson and Virgin, 1988). Localization can arise on post-
buckling branches determined by the buckling modes, as observed
in the spherical shell under pressure (Audoly and Hutchinson, 2020;
Hutchinson and Thompson, 2017a). In addition, localization can also
appear on post-buckling paths disconnected from the fundamental path
while running asymptotically close to it (Groh and Pirrera, 2019). In
both cases, localized buckling can be triggered earlier than the first
buckling load if a small amount of energy is input into the structure.
It has been shown, for the compressed cylindrical shell, that a single
localized dimple forming in the middle of the structure constitutes the
lowest escape into buckling (Horék et al., 2006) and may therefore be
the critical buckling mechanism. This mode is not a bifurcation per
se, but rather a mode “broken away” from the fundamental path. The
single dimple state sits on a ridge in the total energy of the system
between the pre-buckling well and the local post-buckling well and
corresponds to the lowest mountain pass between these two states
in the energy landscape (Hordk et al., 2006). For the cylinder, the
single dimple can evolve to more and more complex post-buckling
deformations through a series of destabilizations and restabilizations,
until the cylinder is fully populated by dimples (Kreilos and Schneider,
2017; Groh and Pirrera, 2019). This process is called snaking and adds
additional complexity to the full post-buckling sequence resolution.

For all of the reasons mentioned above, predicting buckling is
extremely difficult for shell structures and often relies on a case by case
approach. Recent work has focused on the sensitivity of the buckling
phenomenon to disturbances in thin cylindrical and spherical shells. A
non-destructive experimental method, first proposed in 2015 to study
the meta-stability of the fundamental path, focuses on determining the
energy barrier separating the fundamental path and critical localized
post-buckling states (Thompson, 2015; Thompson and Sieber, 2016;
Hutchinson and Thompson, 2017b). The search for the critical buckling
mechanism is carried out by imposing a local radial displacement in the
middle of the structure using a probe. This method effectively quantifies
the resistance of a shell buckling in the single dimple mode men-
tioned earlier. The method has been successfully applied to cylindrical
shells (Virot et al., 2017) and pressurized hemispherical shells (Marth-
elot et al., 2017). These experiments quantified in particular the onset
of meta-stability, often referred to as “shock sensitivity” (Thompson
and van der Heijden, 2014) and a comparison with historical test
data has shown that this specific loading can serve as an accurate
lower bound for experimental buckling loads (Groh and Pirrera, 2019;
Gerasimidis et al., 2018).

More recent work has investigated the interaction between probing
and geometric defects in cylindrical (Yadav et al., 2021) and spherical
shells (Abbasi et al., 2021). These experiments showed that a specific
probing strategy, called ridge tracking (Abramian et al., 2020), enables
the non-destructive determination of the actual buckling load of an
imperfect shell. Probing in the immediate vicinity of the dominant
imperfection is required. Finally, a similar probing methodology has
been applied to circular arches (Shen et al., 2021a), cylindrical shell
roofs (Shen et al., 2021b), and prestressed stayed columns (Shen et al.,
2022), and the use of multiple probes has enabled the exploration of
the complete unstable behavior of these structures, beyond limit and
branching points.

The present paper applies these recent breakthroughs to more com-
plex thin-shell structures, and is inspired by recently proposed space-
craft structures that use thin-shell components to build large space
systems. In particular, modular structural architectures for ultralight,
coilable space structures suitable for large, deployable, flat space-
craft (Goel et al., 2017; Arya et al., 2016) are being investigated in
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the Space-based Solar Power Project (SSPP) at Caltech. In the de-
ployed configuration, each spacecraft measures up to 60 m x 60 m
in size and is loaded by solar pressure. The main building block is a
ladder-type structure made of two triangular rollable and collapsible
(TRAC) longerons (Murphey and Banik, 2011), connected transversely
by rods (battens). Scaled laboratory prototypes of this structure have
been built (Gdoutos et al., 2020, 2019), and analysis has shown that
local buckling plays a key role in its behavior (Royer and Pellegrino,
2020). The size of the structure, together with the complexity of its
components and the distributed nature of the loading, would make it
very challenging to conduct experimental studies.

In order to address these limitations, a simpler structure is proposed
in the present paper and its behavior under pure bending is studied.
This structure, shown in Fig. 1, is made of longerons and battens like
the SSPP structures, but the longeron’s complex original cross-section
has been replaced by a circular-arc cross-section. While this structure
and loading are different from the specific structures of interest for
the above-described space application, it enables us to draw general
conclusions on the buckling of space structures with thin-shell open
cross-sections. The computational analysis presented here investigates
the buckling behavior of such a structure and assesses if and when
early transitions into post-buckling can occur, using the novel probing
methodology. It also serves as a proof of concept for the experimental
study in Royer (2021).

The paper is structured as follows. Section 2 describes in more detail
the structure and the problem. Following a classical buckling analysis,
Section 3 highlights the importance of localization and spatial chaos
and justifies the use of the newly-introduced probing methodology. In
Section 4, probing is applied along the entire structure to determine
the location at which local buckling can appear, and a critical probing
scheme is identified. The analysis is then generalized in Section 5
to more complex probing scenarios exhibiting instabilities, and leads
to an energy map from which the critical buckling mechanism is
identified. Finally a stability landscape of shell buckling is computed
in Section 6 to highlight key characteristics of the critical buckling
mechanism. It shows qualitative agreement with landscapes previously
constructed for cylindrical and spherical shells, and for ladder-type
structures containing TRAC longerons (Royer and Pellegrino, 2020,
2022).

2. Computational model of strip structure

2.1. Geometry and material properties

The analysis presented in this paper is restricted to the single
geometry shown in Fig. 1. The dimensions were chosen on the basis of
a future experiment that will use an existing experimental apparatus.

The structure, referred as a strip, is composed of two thin-shell
longerons of length 0.4 m and with circular-arc cross section. The open-
ing angle is 60 deg, the arc radius is 10 mm, and the shell thickness is
0.1 mm, which correspond to a bending stiffness comparable to the SSPP
structures. The two longerons are connected by six regularly spaced
transverse circular rods called battens. The batten spacing is 80 mm,
which ensures that several battens connecting the two longerons. The
batten length is 50 mm, and the batten cross-section radius is 1 mm.

A finite element model of the structure is built using the Abaqus
2019 commercial software. The longerons are modeled with 4-node
reduced integration shell elements (S4R) and the battens with linear
3D beam elements (B31). An isotropic material with Young’s modulus
E = 130 GPa, and Poisson’s ratio v = (.35 is considered for both battens
and longerons.
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Fig. 2. Schematic representation of finite element model. The end battens and cross-
sections (green) are undeformable. R1 is allowed to translate along the z-axis and to
rotate along all 3 axes, R2 is pinned and is free to rotate. Two equal and opposite
moments are applied at the reference points. For a probing simulation (Section 4), a
probe is applied to the top edge of the longeron (longeron and z location determined
by probing scheme). It consists in an applied displacement on the probe node directed
along the x-axis.

