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A B S T R A C T   

Clamped-clamped compressed wide metal columns with length to thickness ratios such that they undergo plastic 
buckling are considered. Further, the thickness of the columns is assumed to be in the range of microns to tens of 
microns, typical of elements comprising some of the small-scale lattice materials currently being produced. The 
strengthening effects associated with plastic strain gradients are expected to influence buckling behavior, and the 
columns are analyzed using several versions of the available strain gradient plasticity theories. The columns are 
assumed to be infinitely wide and subject to plane strain deformations. Approximate one-dimensional and exact 
two-dimensional analyses are presented. The primary focus is the onset of plastic buckling as predicted by 
bifurcation from the state of uniform compression. However, a numerical post-buckling study is carried out for 
one class of strain gradient theories for columns with initial imperfections to ascertain if the buckling predictions 
stemming from this class of theory are realistic. The paper highlights the fact that one class of strain gradient 
theories does not appear to be adequate for analyzing plastic buckling.   

1. Introduction 

Recent advances in metal processing techniques such as 3D printing 
have made it possible to manufacture small-scale metal structures and 
lattice materials with column and plate elements whose thicknesses are 
in the micron range. This paper explores the increase in plastic buckling 
resistance expected due to the phenomenon of plastic strain gradient 
hardening when micron-scale beams and plates are compressed into the 
plastic range. This paper is contributed to a special issue of the Inter-
national Journal of Solids and Structures to celebrate the 70th birthday of 
one of the major contributors to the plastic buckling of structures, Stelios 
Kyriakides. The two-volume research monograph, Kyriakides and 
Corona (2007) and Kyriakides and Lee (2020), deals with large struc-
tures, primarily off-shore structures with chapters covering aspects of 
plastic buckling in all its richness. While the present paper makes con-
tact with plastic buckling in the large-scale range, the primary emphasis 
is on the increase in plastic buckling strength that is expected to occur 
for columns and plates whose thicknesses are in the range from microns 
to tens of microns. Buckling, whether it be in columns, plates, or shells, 
usually involves an abrupt change from a relatively uniform compres-
sive state to deformations involving significant bending. If buckling 
occurs in the plastic range and if the thickness of the structural element 
is on the order of microns, one can expect that plastic strain gradients 

driven by the bending will give rise to an increase in buckling resistance. 
It is this increase in buckling resistance which is investigated in this 
paper for compressed wide columns, that is, plates bending in only one 
direction. The wide columns will be taken to be clamped at both ends 
and compressed uniformly prior to buckling. Buckling associated with 
bifurcation from the perfectly straight configuration will be analyzed by 
employing both an exact 2D plane strain formulation and a simpler 1D 
‘beam’ analysis based on Euler-Bernoulli kinematics. Several of the 
available versions of strain gradient plasticity will be used to expose the 
sensitivity of the strengthening prediction to the details of the consti-
tutive theory. 

The mechanics of column buckling under compression in the plastic 
range took decades to unfold. Engesser’s (1889) tangent modulus load 
was superseded by von Karman’s (1910) reduced modulus load gov-
erning stability. Years passed until the importance of the reduced 
modulus load was overturned by Shanley’s (1947) observation that the 
lowest load for the onset of plastic buckling occurs under increasing load 
such that the tangent modulus load is indeed the primary critical load of 
interest for buckling. Shortly thereafter, Hill (1958) placed plastic 
buckling on a firm mathematical footing within a general continuum 
mechanics framework, accounting for the fact that bifurcation in the 
plastic range can occur as a loss of uniqueness without a loss of stability 
of the uniform state. Additional issues were discovered and addressed in 
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the 1950’s and 60’s related to the constraint the shape of the yield 
surface has on plastic buckling predictions for plates and shells. These 
considerations are not of primary concern to wide column buckling 
because both the pre-buckling and post-buckling stress states are 
dominantly plane strain compression. 

2. Elevation of the incremental bending stiffness due to the 
plastic strain gradient 

The key to understanding the increase in plastic buckling resistance 
of a column or plate in the micron range is the increase in incremental 
bending stiffness predicted by strain gradient plasticity. We begin by 
presenting the incremental bending stiffness for a wide column, or plate, 
that has been compressed uniformly into the plastic range and then 
subject to increments of additional uniform compressive strain and 
uniform curvature, all under conditions of plane strain. The increments 
of compression and curvature are constrained such that continued 
plastic straining occurs across the entire cross-section of the column, 
consistent with Shanley’s condition discussed later in the paper. Strain 
gradient plasticity (SGP) is not a settled subject. The reader is alerted to 
the fact that two classes of SGP formulations currently in use will be 
considered in this paper. The two are termed ‘incremental’ and ‘non- 
incremental’. In the incremental formulations, all stress and strain 
quantities are taken to be increments in any given incremental loading 
step. In the non-incremental formulations, certain stress quantities can 
undergo finite (non-incremental) changes due to an incremental loading 
step, particularly when that loading step involves an abrupt departure 
from proportional or nearly proportional loading such as those that 
occurs in buckling. An important finding in this paper is the strong 
indication that the non-incremental formulations give physically unre-
alistic predictions in plastic buckling applications. A clear hint of this 
inadequacy will already be evident in this section dealing with the in-
cremental bending stiffness. 

With the geometry and coordinates defined as specified in Fig. 1, the 
current strain component parallel to the column is ε11 = − ε0 and the 
imposed increment of strain is ε̇11 = − ε̇0 − κ̇x2 with ε0 > 0 in compres-
sion and κ as the curvature of the centerline. The condition of continuing 
compressive plastic strain across the entire thickness requires places a 
constraint on ε̇0 and κ̇ which will be presented below. With P as the 
horizontal compressive force/depth (depth is out-of-the-plane) and M as 
the moment/depth about the 3-direction, the incremental relations from 
the uniform compressive state for the constitutive models being 
considered are Ṗ = Sε̇0 and Ṁ = Dκ̇ with S and D as the incremental 
stretching and bending stiffnesses per unit depth. 

Throughout this paper, plane strain conditions are assumed such that 
the out-of-plane strains vanish, i.e., ε13 = ε23 = ε33 = 0. In addition, 
except for the FEM simulations in Section 6, attention will be restricted 

to materials that are elastically and plastically incompressible. Let E be 
the elastic Young’s modulus, σY the initial yield stress in uniaxial tension 
(with − σY as the yield stress in uniaxial compression). The plane strain 
elastic modulus for the incompressible material isEps = 4E/3, and the 
stress component σ11 at initial yield in plane strain compression is 
σ11 = − 2σY/

̅̅̅
3

√
≡ σY

11 for all the material models considered here. 
Denote the incremental ‘tangent’ modulus for plane strain tension/ 
compression increments by Et such thatσ̇11 = Et ε̇11. For all the consti-
tutive models considered in this paper, the incremental plane strain 
stretching stiffness per unit depth from the state of uniform compression 
is unaffected by strain gradient effects; it is given by. 