2.2. Finite element analysis

The end battens and the longeron end cross-sections are made
undeformable and fully coupled to reference points R1 and R2, as
shown in Fig. 2. The boundary conditions and loading are applied
to these reference points. The structure is simply supported at both
ends: one reference point is pinned (all translations blocked) at one end
while the z-translation is allowed for the reference point at the other
end. Two equal and opposite moments of magnitude M are applied at
the reference points, and an arc-length solver (Riks solver in Abaqus
standard) is used to statically deform the structure and extract the
overall moment/rotation curve. In addition, in Section 4, for each value
of the moment, the top edge of the longeron will be probed by applying
a transverse nodal displacement U, at location z, and the probe reaction
force will be extracted. The two control parameters in these calculations
are thus the end moment and the probe displacement.

This strip structure has nonlinear pre-buckling behavior, meaning
that the computed buckling eigenmodes change as the structure ap-
proaches the buckling limit. This type of nonlinearity was previously
reported for thin shell structures (Leclerc and Pellegrino, 2020). Hence,
we will need to distinguish between two types of bifurcation buckling
analyses and their associated modes. We will use the standard termi-
nology, classical buckling loads and modes, for results in which the
pre-buckling state used in the eigenvalue analysis has been linearized,
either about the condition at zero load or at a non-zero load. Our
approach will be making use of these eigenloads and eigenmodes to
gain insight into the buckling behavior of the strip. However, most
references to buckling load and modes throughout the paper will be
to “exact” buckling loads and modes computed by analyzing the bifur-
cation from the nonlinear pre-buckling state. We will mostly refer to
the “exact” analysis and its outcome with the brief terminology: buck-
ling analysis, buckling loads, and buckling modes. However, if there
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is any ambiguity the additional terminology, linearized or nonlinear
pre-buckling state, will be appended.

3. Localization and spatial chaos
3.1. Buckling modes and limit points

The first step in assessing the buckling behavior of the strip is to
carry out a classical eigenvalue analysis to determine a sequence of the
applied moments and associated modes at which buckling bifurcations
from the perfect strip occur. This information gives a picture of not
only the lowest buckling load and associated mode but also of the
bifurcation modes lurking above the lowest critical mode. Such in-
formation gives insight into potentially important imperfection shapes
and to “nearby paths” which might play a role in the post-buckling
behavior.

The computation of the “exact” bifurcation moments and modes
is itself an iterative procedure because the pre-buckling behavior is
nonlinear. To obtain first estimates of the bifurcation points, the pre-
buckling nonlinearity is neglected using the ground-state linearity to
compute a sequence of the lowest bifurcation eigenvalues (ABAQUS
and other structural codes have options for making such eigenvalue
evaluations). These bifurcation estimates are then used to guide the
search for the bifurcations computed accounting for nonlinear pre-
buckling behavior. With the full pre-buckling nonlinearity accounted
for, the strip is then loaded by a moment below the first eigenvalue,
the nonlinear pre-buckling problem is solved, and new estimates of
the sequence of bifurcation points are computed by linearizing about
that state. This iterative process is repeated with an increasing applied
moment in each iteration until the bifurcation moments converge. For
the strip, nine bifurcation points are determined in the loading interval
before the strip attains a limit moment on the fundamental pre-buckling
path. As noted earlier, to distinguish between a buckling load of the
perfect strip computed using ground state linearity (traditionally called
a “classical buckling load”) and the buckling load computed accounting
for pre-buckling nonlinearity, we will briefly refer to the latter as the
“buckling load” and is associated eigenmode as the “buckling mode”.
The results of this analysis are shown in Fig. 3.

Both a classical Newton—Raphson solver and the Riks solver are used
to trace the response of the structure in its unbuckled configuration.
The Riks method uses the load magnitude as an additional unknown
and solves simultaneously for loads and displacements. The simulation
progresses by incrementing the arc-length along the static equilibrium
path in load—-displacement space, enabling the resolution of unstable
responses. The Newton-Raphson solver reaches a limit point at M =
1464.2 N mm, while the Riks solver bifurcates from the fundamental
path to a secondary branch at M = 1435 N mm. Note that this moment
magnitude is between the first and second buckling moments in Fig. 3.

3.2. Localization and post-buckling paths

We wish to trace the post-buckling paths corresponding to several
of the lowest buckling eigenmoments and study the evolution of the
structure’s shape along these paths. Of primary interest is the mo-
ment/rotation relation for the strip when equal and opposite moments
are applied at the strip ends and the rotation corresponds to the rotation
around the x-axis of the end located at z = 0 (c.f., Fig. 2).

As a first step, a standard method is used to trace the post-buckling
paths associated with the first three buckling modes as described next.
Each mode is seeded in the structure’s initial geometry as a geometric
imperfection. The maximum amplitude of this initial imperfection is
taken between 1% and 10% of the shell thickness, ¢. The Riks solver is
used to trace the post-buckling response of the imperfect structure.

The computed paths are shown in Fig. 4, and the correspond-
ing deformed shapes are shown in Fig. 5. For the second buckling
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M =1400.3 Nmm M =1440.5 Nmm M =1444.1 Nmm M=14444Nmm M =1450.6 Nmm

M =1451.8 Nmm M =1452.5 Nmm

M = 1460 Nmm

M = 1464.2 Nmm

Fig. 3. Nine buckling modes with associated buckling moments found on the strip fundamental path. For each mode, the deformations of both longerons are concentrated along
the longerons’ top edge (edge in compression). These deformations involve both inward (towards the strip center) and outward displacements. The battens do not exhibit any

appreciable deformation.
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Fig. 4. Moment vs. rotation curves for the strip. The fundamental path (black) stops
at the limit point M = 1464.2 N mm. The first buckling mode branch (blue) is obtained
by seeding the first mode as imperfection with an amplitude of 8%:. The second
branch (red) is obtained for the second mode imperfection with an amplitude of 8%,
The alternate second branch (green) is obtained for the second mode imperfection
with an amplitude of 10%r. The third branch (purple) is obtained for the third mode
imperfection with an amplitude of 8%t.

mode, two imperfection amplitudes have been used, yielding the two
post-buckling paths shown.

The main observation is that, contrary to the bifurcation buckling
modes, the deformed shapes for all the paths exhibit highly local-
ized deformations. For the first and second mode branches, the post-
buckling shapes are quite different from the initial imperfection. These
shapes only exhibit inward buckling deformations, whereas the buck-
ling modes also exhibit outward deformations. For the second mode

branch, even a slight variation in imperfection amplitude changes the
buckling location. For the second mode and third mode, the post-
buckling paths undergo destabilization and restabilization. This phe-
nomenon is referred to as homoclinic snaking and is also observed
in axially compressed cylindrical shells (Groh and Pirrera, 2019). It
physically corresponds to the sequential formation of buckles leading to
a fully buckled shell. Snaking may occur also in the remaining localized
paths if the analysis is pushed further. It is interesting to note that it
was possible to resolve the post-buckling path for the third buckling
mode without seeding any imperfection in the initial geometry.

For mode 1 and mode 2, the localization process initiates on the
imperfect structure’s fundamental path, before reaching the falling un-
stable post-buckling path. The initial deformation grows proportionally
to the initial imperfection and then is followed by a transition to a
localized mode shape before attaining a limit point. At this point, the
location of maximum deformation has already been determined and, on
the falling unstable path, the local deformation increases in amplitude
without changing location. It is important to emphasize that the limit
point for the imperfect structure is offset from the perfect structure’s
fundamental path, although extremely close to it, due to the eroding
effect of the imperfection on the initial stiffness. In addition, these limit
points appear at values of applied moment lower than the first buckling
moment which reveals the structure’s imperfection-sensitive nature.

Fig. 6 highlights the localization process for each of the first two
buckling modes. The displacement of the longeron top edge in the
x — z plane is plotted at the limit point, as well as at the first post-
buckling restabilization point and at the end of the post-buckling path.
The normalized buckling mode of the perfect strip is also reported as a
dashed line, for comparison.

For mode 1, localization occurs on two levels. At the structure’s
scale, local deformations only arise in longeron 1, while for longeron
2, the global deformation tends to cancel the undulations associated
with the initial imperfection away for the point of localization. At the
longeron scale, the deformed shape goes from a smooth hill to a sharp
peak for longeron 2.
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Fig. 5. Deformed shapes with magnification of 15X, obtained at the end of the four post-buckling paths of Fig. 4. They consist in localized longeron deformations and differ from
the previously computed buckling modes. All deformations are inward, and the localization location differs between longerons for the mode 1 branch (labeled 1) and mode 2

branch (labeled 2).

In addition, the localization process is not unique. Different local-
ization mechanisms are observed for buckling mode 2, depending on
the imperfection amplitude, as seen in the deformed shape comparison
of Fig. 5. The localization of mode 2 for an imperfection amplitude
of 8%t is shown in Fig. 6¢-d. It highlights the sequential formation of
the longeron 1 and longeron 2 buckle, characteristic of the snaking
process. In the case of buckling mode 3, the buckling mode shape is
relatively localized and resembles the shape observed in Fig. 5 for the
two central buckles. Therefore, no further localization is observed on
the post-buckling path before the snaking process is triggered, and four
highly localized buckles are formed closer to the longeron ends.

To conclude this section, we re-emphasize that multiple
post-buckling paths have been shown to have initially unstable be-
havior, and in some cases the paths re-stabilized at lower loads. Four
different imperfections based on the first three buckling modes have
been considered here; other imperfections or linear combinations of
buckling modes would give rise to different paths. Seeding different
imperfections has highlighted qualitatively the importance of localiza-
tion for this thin-shell structure and the fact its deformation can easily
localize at many different locations. This multiplicity of buckling and
post-buckling solutions is referred to as “spatial chaos”. However, not
all possible localized paths have been considered, and hence it is not
known which path constitutes the easiest escape into post-buckling.
Based on these qualitative observations, the next section searches for
the critical localized path using the probing methodology introduced.

4. Probing along the strip length
4.1. Probing methodology

The previous section has shown that buckling localization can lead
to a large number of post-buckling paths. Hence, the focus in the rest of
this paper is on finding the critical buckling mechanism. Here “critical”
means finding the easiest way the structure can buckle or, in other
words, finding how early the transition into buckling can occur and
which deformed shape is most likely to arise.

Two situations may be encountered when end-moments are applied
on a strip. The first corresponds to an early transition to a path that in-
tersects the fundamental path, and for which the deformation matches
one of the buckling modes (at least at the bifurcation point). This situa-
tion may arise for buckling mode 3, for which no imperfection is needed
to resolve the post-buckling path. The second situation corresponds to a
transition to a disconnected equilibrium path, running in close vicinity
of the fundamental path but without intersecting it (Hunt and Neto,
1991). In both cases, a finite input of energy into the system is required
to make the structure transition early to a secondary equilibrium path.

Note that here, “early transition” means that the transition to post-
buckling occurs before reaching the first buckling moment. A key
assumption made here is that the critical buckling mechanism will
exhibit highly localized deformations. This is generally the case for
thin-shell structures for which buckling is a sub-critical bifurcation and
is motivated by the observations made in the previous section.

The probing method, which uses a probe that displaces the structure
locally, is used to quantify the amount of disturbance needed to trigger
early localized buckling. In this paper, the probing method is explored
numerically and consists in applying a displacement directed along the
x-axis to a node on the top edge of the longeron (the probed node), as
illustrated in Fig. 2. The top edge is chosen because it corresponds to
the location of the largest compressive stress when bending moments
are applied to the structure.

The analysis goes as follows. Two end moments are applied on
the perfect structure. When the desired moment magnitude is reached,
the moment is kept constant and the probe displacement is increased.
During probing, the probe reaction force is computed. This process is
repeated for a range of moments, up to the first buckling moment, and
for various probe locations along the longeron’s top edge. The Abaqus
static general solver (Newton-Raphson) is used for both the bending
and probing steps. The analysis presented in this section is restricted to
probing paths for which the probe displacement is monotonic.

Two features are of particular interest. The first corresponds to
the range of applied moments for which buckled equilibrium states
exist. An equilibrium state is found when the probe reaction force
falls to zero. When such a situation is encountered, there exist at
least two equilibrium configurations for a given moment and therefore
the fundamental path is meta-stable. Above the moment for which
negative probe forces are first encountered, a disturbance may trigger
early buckling. The second important feature is the critical amount of
energy that needs to be provided to the system to reach the buckled
equilibria. It indicates the level of disturbance needed for the structure
to transition early into these states.

Inspired by the types of deformations seen in the buckling modes,
and restricting the study to at most a single probe per longeron,
five probing schemes have been investigated: double outward probing,
double inward probing, alternate probing, single outward probing, and
single inward probing, as illustrated in Fig. 7. These probing schemes
were chosen such that it would be possible to trigger the localized
buckling modes of Fig. 5.

By characterizing the onset of meta-stability and the critical probe
work needed to trigger buckling, we will be using probing as an
efficient tool to navigate through the spatial chaos and to find the
structure’s critical buckling mechanism.
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Fig. 6. (a-b) Localization process for (a) longeron 1 and (b) longeron 2, on the first mode post-buckling path, for an imperfection amplitude of 8% The longeron top edge
displacement in the x-direction is plotted as a function of the z location. The normalized buckling mode is shown as a dashed line. The evolution of the longeron top edge
deformation is reported at the limit point, where the post-buckling path first stabilizes, and at the end of the post-buckling path. (c—d) Localization process on the second mode
post-buckling path, for an imperfection amplitude of 8%t for (¢) longeron 1 and (d) longeron 2.
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Fig. 7. Five probing schemes considered in this paper, with arrows representing the
transverse probe displacement.

4.2. Double inward probing scheme

The double inward probing scheme is considered first. In this case,
convergence is hard to achieve for probing with applied moments of
around M = 1100 N mm, because instabilities are encountered. These
instabilities are analyzed in detail in the next section.