S = 2Eth (2.1) 

For all but the non-incremental strain gradient theory introduced 
later, the incremental bending stiffness per depth following uniform 
compression for the theories considered here can be written as (the 
derivation is given in Section 5.1). 

D =
2
3
Eth3

{

1 + 3
(

Eps

Et
− 1
)

α2(1 − αtanh(1/α) )
}

(2.2) 

Strain gradient effects enter through α which for the three incre-
mental SGP theories considered here has the form. 

α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 −
Et

Eps

)
a2

3

√
ℓ
h

(2.3)  

where a2 depends on the specific SGP model and is a dimensionless 
function of the effective plastic strain,εP, in the uniform state prior to 
application of the bending increment. The length scaling the gradients in 
the SGP models isℓ. In the absence of a gradient effect withℓ→0, the 
incremental bending stiffness per depth reduces to the prediction of 
conventional plasticity,D = 2Eth3/3, which, in the absence of plasticity, 
reduces to the elastic bending stiffness/depth,Delastic = 2Epsh3/3. 

For all the numerical results presented in this paper, the following 
true stress-log strain curve in uniaxial tension will be used. 

ε = σ/E & εP = 0, σ⩽σY

ε = σ/E + ((σ − σY)/k)1/N
, σ > σY

}

(2.4)  

such that beyond yield 

σ = σ0(εP) = σY
(
1 + kεN

P

)
, εP > 0 (2.5)  

here, εP =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2εP

ijεP
ij/3

√
is the plastic strain invariant such that the total 

strain in the uniaxial tensile direction is ε = σ/E + εP, N is the strain 
hardening exponent, and k is a dimensionless coefficient. In uniaxial 
compression, (2.4) applies with σ and ε changing sign. The curve is 

Fig. 1. Longitudinal geometry for the 2D analysis and uniaxial tension stress–strain curves.  
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plotted in Fig. 1, revealing the smooth transition to plastic flow at the 
yield stress. The SGP constitutive models will be detailed in Section 4, 
but here, illustrating how gradient hardening affects bending stiffness, 
we list the input,a2, from the three incremental models:. 

a2 = CA Model A

a2 =
3σ0(εP)

EεP
=

3σY

E
(
ε− 1

P + kεN− 1
P

)
Model B

a2 =
3(σ0(εP) − σY)

EεP
=

3σY

E
(
kεN− 1

P

)
Model C

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.6) 

Model A, which assumes a quadratic contribution of the strain gra-
dients to the energy density, was first proposed by Mühlhaus and 
Alfantis (1991). Model B is in the general form suggested by Fleck et al. 
(2014, 2015), and Model C is a modification of Model B introduced in 
this paper. Arguments in favor of and antagonistic to these three ver-
sions will be presented in Section 4, where their details will be 
introduced. 

The incremental plane strain bending stiffness normalized by the 
elastic bending stiffness,D/Delastic, is plotted in Fig. 2 as a function of the 
compressive strain for each of the three SGP models in (2.6) for con-
ventional plasticity, ℓ/h = 0, and for three nonzero values of ℓ/h. The 
compressive strain (ε11 = − ε0) is normalized by the compressive strain 
at initial yield in plane strain, εY

11 = −
̅̅̅
3

√
εY/2. While the qualitative 

trends of the three models displaying the role of strain gradient hard-
ening in elevating the incremental bending stiffness are similar, the 
quantitative differences are significant. The differences cannot simply be 
resolved by calibration of the respective models to the strain gradient 
behavior of a specific material, i.e., by choosing a different value of ℓ for 
each model for a given material. At this point, the main conclusion to be 
drawn is that strain gradient hardening has the potential to substantially 
increase incremental bending stiffness when ℓ/h is on the order of unity, 
depending on the specific model. This effect may significantly increase 
plastic buckling resistance, but as these results suggest, there is sensi-
tivity of the predictions to the choice of the SGP model. 

Non-incremental SGP theories unrealistically predict that the incre-
mental bending stiffness is the elastic bending stiffness following uni-
form compression into the plastic range, as shown by Fleck et al. (2014) 
where a more complete discussion of the two classes of formulations, 
incremental and non-incremental, is laid out. A discussion of the buck-
ling behavior predicted by the non-incremental SGP models will be 
presented in Sections 4 and 6. 

3. The 1D beam analysis of plastic buckling employing the 
incremental bending stiffness 

The results of the one-dimensional (1D) buckling analysis governed 
by Euler-Bernoulli beam theory will be easily assessable to anyone 
familiar with buckling. The classical 1D buckling analysis of a uniform 
wide column (or, infinitely wide plate) of thickness 2h and length2L, 
clamped at its two ends, and compressed in the lengthwise x1-direction, 
is governed by the eigenvalue problem. 

D
d4W
d4x1

+P
d2W
d2x1

= 0 with W =
dW
dx1

= 0 on x1 = − L & L (3.1)  

where P = − 2hσ11 is the compressive force/depth, W(x1) is the deflec-
tion of the beam centerline in the x2-direction, and D is the bending 
stiffness/depth. The buckling stress and deflection eigenmode at the 
onset of buckling are. 

σC
11 = −

π2

2
D

L2h
,W =

W(0)
2

(
cos
(πx1

L

)
+ 1

)
(3.2)  

with W(0) as the eigenmodal amplitude. As already remarked, in the 
plastic range the incremental bending stiffness/depth,D, must be 
computed in the sense of Shanley (1947) as the stiffness associated with 
continuing plastic loading throughout the column. For the column in 
Section 2 compressed in plane strain the elastic bending stiffness/depth 
is Delastic = 2Epsh3/3 and the incremental bending stiffness/depth in the 
plastic range is given by (2.2). The minimum length to thickness ratio for 

elastic buckling of this column in plane strain compression is L/h =

π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E/(3σY
11)

√

corresponding toσC
11 = − σY

11. 
Curves of the critical stress and strain at buckling computed using 

(3.2) are plotted in Figs. 3 and 4 for conventional plasticity,ℓ/h = 0, and 
for three non-zero values of the material gradient parameter,ℓ/h = 0.2,
0.4, 0.6. (The simplest way to create these plots is to express L/h in 

terms of εP and then evaluate and plot L/h, σC
11/σY

11 and εC
11/εY

11 for values 
of εP). A substantial enhancement of the buckling resistance is predicted 
for each of the SGP models, but the differences in the predictions be-
tween the models are even more notable than that seen for the bending 
stiffness itself. The results of the exact 2D bifurcation analysis in Section 
5 will attest to the accuracy of the simple 1D results in the range of L/h 
plotted in Figs. 3 and 4. 