For moments under 1000 N mm, the probing forces remain positive
and the contours of constant probe force exhibit local extrema in the
probe location/displacement plane. The probe force for two values of
the moment has been plotted in Fig. 8 as a function of the probe lo-
cation along the longeron edge (z-axis) and of the probe displacement.
Fig. 8a shows the probing map for M = 800 N mm. The probe force
is shown as a function of the probe displacement along the x-axis (U,)
and the probe location along the top of the longeron (x-axis). For ease
of visualization, the regions corresponding to probe locations between
0 mm and 50 mm as well as between 350 mm and 400 mm are not

shown since they exhibit large probe forces. In these two regions, the
probe force vs. probe displacement curve is almost linear. For all other
probe locations, the probe force increases monotonically as the probe
displacement increases. However, the map exhibits many features, such
as regularly spaced local minima of probe force for a given probe
displacement. The lowest local minimum is attained in the middle of
the structure (200 mm). The probe force is positive for all values of
probe displacement. Fig. 8(b) shows the probing map for M = 1040
N mm. For probe locations ranging from 0 mm to 60 mm and from
340 mm to 40 mm, the probe force increases monotonically as the
probe displacement increases. For all other probe locations, the probe
force increases and then decreases. Regularly spaced local minima of
probe force appear, and negative values are reached in the middle
(200 mm). The spacing between local minima corresponds to the batten
spacing.

In fact, additional simulations showed that the probe force at the
center first falls to zero for M = 1015.5 N mm. This critical load
corresponds to the onset of meta-stability, at which early transition
into buckling becomes possible. Based on the probing scheme, the
associated post-buckling shape consists of an inward local buckle in
the middle of each longeron. This shape resembles the third non-linear
buckling mode found in Section 3.1.

4.3. Single inward probing scheme

The single inward probing scheme is considered next. The probing
maps for four values of the applied moment are shown in Fig. 9.

Fig. 9a shows the probing map for M = 800 N mm. As the
probe displacement increases, the probe force increases monotonically,
except near the middle, where a basin of local minima appears (probe
displacement of 1.2 mm). The probe force is positive everywhere.

Fig. 9b shows the probing map for M = 1040 N mm. Local maxima
of probe force appear and form a hill separating the fundamental path
from regions with local minima. The local minima are negative near
the middle of the strip, whereas at other locations they are positive,
although very close to zero. This map resembles the map obtained for
the double inward probing scheme.
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Fig. 8. Double inward probing map for (a) M =800 N mm and (b) M = 1040 N mm. The spacing between contours is 0.05 N.

Fig. 9c shows the probing map for M = 1200 N mm, which
resembles qualitatively Fig. 9b. A local minimum of probe force appears
for a probe displacement of 0.2 mm, before reaching a second minimum
at 0.35 mm, at the center of a region of negative probe forces. However,
when probing at locations other than the middle, the probing path
encounters instabilities as the probe force decreases after the peak,
and the Newton-Raphson solver aborts. It leaves the probing map
incomplete. The probe displacement for which local minima of probe
force are attained decreases as the moment increases.

Fig. 9d shows the probing map for M = 1350 N mm. The probe
instabilities appear as early as 0.1 mm of probe displacement and cause
a severe truncation of the map. The probing path for the mid-point
of the structure exhibits negative probe forces for displacements of
0.075 mm and 0.14 mm, indicating the existence of two adjacent buck-
led equilibrium states. However, the overarching goal of the probing
method is to compute the minimum energy input needed to trigger
early buckling for every probe locations, it is not yet possible due to
the probe instabilities. At the locations where the probing sequence
suddenly stops it is impossible to draw any conclusions regarding the
structure’s meta-stability. It is therefore necessary to resolve probing
sequences past these instabilities, and this is the subject of Section 5.

An important observation is that meta-stability appears earlier for
this type of probing than for the double inward probing scheme.
For higher moment magnitudes, the minimum of probe force is still
achieved at the mid-point of the structure, with regions of negative
probe force spreading over a larger portion of the structure. Therefore,
there exist multiple locations at which buckled equilibrium states are
found. This supports the observations of Section 3 where we saw that
localization for the second mode imperfection can occur at multiple
locations. However, we see qualitatively that the hill of probe force
separating the unbuckled and buckled states is lowest at the mid-point,
which signifies that the minimum energy input required to form an
inward buckle is also achieved in the middle of each longeron.

4.4. Outward and alternate probing schemes

For the double outward probing scheme it is found that there is
no value of the moment for which the probe forces decreases to 0 N.
Instead, as the longeron is locally displaced outwards under constant
applied moments, the probe force always increases monotonically.
Typically, the probe force reaches 1 N for a probe displacement of
about I mm, which is an order of magnitude higher than the probe
force obtained with the double inward probing scheme. Probing does
not reveal any buckled equilibria in this case.

The alternate probing scheme involves an inward probe on longeron
1 and an outward probe on longeron 2. The outward probe force
increases monotonically, as this case is similar to the double outward
probing scheme. However the inward probe force in the center be-
comes negative for all probe displacements, above a certain moment
magnitude. Although the disturbance introduced by probing can be

transferred between longerons, the outward probe force never falls to
0 N and hence no buckled equilibria are found.

Similar behavior is observed for the single inward probing scheme.
When the outward probe displacement is increased, the probe force
monotonically increases, while an inward buckle forms in the unprobed
longeron. Similarly to the alternate probing scheme, no equilibrium
configurations are encountered, but the probing path is truncated be-
fore the prescribed end displacement is reached, due to instabilities.
These instabilities are analyzed in Section 5 and it is shown that
buckled equilibria exist if probing is extended past instabilities.

4.5. Critical probe work and initial comparison of probing schemes

In order to find the critical buckling mechanism for the strip struc-
ture, the probing schemes presented above need to be compared. The
critical buckling mechanism corresponds to the minimum amount of
energy needed to reach buckled equilibria, but special care has to be
taken when computing the energy barrier to buckling and the critical
probe work.

In previous buckling and probing studies, the energy barrier refers
to the difference in total potential energy between the unbuckled
state and the unstable buckled state. As explained in the introduction,
the unstable buckled state corresponds to a saddle point (also called
mountain pass point) in the energy landscape and is attained for a
critical value of the probe displacement, when the zero threshold in
probe force is reached. If the main loading is kept constant, the probe
work reaches a local maximum at this critical displacement. We will use
the terminology “critical probe work” to refer to this local maximum
of the probe work. When the probe displacement is monotonic during
probing (i.e., no folding of the path), and for a displacement-controlled
main loading, the critical probe work is equal to the energy barrier.
This scenario is for instance encountered for the probed cylinder under
constant end shortening (Virot et al., 2017). However in the present
study, the energy barrier and the critical probe work can be different
for two reasons:

» Moment-controlled loading implies that probing occurs under a
constant value of the end-moment. During probing, the ends of
the strip rotate and hence the end-moments do work. As a result,
the energy barrier is greater than the critical probe work since
it accounts for the end-moments’ additional contribution to the
energy of the system. However, the constant moments are part
of the known conditions the structure is subjected to during
operation and, since the contribution of an unknown disturbance
is only represented by the probe, the quantity of interest is the
critical probe work. The study has been repeated for a rotation-
controlled loading and the results are presented in Appendix.
In the latter case, the probe work only contributes to the total
external work of the system.
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Fig. 9. Single inward probing maps for (a) M =800 N mm, (b) M = 1040, (c) M = 1200 N mm, and (d) M = 1350 N mm. The spacing between contours is 0.02 N for (a) and

(b), and 0.005 N for (c) and (d).

« For unstable probing sequences, a vertical tangent can be reached,
beyond which the probing path can fold. In such cases, snap-
buckling can be triggered before the zero probe force threshold
is attained, and the value of the critical probe work is computed
at the point of vertical tangent rather than at the first buckled
equilibrium. Such cases are presented and analyzed further in
Section 5.

Next, the critical probe work for the two inward probing schemes is
discussed. Since the probing path does not exhibit any instabilities in
the middle of the structure, for both schemes, the critical probe work
required to reach the buckled equilibrium states can be computed. The
critical probe work obtained for a central probe location and for both
probing schemes is shown in Fig. 10.

The single inward probing scheme gives a lower critical probe work
than the double inward probing scheme for the entire range of moments
considered. As a result, if buckling is triggered early, it will likely
consist of a single buckle in the middle of one of the longerons rather
than in both longerons. When comparing the local maximum of probe
force obtained for both probing schemes, we also see that it is lowest
for the single inward probing scheme, regardless of the probe location.
It seems therefore that if meta-stability is detected at a specific probe
location, the single inward probing scheme would also give the lowest
critical probe work at this specific location.

Finally, it has been shown in this section that buckled equilibrium
states appear for lower values of moments for the single inward probing
scheme. As snaking appears to play a prominent role for this structure,
we would expect a sequential formation of single buckles which sup-
ports the energy comparison between the two probing schemes. For
all of these reasons, the rest of the paper will focus only on the single
inward/outward probing schemes.

5. Unstable probing sequences
5.1. Single inward probing

This section extends the probing simulations to cases in which insta-
bilities are encountered. The probing displacement is applied similarly

T T T T T T
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Fig. 10. Critical probe work as a function of the applied bending moment, for both
single and double inward probing schemes. It is smallest for the single inward probing
scheme.

to the previous part of the study, but an arc-length solver (Riks solver)
is now used, which allows probing to continue after a vertical tangency
(fold) in the probe force vs. probe displacement plane has been reached.
Additional probing sequences are computed for the single inward prob-
ing scheme and for all probing locations, and the two main types of
path instabilities encountered are analyzed.

The results of the analysis for a probe located at 100 mm from the
end of the structure are shown in Fig. 11. For M < 1050 N mm, the
probing path is stable and the probe force exhibits a local maximum
and local minimum. However, the probe force is always positive and
no locally buckled equilibrium solutions exist. For M = 1050 N mm, a
vertical tangent is encountered and the path folds. The path eventually
restabilizes for a value of probe force of about —0.1 N. However, the
restabilized path is short and does not reach positive probe forces. This
suggests that another bifurcation is encountered for a probe displace-
ment of about 0.2 mm. This behavior is also encountered for higher
values of moments, although the corresponding probing paths do not
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Fig. 11. Probe force vs. probe displacement for a probe located at z = 100 mm and for
four values of applied moment. The loop formed by the folded path becomes smaller
as the moment magnitude increases until it folds on itself for M = 1385 N mm.

restabilize for positive values of probe displacement. Fig. 12a shows
the probing path for M = 1050 N mm with four points 1-4 marking
key stages of the probing sequence.

The deformed shapes corresponding to these four points are shown
in Fig. 12b. On the stable part of the path (before reaching point 2),
displacing the probe results in an increase of the local buckle ampli-
tude. After point 2, the probing path becomes unstable. As the probe
displacement decreases, the probe force increases until it reaches point
3 and then decreases to 0 N at point 4, which corresponds to a buckled
equilibrium solution. This unstable path corresponds to the change of
location of the buckle formed during the stable part of the path. At
point 4, the structure is in a buckled equilibrium configuration, but the
final buckle location does not correspond to the probing location.

Note that the probe force vs. probe displacement curve has a
positive slope at point 4 which means that the equilibrium is stable.
The critical probe work required to reach the localized buckled con-
figuration at point 4 corresponds to the shaded area in Fig. 12a. It
is important to point out that this area does not correspond to the
energy barrier, as explained in Section 4.5. In order to compute the
energy barrier, i.e. the difference in total potential energy between the
unbuckled state and the buckled state at point 4, the area enclosed
by the probing path would have to be considered. The area under the
curve formed by points 2, 3 and 4 would have to be subtracted from
the shaded area, and the work done by the end-moments would have
to be added.

Path folding has also been encountered in compressed spherical
shells probed at the apex, under rigid volume control (Thompson and
Sieber, 2016), and all of the bifurcations that can arise and disrupt
a probing sequence have been described (Thompson et al., 2017).
Two approaches have been proposed to explore experimentally these
unstable probing sequences. The first one consists in introducing feed-
back control (Thompson et al., 2017). If the probe displacement and
probe force are chosen as inputs, it is then possible to resolve vertical
tangents. It is also possible to navigate around the fold and avoid
unstable probing paths by using the moment and probe displacement
as inputs. Another approach consists in using additional probes to
suppress instabilities (Thompson and Sieber, 2016).

Next, the probing paths for a probe located at 160 mm from the
end of the structure are shown in Fig. 13. For M = 1000 N mm, the
path exhibits a local maximum and a local minimum without reaching
the zero threshold for the probe force. The path is well behaved
and can be resolved with a Newton-Raphson solver. For M = 1050
N mm, the probe path reaches a point of vertical tangency for a
probe displacement 0.85 mm. The restabilized path extends further and
reaches positive probe forces, which indicates the existence of a stable
equilibrium solution.
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Fig. 12. (a) Probe force vs. displacement for probe at z = 100 mm and M = 1050 N
mm. Four key points are highlighted and correspond to the deformed shapes shown
in (b). The solid and dashed lines correspond respectively to the stable and unstable
probe characteristic under displacement control. The shaded area is the probe work
needed to trigger snap-buckling. (b) Mode shapes obtained at points 1, 2, 3, and 4 on
the probing sequence. The stable part of the path (point 1 and 2) corresponds to the
growth of the buckle formed by the probe. On the unstable part of the path (points 3
and 4), the previously formed buckle shifts location. Deformations have been magnified
by a factor 20.

As the moments increases in magnitude, the path folding is replaced
by path spiraling, which indicates that multiple equilibrium solutions
exist. The number of equilibrium solutions encountered on the probing
path increases as the moment increases. For M = 1200 N mm, four
equilibrium solutions are detected and for M = 1300 N mm the spiral-
ing evolves to reveal five equilibrium solutions. Close to the buckling
load, at M = 1385 N mm, a single path is observed for extremely small
values of probe displacement, which indicates an extremely low critical
probe work.