In plastic buckling, the bifurcation mode at the onset of buckling is 
the sum of a uniform compression increment determined by the end- 
shortening increment,Δ̇ = Lε̇0, and the eigenmode contribution with 
amplitude W(0) in (3.2). For the 1D model, plastic loading throughout 

Fig. 2. Incremental bending stiffness normalized by elastic bending stiffness, D/Delastic, versus compressive uniform strain normalized by compressive strain at initial 
yield, ε11/εY

11, for the three incremental SGP constitutive models identified in the text for three values of normalized material length scale, ℓ/h, plus the conventional 
plasticity theory limit, ℓ/h = 0. In these plots, εY

11 = −
̅̅̅
3

√
σY/2E, σY/E = 0.003,N = 0.2 andk = 1. For Model A, CA = 2. 
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the column requires ε̇0⩾|κ̇|h(1 − αtanh(1/α)) (see Section 5.2) along the 
entire length of the column, which, in turn, 
requiresε̇0⩾|W(0)|π2h(1 − αtanh(1/α))/(2L2), or. 

Δ̇⩾(π2/2)(h/L)(1 − αtanh(1/α))|W(0)| and Ṗ⩾
π2Sh
2L2 (1 − αtanh(1/α))|W(0)|

(3.3) 

At the point where uniqueness of the state of uniform compression is 
lost, bifurcation takes place under increasing compressive load (Shanley, 
1947; Hill, 1958; Sewell, 1963). Post-bifurcation considerations require 
that elastic loading begins at some point along the column at the onset 
buckling (Hutchinson, 1974), and thus the equality holds in each 
expression in (3.3). 

4. The strain gradient constitutive models 

The SGP models will be presented in a curtailed form with minimal 
background because the details exist in the extensive literature on SGP. 
As previously stated, two types of models which are widely used will be 
considered, designated incremental and non-incremental. The models 
considered here in the bifurcation studies are rate-independent and can 
be regarded as isotropic hardening models. The finite element studies of 
slightly imperfect columns based on the non-incremental SGP include a 
small level of visco-plasticity. All the models reduce to their conven-
tional J2 plasticity counterparts when the material parameter ℓ is set to 
zero. The elasticity in the models is isotropic; it is incompressible in the 
bifurcation studies and compressible with a Poisson’s ratio, ν = 0.3, in 
the finite element studies. Whether the elasticity is compressible or 

incompressible has no essential effect on the significant differences in 
predictions that emerge for the two classes of models, incremental or 
non-incremental. Elastic incompressibility for the incremental formu-
lations enables some simple closed form formulas, while the choice ν =

0.3 for the FEM studies of the non-incremental model is for numerical 
convenience. The notation common to all the models is introduced first. 
The reader is referred to the papers by Fleck et al. (2014, 2015) for more 
complete details on the formulation of the models, including the dis-
tinctions between incremental and non-incremental theories, and the 
notation. 

A small strain formulation is first introduced and later generalized to 
large strains. As already introduced, the uniaxial tension stress–strain 
curve following initial yield at σY is denoted by σ0(εP) for εP⩾0 
withσ0(0) = σY , where σ0(εP) increases monotonically with 
increasingεP. For the uniaxial curve, denote the hardening due to plastic 
strain byΔσ0(εP) = σ0(εP) − σY . Let ε̇P

ij be the plastic strain increment, 
and εP

ij =
∫

ε̇P
ij as the plastic strain. The total strain is εij and the elastic 

strain isεe
ij = εij − εP

ij. It is essential to distinguish between two effective 
plastic strain measures. The recoverable effective plastic strain is 

designated as εp =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2εP

ijεP
ij/3

√
which can increase or decrease. The 

accumulated effective plastic strain used in classical J2 flow theory is 

denoted byep =
∫

ėp, whereėp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ε̇P
ij ε̇

P
ij/3

√

; this measure can never 

decrease and will be referred to as the unrecoverable effective plastic 
strain. Under monotonic proportional straining, εP and ep coincide but 
they generally differ under non-monotonic and/or non-proportional 
straining. The two corresponding measures of the plastic strain gradi-

Fig. 3. The results of the 1D plastic buckling analysis of a wide column of thickness 2h and length2L, which is clamped at both ends and subject to plane strain 
compression for the three models identified in the text. The compressive strain at the onset of buckling εC

11 is normalized by the compressive strain at initial yield in 
plane strain,εY

11, and plotted for three values of the gradient length parameterℓ/h. The curve for ℓ/h = 0 coincides with the limit predicted by Shanley’s tangent 
modulus load of classical plasticity. In these plots, εY

11 = −
̅̅̅
3

√
σY/2E, σY

11 = − 2σY/
̅̅̅
3

√
, σY/E = 0.003,N = 0.2 andk = 1. For Model A,CA = 2. Elastic buckling for the 

three models occurs forL/h > 35.6. 

Fig. 4. The normalized stress,σC
11/σY

11, at buckling as predicted by the 1D theory for the examples considered in Fig. 3.  
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ents are ε*
P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2εP

ij,kεP
ij,k/3

√
and e*

P =
∫

ė*
P withė*

P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ε̇P
ij,kε̇P

ij,k/3
√

, with the 

first called recoverable and the latter unrecoverable. 
Two generalized effective plastic strain quantities are also used 

which bring in the material length parameter,ℓ. The recoverable mea-

sure is ∈P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
P + ℓ2ε*2

P

√

and the accumulated, or unrecoverable mea-

sure, is EP =
∫

ĖP withĖP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ė2
P + ℓ2ė*2

P

√

. The two sets of measures 

coincide when the straining is monotonic and proportional i.e., (ε̇P
ij , ε̇

P
ij,k)

= λ̇(ε0
ij , ε0

ij,k) with (ε0
ij , ε0

ij,k) independent ofλ, and λ increasing mono-
tonically from zero. 

The SGP constitutive relations considered in this paper satisfy the 
fundamental thermodynamic restrictions on non-negative plastic dissi-
pation proposed by Gudmundson (2004); Gurtin and Anand (2005). The 
three incremental models are constructed such that the strain gradient 
contributions are incorporated as part of the recoverable free energy. 
For the non-incremental constitutive relation considered here, the 
plastic strain gradients are dissipative and not part of the free energy. 
The principle of virtual work for all the formulations is. 
∫

V

{
σijδεe

ij + qijδεP
ij + τijkδεP

ij,k

}
dV =

∫

S

(
Tiδui + tijδεP

ij

)
dS (4.1)  

with volume of the solid,V, surface,S, displacements,ui, total strainsεij =

(ui,j + uj,i)/2, plastic strains εP
ij (εP

kk = 0), and elastic strainsεe
ij = εij − εP

ij . 
The symmetric Cauchy stress is σij and the stress quantities work con-
jugate to increments of εP

ij and εP
ij,k are qij (qij = qji, qkk = 0) and τijk 

(τijk = τjik,τjjk = 0), respectively. The surface tractions are Ti = σijnj and 
tij = τijknk with ni as the outward unit normal toS. The equilibrium 
equations are 

σij,j = 0, − sij + qij − τijk,k = 0 (4.2)  

withsij = σij − σkkδij/3 . The effective Cauchy stress isσe =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3sijsij/2

√
. 