The probing path for M = 1300 N mm is shown in Fig. 14a, with
four equilibrium states labeled 1-5. The deformed shapes obtained at
these points are shown in Fig. 14b. As the probe displacement increases,
initially the probe force increases and then decreases. The probing
path becomes unstable right before reaching the first equilibrium state
(labeled 1). At this point, a buckle in stable equilibrium (buckle 1)
is formed in the longeron at the probe location. The unstable path
between states 1 and 2 exhibits negative probe forces, and the initially
formed buckle travels along the longeron’s top edge. This situation is
similar to the 100 mm probe location, but the main difference is that
the path restabilizes with a sudden increase in probe force. Point 2 is
now also an equilibrium state, whereas previously only one equilibrium
solution was found. Equilibrium state 2 is also stable. From state 2 to
state 3, the probe force increases, and the magnitude of the maximum
probe force is about twice the one attained before state 1. On this part
of the path, buckle 1 continues to travel along the longeron, and a
second buckle (buckle 2) forms at the probe location. The path loses
stability at a probe displacement of about 0.4 mm and reaches the
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Fig. 13. Probe force vs. displacement for probe at 160 mm and for five values of
applied moment.

stable equilibrium 3, for which buckle 1 and buckle 2 are sustained,
forming a “train” of 2 buckles. This buckle formation shifts location
before reaching the unstable equilibrium 4. The path proceeds with
a third loop and the 2-buckle formation continues traveling, while
a third buckle (buckle 3) is formed at the probe location. The path
reaches equilibrium 5 for which 3 buckles in series are sustained in
the longeron. Note that point 5 also corresponds to a local minimum of
probe force and as a result, no more negative probe forces appear on
the path.

Two other interesting behaviors are observed. First, closer to the
strip ends (probe location between 20 mm and 60 mm) some hysteresis
is found. The probe displacement and probe force first increase, until
reaching a limit point, after which the probe displacement decreases
and the path returns to the origin. However, the return path lies below
the original, stable path, indicating lower probe forces. Physically,
this indicates an interaction between the longerons: the inward dis-
placement imposed on longeron 1 by the probe causes a macroscopic
in-plane bending of the full structure, causing the unprobed longeron
(longeron 2) to buckle. A similar transfer of disturbance between
longerons, through the battens, was also encountered for the alternate
probing scheme. Secondly, for some combination of probe locations
and moments, the solver stops before the end of the analysis and the
full probing path cannot be resolved. This is due to the presence of
secondary bifurcations, and therefore the loss of a unique equilibrium
path. While path folding and spiraling could be resolved using the
Riks solver alone, continuing these probing paths after the bifurcation
would require an imperfection to be added in the initial geometry,
or more sophisticated continuation algorithms (Groh et al., 2018),
which is beyond the scope of this paper. In most cases, path folding
is observed before reaching the bifurcation point, but the path stops
before reaching the zero threshold for the probe force. Therefore, no
equilibrium solutions can be detected. However, it is still possible to
compute the probe work required to trigger snap-buckling, when the
vertical tangent is reached.

5.2. Single outward probing

No buckled equilibrium solutions were detected when the single
outward probing scheme was used in Section 4, and the probe force
increased monotonically as the probe displacement increased. Even if
buckled equilibrium states seemed unlikely for this type of probing,
the probing paths had been prematurely terminated by instabilities
and therefore no final conclusion could be reached regarding their
existence. Here, the Riks solver is used to compute the probing paths
past vertical tangents. Surprisingly, it was found that the single outward
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Fig. 14. (a) Probe force vs. displacement for a probe located at z = 160 mm and for a
moment of M = 1300 N mm. The five points highlighted correspond to the deformed
shapes shown in (b), magnified by a factor of 40. The solid and dashed lines correspond
respectively to the stable and unstable probe characteristic under displacement control.
The stable and unstable equilibrium configurations are indicated by green and red dots,
respectively.

probing scheme is able to trigger inward buckled equilibria, and the
two main buckling mechanisms are analyzed below.

The first buckling mechanism involves the formation of a buckle
in the unprobed longeron. Probing at a location z = 180 mm un-
der a moment of M = 1100 N mm triggers this behavior, and the
corresponding probe force vs. probe displacement curve is shown in
Fig. 15a. The structure’s deformed shapes obtained at selected points
on the path are shown in Fig. 15b. The probing sequence starts with
a monotonic increase in probe force as the probe on longeron 1 is
displaced outwards. The deformed shape at point 1 shows the large
displacement of the probed longeron but no localization is observed.
However pulling on longeron 1 results in a global in-plane bending of
the structure, which results in an inward displacement of the unprobed
longeron 2, since the two longerons are connected by the battens. Past
point 1, the probe displacement decreases and the inward displacement
of longeron 2 localizes to form a buckle. At point 2, the inward buckle
on the unprobed longeron 2 is in equilibrium and stable. Once the probe
displacement becomes negative, the single inward probing scheme is
recovered and an inward buckle is formed on the probed longeron
1. Path folding is then observed which physically corresponds to the
buckle on longeron 1 moving along the longeron, as described in the
previous subsection. The only difference here is that the initial outward
probing results in an additional inward buckle on longeron 2.

The second buckling mechanism is rather unexpected, as it corre-
sponds to the formation of an inward buckle in the longeron probed
outwards. Probing under a moment M = 1300 N mm and at a location
of 120 mm leads to this behavior. The corresponding probe force vs.
probe displacement curve is shown in Fig. 16a and the structure’s
deformed shapes at key points of the path are shown in Fig. 16b.
The probing sequence starts again with a monotonic increase in probe
force as the probe on longeron 1 is displaced outwards. The deformed
shape at point 1 shows the large displacement of the probed longeron,
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Fig. 15. (a) Probe force vs. displacement for probe at z = 180 mm and M = 1100 N
mm. (b) Deformed shapes corresponding to points 1, 2, 3, and 4, magnified by a factor
of 30. The solid and dashed lines correspond respectively to the stable and unstable
probe characteristic under displacement control. The stable equilibrium configurations
are indicated by green dots.

but inward localization is observed farther away from the probe, on
the same longeron. Past point 1, the path becomes unstable and the
localized fold present at point 1 corresponds to an inward buckle
on the probed longeron. The local hump in probe force observed on
the unstable path corresponds to the buckle traveling until the stable
equilibrium at point 2 is reached. After point 2, the single inward
probing scheme is recovered and an additional buckle is formed on the
probed longeron. Path folding is again observed in this case.

Finally, other types of outward probing paths are encountered for
different probe locations and consist of a superposition of the two
simple buckling sequences described above. Note that once the first
buckle has been formed by the outward probing scheme, these paths
can exhibit spiraling and lead to a complex series of buckles in equi-
librium. An analysis of these complex situations corresponding to even
more equilibrium solutions is beyond the scope of this paper.

The main take away is that both the single inward and single
outward probing schemes can trigger inward buckling, and no outward
buckling has been observed in either case.