With this background and notation in hand, the incremental SGP models 
will be introduced first. 

4.1. Three incremental SGP models 

For the three incremental models considered here, plastic loading 
requires that the stress,σij, is on the current yield surface defined by σe =

σ0(eP) and that the plastic strain increment is normal to this yield sur-
face, i.e., ε̇P

ij = ėPmij with ėP⩾0 wheremij = 3sij/2σe, just as in J2 flow 
theory. Note that ε̇P is only equal to ėP under monotonic proportional 
straining or whenėP = 0. In general,ε̇P = (2mijεP

ij/3εP)ėP. The gradients 
of the plastic strain increments areε̇P

ij,k = ėP,kmij + ėPmij,k. Define two 
work-like quantities of the recoverable plastic strain. 

U(εp) =

∫ εP

0
σ0(εp)dεp and ΔU(εp) =

∫ εp

0
Δσ0(εp)dεp = U(εp) − σY εp

(4.3) 

such that for the stress–strain curve (2.4) used to generate results in 
this paper,. 

U(εp) = σY

(

εp +
k

N + 1
εN+1

p

)

and ΔU(εp) = σY
k

N + 1
εN+1

p (4.4) 

Let ψe =
1
2L

e
ijklεe

ijεe
kl be the elastic energy density and ψP(εP, ε∗P) be the 

recoverable contribution of the plastic strains and plastic strain gradi-
ents to the recoverable energy density of the material,ψ = ψ e + ψp. The 
recoverable plastic energy density contributions for three incremental 
models are. 

ψP =
1
2
CAE

(
ℓε*

P

)2 Model A

ψP = UP(∈P) − UP(εP) Model B

ψP = ΔUP(∈P) − ΔUP(εP) Model C

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.5) 

For each model, the recoverable plastic contribution vanishes if the 
plastic strain gradients are zero and is always non-negative. In Model A, 
the contribution from the plastic strain gradients is decoupled from the 
plastic strains, while in Models B and C coupling occurs through the 
generalized effective plastic strain∈P. The recoverable stress quantities 
are given by. 

σij =
∂ψe

∂εe
ij
= Lijklεe

kl, qR
ij =

∂ψP

∂εP
ij
, τR

ijk =
∂ψP

∂εP
ij,k

(4.6) 

For each of the three incremental SGP models under consideration, 
the plastic strain gradients make no contribution to the unrecoverable, 
or dissipated, energy. To date, to our knowledge, no thermodynamically 
acceptable incremental SGP theory has been proposed with plastic strain 
gradient contributions to the dissipative energy. The non-negative 
plastic dissipation increment in the three incremental models consid-
ered here isḋ = σijε̇P

ij = σ0(eP)ėp, and the accumulated plastic dissipation 
isd =

∫ eP
0 σ0(ep)deP. Thus, for these three models, the unrecoverable 

contributions to the stress quantities are qUR
ij = sij and τUR

ijk = 0 such that 
qij = sij +qR

ij andτijk = τR
ijk. In an increment of deformation, the increment 

of work of the stresses equals the increments of recoverable and unre-
coverable energy densities,. 

σijε̇e
ij + qijε̇P

ij + τijkε̇P
ij,k = ψ̇ + ḋ (4.7) 

In all three models,σij = Le
ijklεe

kl = Le
ijkl(εkl − εP

kl). In addition:. 

qij = sij

τijk =
2
3

CA Eℓ2εP
ij,k

⎫
⎪⎬

⎪⎭
Model A (4.8)  

qij = sij +
2
3

(
σ0(∈P)

∈P
−

σ0(εP)

εP

)

εP
ij

τijk =
2
3
ℓ2σ0(∈P)

εP
ij,k

∈P

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Model B (4.9)  

qij = sij +
2
3

(
Δσ0(∈P)

∈P
−

Δσ0(εP)

εP

)

εP
ij

τijk =
2
3
ℓ2Δσ0(∈P)

εP
ij,k

∈P

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Model C (4.10) 

All three of the incremental models are phenomenological but with 
varying degrees of physics underpinning their construction. Model A is 
almost certainly the simplest strain gradient plasticity law. It is mathe-
matically attractive because of the quadratic contribution of the plastic 
strain gradient contributions to the recoverable energy and because this 
contribution is uncoupled from the contributions of plastic strains. The 
strain and strain gradient contributions are coupled and on a more equal 
footing in Models B and C than in Model A in the sense that they make 
comparable contributions to the hardening and energy when they are of 
comparable magnitude. The fact that Model A has an additional 
constitutive parameter,CA, is indicative of independence of the strain 
gradient contribution in this model. Model B has the drawback, noted in 
Fleck et al. (2015), that it can lead to an ‘elastic gap’ at the onset of 
plastic yielding in certain instances, such as the case of a layer subject to 
plane strain tension or compression that has been passivated on its 
surfaces to block dislocations entering or leaving the surfaces. An elastic 
gap is an abrupt transition to an elastic response with no additional 
plasticity under conditions where conventional plasticity would suggest 
continuing plasticity. The prediction of elastic gaps is a particular issue 
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for non-incremental formulations, as will be discussed further, but an 
elastic gap can also occur at initial yield for some incremental formu-
lations (Fleck et al., 2015). It is doubtful that such a gap is realistic, 
although the relevant experiments do not appear to have been per-
formed to verify or refute the prediction. As can be seen in Figs. 3 and 4, 
Model B predicts significantly more buckling resistance due to strain 
gradients than the other two models. Model C is a modification of Model 
B that eliminates all elastic gaps. Strain gradients in Model C elevate the 
hardening,Δσ0, but not the entire yield strength σ0 as in Model B. Of the 
three incremental versions considered, we believe Model C has the most 
favorable attributes. Incremental SGP theories for single crystal plas-
ticity been formulated and analyzed with due consideration to these 
same issues by Nellemann et al. (2017a), Nellemann et al. (2017b). 