5.3. Critical probe work map

Repeating the analysis described above for all probe locations and
moments, and for both the single inward and single outward probing
schemes, leads to the two critical probe work plots shown in Fig. 17.
Each color corresponds to a specific moment magnitude. Dots denote
the first zero threshold in probe force, corresponding to a buckled
equilibrium. In some cases, secondary bifurcations are encountered on
the probing path before reaching the zero probe force threshold. In
this case, additional techniques would need to be used to trace the
full probing path, however, the critical probe work has been computed
and reported without a dot. If the probing path can be fully resolved
but never crosses the zero probe force threshold, the maximum work
done by the probe is also reported without a dot. Since the problem
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Fig. 16. (a) Probe force vs. displacement for probe at z = 120 mm and M = 1300 N mm.
The four points highlighted correspond to the deformed shape shown in (b), magnified
by a factor of 50. The solid and dashed lines correspond respectively to the stable
and unstable probe characteristic under displacement control. The stable equilibrium
configurations are indicated by green dots.

is symmetric with respect to the middle transverse axis of the strip,
only results for half a strip have been presented in Fig. 17. No early
buckling can be triggered for probes between z = 0 mm and z = 20 mm,
and hence this region is not shown. Finally, it is important to highlight
that the probe location does not necessarily coincide with the buckling
location.

The critical probe work for the inward probing scheme is shown
in Fig. 17a. Multi-stability is first detected for probing at the mid-
point and for M = 950 N mm. For higher values of the moment, the
meta-stable region extends to almost the entire length of the strip. For
moments lower than 1385 N mm, the minimum critical probe work
is always reached for probing at 200 mm. For M = 1000 N mm, it
is about 0.06 mJ and drops to less than 10~ mJ for M = 1350 N
mm. These magnitudes make early buckling extremely likely to occur.
Closer to the first buckling moment (M = 1400.3 N mm), the location of
the minimum critical probe work changes. It is attained for a probe at
180 mm for M = 1385 N mm and shifts to 160 mm for higher values of
moments. Note that for this range of high moments, the critical probe
work drops to practically zero. At M = 1400 N mm, the critical probe
work first drops to effectively zero (marked as 10~7 in Fig. 17).

The critical probe work for the single outward probing scheme is
shown in Fig. 17b. Qualitatively, it resembles the single inward prob-
ing, however the critical probe work is consistently higher for this type
of probing, indicating that inward probing is the critical disturbance for
the strip structure. For M > 1385 N mm, the minimum critical probe
work is similar for inward and outward probing. At M = 1400 N mm,
the critical work first drops to zero (marked as 10~7 in Fig. 17) but for a
probe location of 60 mm, which differs from the single inward probing
scheme.

For both probing schemes and for M < 1385 N mm (99% of the
buckling moment), the minimum critical probe work occurs for probing
in the middle of the structure and is extremely low. It can be concluded
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Fig. 17. Critical probe work map for (a) single inward and (b) single outward probing
scheme. Dots denote solutions corresponding to the first zero value of the probe force,
corresponding to a buckled equilibrium. These plots show similar trends, except that
the single outward probing scheme requires more energy to trigger inward buckles.

that early buckling is most likely triggered by inward probing in the
middle of the structure, and it is thus the critical disturbance. For this
specific case, the probing and buckling locations are the same and,
therefore, the critical buckling mechanism consists of a localized single
buckle in the middle of a longeron.

Finally, rotation-controlled simulations have also been carried out.
The corresponding critical probe work maps are presented in Ap-
pendix.

6. Stability landscape for critical localized buckling

The notion of a stability landscape of shell buckling was intro-
duced (Virot et al,, 2017) as a way to characterize the meta-stable
nature of cylindrical thin-shell buckling. The experiments in this origi-
nal study used soda cans, and a local radial displacement was imposed
in the middle of the compressed can using a small ball probe (called a
“poker” in Virot et al. (2017)).

The stability landscape is the surface created when the probe force
is plotted as a function of the probe displacement for various levels of
the main loading parameter (axial compression or end-shortening of
the cylinder). The landscape provides a very useful way to quantify the
impact of probing on the buckling behavior and a general way to study
the structure’s buckling sensitivity to disturbances. In the cylinder case,
the probe location coincides with the location of the critical buckling
mechanism, which corresponds to the formation of a single dimple in
the middle of the cylinder. Hence, in this case the probing experiment
is aimed at triggering this specific mode (lowest mountain pass point).
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Fig. 18. Stability landscape for the strip critical buckling mechanism (single inward
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a ridge of probe force. No buckles can be sustained in the structure for moments below
the minimal buckling moment (M =950 N mm).

In the previous section, the critical buckling mechanism for the strip
structure was identified. It was established that local buckling can first
appear as a single inward buckle forming in the middle of one longeron.
As a result the critical stability landscape of shell buckling for this new
structure has been constructed and is presented in Fig. 18.

This landscape matches qualitatively the landscape for the com-
pressed cylindrical shell, as well as the stability landscape for more
structural complex geometries and loading (Royer and Pellegrino,
2020). Several important features are observed (Virot et al., 2017) and
are explained here. The point of spontaneous buckling corresponds to
the state for which the structure will undergo buckling without any
action from the probe. This point is reached when the moment attains
the buckling load (accounting for nonlinear pre-buckling deformation).
However, before reaching this point, buckled equilibrium solutions are
accessible through probing. These solutions correspond to the contour
for which the probe force is zero (for a non-zero probe displacement).
It consists of two parts: stable and unstable. For a specific value of
the moment, corresponding to the lowest value of moment for which
a buckled equilibrium solution exists, the stable and unstable states
coincide. This condition represents the onset of meta-stability and the
associated state is called the minimally buckled state (Virot et al.,
2017). This moment value is denoted as the minimal buckling moment.

For the strip structure, the minimal buckling moment is 950 N mm
(68% of the buckling moment), and the probe displacement at the min-
imally buckled state is 1.6 mm. Below the minimal buckling moment,
no local buckles can be sustained in the structure. This load may serve
as an effective lower bound for experimental buckling loads (Groh and
Pirrera, 2019).

During a moment-controlled experimental probing sequence, where
the probe is not attached to the structure, the longeron flange will
dynamically snap as soon as the probe reaches past the unstable equilib-
rium contour, since the probe will experience negative reaction forces.
Depending on the moment at which probing is carried out, the structure
can restabilize and reach the stable equilibrium contour. For a moment
above a critical value, corresponding to the snaking point of Fig. 18, the
structure will not restabilize and may completely collapse. The snaking
moment is M = 993 N mm (71% of the buckling moment). It is possible
to probe the stable post-buckling path and compute the critical probe
work required for early snaking, following the same methodology.

It is important to realize that the existence of the stable equilibrium
contour is not guaranteed. It depends on the particular structure under
study, and also on whether the experiment/simulation is load con-
trolled or displacement controlled. For example, a spherical shell under
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external pressure will exhibit stable buckled states when loaded under
volume-control but has no stable buckled states (other than complete
collapse) under pressure-control (Hutchinson and Thompson, 2017a).
For the SSPP strip structures described in the Introduction, it has been
observed that the stable buckled equilibrium contour can extend much
farther than the first buckling load (Royer and Pellegrino, 2020).