At the heart of the bifurcation analysis and the implementation of the 
incremental elastic–plastic boundary value problems is the quadratic 
expression for the work of the stress increments through their conjugate 
strain increments, φ = (σ̇ijε̇e

ij +q̇ijε̇P
ij +τ̇ijkε̇P

ij,k)/2 (see, for example, Fleck 
et al., 2014):. 

2φ(ε̇ij, ėP) = Le
ijkl(ε̇ij − ėPmij)(ε̇kl

− ėPmkl)+
dσ0(ep)

dep
ė2

p +CAE
(

ℓė*
P

)2

Model A (4.11)  

2φ
(

ε̇ij, ėP

)

= Le
ijkl

(

ε̇ij − ėPmij

)(

ε̇kl − ėPmkl

)

+ S(∈P)∈̇
2
P − S(εP)ε̇2

P

+
σ0(∈P )

∈P
Ė2

p −
σ0(εP )

εP
ė2

p +
dσ0
(
ep
)

dep
ė2

p Model B

(4.12)  

2φ
(

ε̇ij, ėP

)

=Le
ijkl

(

ε̇ij − ėPmij

)(

ε̇kl − ėPmkl

)

+ΔS(∈P)∈̇
2
P − ΔS(εP)ε̇2

P

+
Δσ0(∈P )

∈P
Ė2

p −
Δσ0(εP )

εP
ė2

p +
dσ0
(
ep
)

dep
ė2

p Model C

(4.13)  

where S(ε) = dσ0(ε)/dε − σ0(ε)/ε for Model B and ΔS(ε) =
dΔσ0(ε)/dε − Δσ0(ε)/ε for Model C. They can be expressed in terms of 
quantities in the current state plus the incremental strains ε̇ij, ėP andėP,i. 

4.2. The non-incremental SGP model 

Non-incremental SGP theories were proposed by Gudmundson 
(2004) and Gurtin and Anand (2005) with essential aspects of their 
implementation provided by Fleck and Willis (2009a,b). This class of 
theories employs stress quantities that are not fixed in the current state 
but depend on the increments of plastic strain and strain gradients. The 
construction underlying the non-incremental theories ensures satisfac-
tion of the thermodynamic requirement that plastic dissipation is non- 
negative. A basic rate-independent non-incremental version will be 
employed in this paper to illustrate the issues that arise when one at-
tempts to use this class of theories for modeling plastic bifurcation and 
buckling phenomena. The plastic deformation in the non-incremental 
model is taken to be entirely dissipative such that in the notation 
introduced earlier qR

ij = τR
ijk = 0, qij = qUR

ij andτijk = τUR
ijk . Following no-

tation and developments similar to those of Fleck and Willis (2009a,b), 
generalized stress and strain-rate vectors are defined,. 

Σ =
̅̅̅̅̅̅̅̅
3/2

√ (
qij,ℓ− 1τijk

)
and ĖP =

̅̅̅̅̅̅̅̅
2/3

√
(

ε̇P
ij ,ℓε̇P

ij,k

)

(4.14)  

with |Σ| ≡ Σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3/2)
(

qijqij + ℓ− 2τijkτijk

)√

and 
⃒
⃒
⃒ĖP

⃒
⃒
⃒ = ĖP as the unre-

coverable generalized strain rate defined earlier such thatEP =
∫

Ėp. The 
yield condition for this theory is Σ = σ0(Ep) where σ0(εP) is the plastic 
portion of the tensile stress–strain curve defined earlier. With Σ = σ0(Ep)

regarded as a yield surface in generalized stress space, Σ is an outward 
normal. 

As in the incremental models, the model used here hasσij = Le
ijklεe

kl =

Le
ijkl(εkl − εP

kl). The other stress components are defined by the constitu-
tive requirement. 

Σ = σ0(EP)
ĖP

ĖP
, or qij =

2
3

σ0(EP)
ε̇P

ij

ĖP
& τijk =

2
3
ℓ2σ0(EP)

ε̇P
ij,k

ĖP
(4.15) 

As in the case of the three incremental models used here, this choice 
reduces to the input stress–strain curve in uniaxial tension, and it co-
incides with the classical J2 flow theory in the absence of plastic strain 
gradients or withℓ = 0. Further, for strictly proportional straining this 
version of the non-incremental theories coincides with Model B. The 
plastic work increment in this theory satisfies Σ⋅ĖP = σ0(EP)ĖP⩾0 guar-
anteeing non-negative dissipation. 

Non-incremental theories differ significantly from incremental the-
ories in problems where abrupt changes occur in the direction of the 
strain-rateĖP, such as in most plastic buckling problems, because the 
stress quantities (qij, τijk) defined in (4.15) are not known in the current 
state but depend on the solution increment itself. Consequences of this 
construction for physical predictions have been discussed in Hutchinson 
(2012), and Fleck et al. (2014, 2015). Relevant to the present study of 
column buckling in the plastic range is the finding in Fleck et al. (2014) 
that a planar layer undergoes an elastic bending response, according to 
the non-incremental theory, when it is deformed uniformly into the 
plastic range in plane strain compression (or tension) and then subject to 
an increment of bending. In other words, the incremental bending 
stiffness/depth D according to this class of theories is the elastic bending 
stiffness. Except in the range immediately exceeding plastic yield, an 
elastic incremental bending stiffness implies that bifurcation into a 
buckling mode will not occur. The consequences of this seemingly 
unphysical prediction will be explored in Section 6 by including initial 
imperfections and carrying out detailed buckling computations for the 
non-incremental theory. 

5. The 2D plane strain bifurcation problem for buckling of the 
clamped column 

The exact plane strain analysis carried out in this section follows 
similar previous analyses by Hill and Hutchinson (1975), Young (1976), 
Needleman (1979), and Benallal and Tvergaard (1995). The paper by 
Benallal and Tvergaard is especially relevant because that bifurcation 
study is also carried out for a SGP material and considerable attention 
has been paid to some of the underlying mathematical issues that need 
not be readdressed here. Our starting point will be the quadratic func-
tional governing the bifurcation problem for the uniformly compressed 
rectangular block of dimension 2h × 2L in the compressed state with the 
geometry and notation given in Fig. 1. In the pre-bifurcation state the 
rectangular column has been loaded monotonically in uniform plane 
strain compression into the plastic range with σ11 = − 2σ0(eP)/

̅̅̅
3

√

andeP = εP = − 2εP
11/

̅̅̅
3

√
. 

The unknown field quantities in the plane strain bifurcation problem 
are the increments, u̇1(x1, x2), u̇2(x1, x2) andėP(x1, x2), subject to the 
incompressibility conditionu̇1,1 + u̇2,2 = 0. The quadratic bifurcation 
functional is. 
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Φ(u̇1,u̇2,ėP,λ)=(Eps/4)
∫ h

− h
dx2

∫ L

− L
dx1

{

2
(

u̇1,1+
̅̅̅
3

√
ėP/2

)2

+
1
2

(

u̇1,2+u̇2,1

)2

+
1
2

a1ė2
P+

1
2
a2ℓ2

(

ė2
P,1+ ė2

P,2

)

+
σ11

Eps

((

u̇2
2,1

− u̇2
1,1 −

1
2
(u̇1,2+u̇2,1)

2
)

)

+λ
(

u̇1,1+u̇2,2

)

(5.1)  

where Eps = 4E/3 is the plane strain elastic tensile modulus (for an 
elastically incompressible material) and( ),i = ∂( )/∂xi. The incompres-
sibility condition is enforced with a Lagrangian multiplier,λ, and else-
where in the integrand contributions involving u̇2,2 have been replaced 
by the substitutionu̇2,2 = − u̇1,1. For all three incremental theories, 

a1 =
3
E

dσ0(eP)

deP
=

3Et/Eps(
1 − Et/Eps

) (5.2)  

where Et is the plane strain tangent modulus at eP, and a2 is defined for 
each of the theories by (2.6). The top and bottom surfaces are traction- 
free such that there are no constraints on the variations of the 
displacement increments or ėP, while on the ends, the shear traction 
increments vanish and the eigenmode contribution to the bifurcation 
solution is constrained such that u̇1 = 0. 

The details at arriving at (5.1) in the absence of gradient hardening 
are given in Hill and Hutchinson (1975) and for a problem with strain 
gradient hardening by Benallal and Tvergaard (1995). In brief, the stress 
increments in φ = (σ̇ijε̇e

ij +q̇ijε̇P
ij +τ̇ijkε̇P

ij,k)/2 are identified as the Jaumann 
increments of true stress components. The terms in (5.1) multiplied by 
σ11/Eps arise from transforming to the Jaumann rate within a rigorous 
finite strain context with increments measured from the current 
deformed state. The first four terms in the integrand in (5.1) derive from 
an exact reduction of φ defined for the models in (4.11)-(4.13). In this 
formulation, the stress σ11 in the current configuration is the true stress, 
ε11 is the log strain, and the tangent modulus Et is the ratio of their 
increments. 

Before carrying out the 2D analysis, we digress to interject the 
derivation of the incremental bending stiffness employed in the 1D 
buckling analysis in Sections 3 and 4. 

5.1. The incremental bending stiffness D under increments of uniform 
stretch and bending 

We impose strain increments which are independent of x1 on the 
block such that ε̇11 = − ε̇0 − κ̇x2 and produce solutions governed by (5.1) 
with increments of strain gradients and plastic strain that are indepen-
dent of x1, disregarding the ends of the block. Our objective is to derive 
the incremental bending stiffness/depth D under conditions of uniform 
bending and stretching such that plastic loading occurs across the block. 
The 2D functional (5.1) reduces to a 1D functional of ėp(x2) over the 
interval − h⩽x2⩽h with ε̇0 and κ̇ being prescribed. 

Φ(ėP) = (Eps/4)
∫ h

− h

⎧
⎨

⎩
2
(

ε̇0 + κ̇x2 −
̅̅̅
3

√
ėP/2

)2

+
1
2
a1ė2

P

+
1
2

a2ℓ2

(
dėP

dx2

)2
⎫
⎬

⎭
dx2 (5.3) 

The terms in (5.1) multiplying σ11 have been neglected anticipating 
that|σ11| << Et. Note, however, that the term σ11u̇2

2,1 in (5.1) is critical to 
the stability of the column. Through its con-
tribution, −

∫ L
− L P(dW/dx1)

2dx1, to the 1D functional governing buck-
ling, it generates the term,Pd2W/d2x1, in the 1D buckling equation (3.1). 

The solution to the variational equation generated by (5.3), assuming 
no constraint on plasticity at the top and bottom surfaces and combi-
nations of ε̇ and κ̇ such that ėP⩾0 across the block, is. 

ėP =
2
̅̅̅
3

√

3 + a1

[

ε̇0 + κ̇h
(

x2

h
− α sinh(x2/(αh))

cosh(1/α)

)]

(5.4)  

with α =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2/(3 + a1)

√
ℓ/h or re-expressed as (2.3). The requirement 

that ėP be non-negative is 

ε̇0⩾|κ̇|h(1 − αtanh(1/α)) (5.5) 

The incremental bending stiffness in (2.2) can be evaluated using 

either 1
2

(

Sε̇2
0 + Dκ̇2

)

= Φ(eP) orDκ̇ = −
∫ h
− h σ̇11x2dx2, where the latter 

follows from the principle of virtual work (4.1) using the fact that there 
are no tractions on the top and bottom surfaces of the block. 

5.2. The 2D plane strain buckling solution 

The field equations for (u̇1, u̇2, ėP) rendering Φ in (5.1) stationary 
admit a uniform solution. 

u̇1/h = − ε̇0x, u̇2/h = ε̇0y, ėP = (2/
̅̅̅
3

√
)(1 − Et/Eps)ε̇0 for ε̇0⩾0 (5.6)  

and separated solutions for the eigenmode problem of the form. 

(u̇1/h, u̇2/h, ėP, λ) = (U(y)sin(ξx),V(y)cos(ξx), η(y)cos(ξx),Q(y)cos(ξx))
(5.7)  

where(x,y) = (x1,x2)/h, ( )
′

= d( )/dy, ξ = πh/L. The uniform solution 
satisfies the boundary conditions and is associated with an increment 
ofσ11. The separated solution satisfies the symmetry about x = 0 and 
zero shear traction increment and u̇1 = 0 on the ends. Because the 
functional (5.1) involves only the gradients of u2 a constant can be 
added to V(y)cos(ξx) so as to satisfy u2(±L/h,0) = 0 as well as∂u2(±L/h,
y)/∂x1 = 0, consistent with the idealized clamped–clamped boundary 
which otherwise do not constrain u2 on the ends. When the separated 
solution is substituted in (5.1) and the integrations with respect to x are 
performed, one obtains the reduced functional for the eigenvalue 
problem 

Φ
EpshL/4

=

∫ 1

− 1

{(
2(ξU +

̅̅̅
3

√
η/2
)2

+
1
2
(U

′

− ξV)2
+

1
2
a1η2 +

1
2

a2(ℓ/h)2(
(ξη)2

+ η2)

+
σ11

Eps

(

(ξV)
2
− (ξU)

2
−

1
2
(U

′

− ξV)
2
)

)

+ Q(ξU + V ′

)

}

dy
(5.8)   
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The system of ordinary differential equations (ODEs) and boundary 
conditions rendering Φ stationary is. 