The local maxima of probe force define the ridge of the stability
landscape, and form a hill of energy between the fundamental path
and the unstable buckled equilibrium states. At any applied moment,
the critical probe work is the minimum energy that must be input
into the structure for it to locally buckle. This quantity is directly
related to the buckling sensitivity to disturbances, referred to as “shock-
sensitivity” (Thompson and van der Heijden, 2014). The ridge meets
the fundamental path at the point of spontaneous buckling under
prescribed probe force (but not under prescribed probe displacement).
Past this point, negative probe forces are encountered as soon as the
probe is displaced. The local minima of probe force form the valley of
the stability landscape, defining the limit beyond which probing paths
restabilize. The valley intersects with the buckled equilibrium contour
at the minimally buckled state after which the minimum probe force
becomes negative.

The ridge and valley intersect at M =710 N mm (51% of the non-
linear buckling moment), after which the landscape starts exhibiting a
negative probing stiffness. For higher values of probe displacements,
the stability landscape is bounded by limit points ending each probing
sequence. The ridge, valley, and maximum limit points form the land-
scape’s foldline which defines more generally the range of stability for
the structure against the single buckle mode of deformation. Snaking,
which corresponds to secondary modes being triggered, will occur
when the maximum limit points are exceeded.

Finally, rotation-controlled simulations have been carried out and
yield qualitatively the same landscape. The rotation-controlled stability
landscape is shown in Appendix.

7. Conclusion

This paper has presented a numerical investigation of the buckling
sensitivity of a complex thin-shell strip structure, applying the novel
probing methodology previously used for cylindrical and spherical
shells. The focus has been on a single geometry, inspired by novel
designs for spacecraft structures, with the goal of paving the way for
experimental studies (Royer, 2021).

First, a classical post-buckling analysis has been conducted, which
consisted in seeding imperfections based on the structure’s buckling
modes in the initial geometry. This analysis has shown multiple lo-
calized post-buckling solutions originating from a limited set of nine
buckling modes, and providing evidence that the structure exhibits
spatial chaos.

The probing methodology is well suited to finding the critical
buckling mechanism. By probing along the entire structure, it has been
found that only localized buckling in the inward direction can be
triggered before the buckling moment is reached. Furthermore, a com-
parison between single and double inward probing schemes highlighted
that the longerons will most likely not undergo buckling simultane-
ously and will rather exhibit a sequential formation of buckles known
as snaking, which was also supported by the classical post-buckling
analysis. However, when probing is not done in the middle of the
structure, unstable probing sequences were observed and, therefore, an
arc-length solver was used. This refined analysis highlighted complex
behaviors such as buckles traveling along the structure and multiple
equilibrium paths juxtaposed next to each other. It has been shown that
unstable outward probing can lead to local inward buckling through an
interaction between structural components.

A particular feature of the equilibrium paths obtained in the present
study, which had not been reported before, is the formation of spiral
paths that indicate the existence of multiple equilibrium configurations.
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This generalized probing approach has enabled the construction of a
critical probe work map from which we concluded that a single inward
buckle forming on a single longeron is the buckling mechanism requir-
ing the least amount of disturbance to be triggered before reaching
the buckling moment. An in depth study of the critical buckling mode
has enabled the construction of a stability landscape of shell buckling.
It highlights the region of stability for the buckled structure as well
as the region for which restabilization occurs, between the minimal
buckling moment and the snaking moment. This stability landscape is
qualitatively similar to previous, experimentally based, landscapes for
cylindrical shells.

Although the core of the paper has presented results for moment-
controlled loading, for which probing occurs under a constant moment,
rotation-controlled loading has also been studied. It leads to the same
qualitative results for this structure, as shown in Appendix.

More generally, it has been shown that the probing methodology
can be applied to more complex structures than cylindrical and spheri-
cal shells. Therefore, the use of such a technique for complex assemblies
of thin-shell components seems to be possible and could enable an
in-depth understanding of any structure’s buckling sensitivity. One
could think about designing for a specific level of disturbance during
operations and thus push the structure’s capabilities to its fullest. If one
does not have a full knowledge of potential disturbances, an experimen-
tal determination of the minimal buckling load seems to provide an
excellent buckling criterion. However, more work needs to be done to
assess how initial imperfections erode the critical probe work required
to trigger buckling and how they could provide connections between
the adjacent post-buckling path and the fundamental path. Recent
studies have suggested that the minimal buckling load varies rather
slowly for imperfections of limited amplitude (about 50% of the shell
thickness) (Royer and Pellegrino, 2020), whereas the critical probe
work is significantly affected. A detailed investigation of the role of
imperfections on the buckling sensitivity will be the subject of a future
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Appendix. Rotation-controlled study

The analysis presented in the paper has been repeated for rotation-
controlled main loading. Here the rotation is prescribed at the two ends
of the strips, at the reference points shown in Fig. 2. The moment-
controlled and rotation-controlled studies lead to the same qualitative
results. The same buckling modes and unstable probing paths are
observed, and the critical probe work maps can be computed. These
maps are shown in Fig. A.19a for the single inward probing scheme
and in Fig. A.19b for the single outward probing scheme. The values
of applied rotations are chosen such that they correspond one-to-one
to the moment magnitudes in Fig. 17, on the structure’s fundamental
path.

One important difference here is that the probe work accounts
for all of the external work, since the end moments are not doing
any work. For rotations (or corresponding moments) between 0.745
deg and 0.894 deg, a higher critical probe work is required to trig-
ger snap-buckling when the loading is rotation-controlled rather than
moment-controlled. In this initial range of rotations, the minimum
critical probe work is still achieved by probing in the center (z =
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Fig. A.19. (a) Critical probe work map for single inward probing scheme. Dots denote
solutions corresponding to the first zero value of the probe force, corresponding to a
buckled equilibrium. (b) Critical probe work map for single outward probing scheme.
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Fig. A.20. Stability landscape for critical buckling mechanism (single inward buckling
in the middle) and for rotation-controlled loading.

200 mm), and therefore the single inward buckling in the middle of
one longeron is also the critical buckling mechanism for a rotation-
controlled loading. For higher values of rotation, the critical probe
work is higher for the moment-controlled case, even if it has a similar
order of magnitude for both types of loading. Closer to the buckling
point, we observe that the critical probe work becomes chaotic across
the structure’s length.
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For the critical buckling mechanism identified above (single inward
buckle at z = 200 mm), the rotation-controlled stability landscape can
be built and is shown in Fig. A.20. It presents the same features as
the moment-controlled stability landscape. In both studies, the prob-
ing path restabilizes after the minimally buckled state. The minimal
buckling rotation is about 70% of the classical buckling rotation which
is comparable to the minimal buckling moment which was 68% of
the classical buckling moment. Probing becomes unstable close to the
snaking point which explains the missing area in the map shown in
Fig. A.20. It is important to point out that when the applied rotation
is held constant, the area under the probe force vs. probe displacement
curve is the critical probe work but also the energy barrier between the
unbuckled equilibrium and the unstable buckled equilibrium.
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