− 2A2U′′ + 2ξ2A1U + 2ξA2V ′

+ ξA4η − ξQ = 0
Q′

+ 2ξ2A3V − 2ξA2U′

= 0
− 2A6η′′ + ξA4U + 2A5η + 2ξ2A6η = 0

V ′

+ ξU = 0

⎫
⎪⎪⎬

⎪⎪⎭

, − 1⩽y⩽1 (5.9)  

and 

U
′

− ξV = 0, Q = 0, η′

= 0 on y = ±1 (5.10)  

with A1=2− 2σ11/Eps,A2=1/2− σ11/Eps,A3 =1/2+σ11/Eps,A4=2
̅̅̅
3

√
,

A5=(3+a1)/2, andA6 = a2(ℓ/h)2
/2. Anti-symmetry allows one to 

restrict attention to the interval 0⩽y⩽1 with U=Q=η=0 on y= 0. The 
system of ODEs is 6th order with constant coefficients. The eigenvalue is 
the critical value of the compressive strainε0, or, equivalently, the 
associated value ofeP, which enters all the coefficients butA4. We have 
pursued two solution methods. One follows the procedures of Hill and 
Hutchinson (1975) and, more specifically, that of Benallal and Tver-
gaard (1995) by generating the linearly independent solutions to (5.9) 
and then expressing the boundary conditions (5.10) in terms of the 
amplitudes of the independent solutions. Solving the resulting algebraic 
system for the critical eigenvalue and eigenmode requires numerical 
computation. A more straightforward method requiring less analytical 
effort involves reducing (5.9) to 6 first order ODEs and using a standard 
ODE solver to generate the solutions and boundary conditions. To 
implement this second scheme for the eigenvalue problem, we imposed 
all of the boundary conditions except Q=0 on y= 1, replacing it by V= 1 
on y= 1, varying ε0 (or, eP) until Q=0 on y=1 is satisfied. 

The example shown in Fig. 5 illustrates the results of these proced-
ures for Model C and it also gives a clear indication of the extensive 
range of accuracy of the 1D buckling analysis presented in Section 3. 
There is almost no error in the 1D result for L/h as small as 10, and the 
error for rather stubby columns with L/h = 5 is still quite small. A 
gratifying outcome of the exact plane strain analysis is that the much 
simpler 1D approach should be adequate for all but extremely stubby 
columns. Analogous conclusions are likely to apply a broader range of 
problems in the plastic buckling of plates and shells. 

6. Finite element modeling of 2D plane strain buckling at small 
scales: non-incremental plasticity 

As noted in Section 4.3, the non-incremental class of theories yields 
an incremental bending stiffness equal to the elastic stiffness when the 

column is perfectly straight, leading to the result that bifurcation 
buckling will not occur well into the plastic range. A question that 
naturally arises is whether more realistic plastic buckling behavior will 
be found if small initial imperfections in the column are included in the 
analysis. Thus, the purpose of this section is to investigate whether 
realistic plastic buckling behavior ensues when imperfections are 
introduced. Such analysis requires a numerical solution method such as 
the finite element method. 

The finite element analysis here builds upon the finite strain 
framework developed in Nielsen and Niordson (2019) for the version of 
non-incremental SGP theory by Fleck and Willis (2009a, 2009b). This 
section aims to further explore the behavior of micron size wide columns 
that buckle in the plastic range specifically for a non-incremental SGP 
theory which, as noted earlier in the paper, does not predict bifurcation 
buckling when the column is perfectly straight. In this section, we study 
the behavior when slight initial imperfections from straightness are 
introduced. The modeling framework adopts a rate-dependent (visco- 
plastic) version of the SGP theory presented in Section 4.3, such that. 

qij =
2
3
σ0
(
EP)

⎛

⎝Ėp

ε̇R

⎞

⎠

m
ε̇p

ij

Ėp andτijk =
2
3
l 2σ0

(
EP)

⎛

⎝Ėp

ε̇R

⎞

⎠

m
ε̇p

ij,k

Ėp , (6.1)  

and the visco-plastic potential is. 

Φ
[
Ep.Ėp

]
= σ0

(
EP) ε̇R

m + 1

⎛

⎝Ėp

ε̇R

⎞

⎠

m+1

, (6.2)  

with m being the rate sensitivity exponent and ε̇R the reference strain 
rate. The expressions for the micro- and higher-order stresses are iden-

tical to (4.15), apart from the rate-dependent factor 
(

Ėp
/ε̇R

)m
(also 

discussed in Fleck et al., 2015). As remarked in Section 4.3, the rate- 
independent limit of this version of non-incremental constitutive the-
ory coincides with Model B for proportional straining. In the simulations 
to follow, the rate-independent limit is approached by considering low 
rate-sensitivity (m = 0.01) and strain rates corresponding the reference 
strain rate(ε̇RL/Δ̇= 1). 

The finite strain model is based on an updated Lagrangian formula-

tion, using the Jaumann rate, τ∇ij = τ̇ij − ω̇ikτkj − τikω̇jk, such that the 

elastic relation is; τ∇ij = Le
ijkl(ε̇kl − ε̇p

kl). Here, ω̇ij = (u̇i,j − u̇j,i)/2 is the spin 
rate. The displacements, ui, are the vector sum;u = X − x, where X is the 
position of the material in the current configuration, and x is its position 
in the reference configuration. The virtual work principle is stated in 
(4.1) for the current configuration, and the finite element 

Fig. 5. Comparison of exact 2D plane strain buckling 
analysis and 1D buckling analysis for Model C. The 
results apply to a wide column of thickness 2h and 
length 2L which is clamped at both ends and subject 
to plane strain compression. The compressive strain 
εC

11 and stress σC
11 at the onset of buckling are 

normalized by εY
11 and σY

11, respectively. Curves are 
presented for three values of the dimensionless 
gradient length parameter ℓ/h plus conventional 
plasticity withℓ/h = 0, and with          

εY
11 = −

̅̅̅
3

√
σY/2E, σY

11 = − 2σY/
̅̅̅
3

√
, σY/E = 0.003,N = 0.2 andk = 1.   
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implementation makes use of Minimum Principle I and II first outlined 
by Fleck and Willis (2009b). In the current configuration, stationarity of 
Minimum Principle I yields. 
∫

V
qijδε̇p

ij + τij,kδε̇p
ij,k dV =

∫

V
sijδε̇p

ijdV +

∫

S
tijδε̇p

ij dS, (6.3)  

and stationarity of Minimum Principle II gives 
∫

V
σijδε̇ij dV =

∫

S
Tiδu̇idS. (6.4)  

when only accounting for the dissipative part of the micro- and higher- 
order stresses. Equation (6.4) is rewritten using the original reference 
configuration following McMeeking and Rice (1975), Niordson and 
Redanz (2004), such that the incremental form becomes 
∫

V0

τ*
ijδε̇ij − σij

(

2ε̇ikδε̇kj − uk,jδu̇k,i

)

dV =

∫

S0

Ṫ0
i δu̇idS. (6.5) 

By discretizing (6.3) and (6.5) using the finite element method, a 
staggered solution approach for determining the plastic strain rate field, 
ε̇p

ij, and the displacement increments, u̇i, is adopted. In Step 1, the stress 
field in the current configuration is assumed and this allows iteration on 
a solution to (6.3) that delivers the plastic strain rate field. In Step 2, the 
displacement increments are determined from (6.5) based on the plastic 
strain rate field from Step 1. The reader is referred to Niordson and 
Nielsen (2019) for further details on the numerical procedure. A stan-
dard finite element interpolation is used such that bi-linear elements 
discretize (6.3) and bi-quadratic elements discretize (6.4), using 2-by-2 
Gauss integration in both element types (see also Nielsen and Niordson, 
2013). 

Fig. 1 presents the geometry; the imposed conditions are zero surface 
tractions on the sides and u̇1 = ±Δ̇,T2 = 0, and tij = 0 at x1 = ±L. The 
undeformed column is discretized by elements of size Le × Le = (h/6)×
(h/6), such that 12 elements are used through-thickness of the column 
(in the x2-direction, see Fig. 1). A mesh-convergence check has been 
performed. Introducing an initial imperfection, with the eigenmode 
shape in Eq. (3.2) and amplitude δ (the initial lateral deflection at the 
center of the column). 

Fig. 6 shows the load–displacement response, in terms of normalized 
average end-stress and average overall strain, for two columns with very 
different gradient strengthening. The conventional limit, represented to 
a good approximation here with a very small material length parame-
ter,l /h = 0.01, shows a reasonable match to the results from the 1D 
plastic bifurcation analysis for both the critical strain (see Fig. 3, Model 
B) and the critical stress (see Fig. 4, Model B). Moreover, the load- 
carrying capacity of the column drops dramatically after attaining its 
maximum in the plastic post-buckling response, as expected from earlier 
studies (Hutchinson, 1974). Imperfection size plays a role in the 
response in the conventional limit, but the effect is seen to be rather 
limited when the imperfections are relatively small, contrasting with the 
column response when the gradient length parameter is large. The plot 

on the right in Fig. 6 shows the column response for the case l /h = 0.6. 
In line with Figs. 3 and 4, the gradient enhanced material stabilizes the 
column such that the critical stress and strain at buckling increase for 
increasing l /h. However, the results predicted on the right in Fig. 6 are 
almost certainly unrealistic large from a physical standpoint. Note, for 
example, that the strain at bifurcation predicted in Fig. 3 for the incre-
mental version of Model B is ε11/εY

11 ≅ 3 and this is roughly one half the 
strain at buckling for the largest imperfection considered in Fig. 6. 
Moreover, the trend in Fig. 6 for l /h = 0.6 suggests that the strain at 
buckling continues to increase as the imperfection amplitude decreases, 
consistent with the fact that no bifurcation is possible for the non- 
incremental theory when the column is perfect. 

In fact, according to the non-incremental theory, more stubby col-
umns undergo such extreme end-shortening that the thickening of the 
column becomes important, preventing the column from buckling. Fig. 7 
displays the seemingly unbounded increase of the critical strain with 
diminishing imperfection size for two length-to-hickness ratios and four 
values of the gradient length parameter. For both length to thickness 
ratios, the result for the conventional limit (l /h = 0.01) displays rela-
tively little effect of the imperfection size in the range considered as one 
would expect, however the critical buckling strain is expected to drop 
for larger imperfections (not shown here). In comparison, the critical 
buckling strain shows no sign of leveling off for diminishing imperfec-
tion size when the gradient length parameter is not small. The reluctance 
to buckle at a small scale according to the non-incremental theory is 
even more pronounced for more stubby columns (L/h = 10) considered 
on the right in Fig. 7. 

7. Conclusions 

The three incremental strain gradient plasticity models considered in 
this paper predict that buckling resistance in the plastic range is sub-
stantially enhanced if the ratio of the material length parameter to the 
column thickness,ℓ/h, is greater than about 0.2 or 0.4. Experimental 
measurements of ℓ yield values typically in the range of a fraction of a 
micron to perhaps 5 µm, with softer metals tending to have a larger 
length parameter than those that are harder. Of course, to some extent, 
the measured value depends on the constitutive model employed to 
analyze the test and back out the length. Given the range, 
0.1μm < ℓ < 5μm, the present predictions suggest that columns with 
thicknesses in the range, 0.5μm < h < 25μm, depending on the material, 
will display enhanced plastic buckling resistance due to strain gradients. 
This study shows that there is considerable sensitivity of the predictions 
to the details of the SGP models. In Section 4.1, we have argued Model C 
appears to have the most favorable attributes of the three incremental 
models considered here. 

While non-incremental formulations have some attractive features 
for numerical implementation, the present study suggests that they have 
severe limitations for analyzing column buckling in the plastic range. It 
has been shown that not only does this class of theories predict that 
bifurcation into a buckling mode is effectively excluded, but even when 

Fig. 6. Normalized average compressive stress 
versus normalized average compressive strain for 
two values of the gradient length parameter; a 
very small value, l /h = 0.01, and a relatively 
large value, l /h = 0.6, and for several imper-
fection sizes; δ/h = 10− 6,10− 5,10− 4,10− 3, and 
10− 2. The column height is L/h = 20. In these 
plotsεY

11 = −
̅̅̅
3

√
σY/2E,σY

11 = − 2σY/
̅̅̅
3

√
, σY/E =

0.003, N = 0.2, and k = 1. Note that for the 
column on the right with l /h = 0.6, the bifur-
cation strain for the incremental version with 
Model B from Fig. 3 isε11/εY

11 ≅ 3.   
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imperfections are introduced, these theories predict that plastic buckling 
will be postponed to unrealistically large strains and stresses. There is 
good reason to believe that the inadequacy of the non-incremental SGP 
theories for column buckling will carry over to other instabilities in the 
plastic range, such as the plastic buckling of plates and shells and to 
more exotic phenomena such as shear bands and surface wrinkles. While 
this is a negative finding for the present application, it is an important to 
report because of the widespread use of non-incremental formulations. 

The more complicated and accurate 2D plane strain bifurcation 
analysis has shown that the 1D analysis based on Euler-Bernoulli beam 
theory with input of the gradient enhanced bending stiffness retains 
good accuracy for all but very stubby columns, assuming an incremental 
constitutive model is employed. The examples in this paper have 
necessarily been limited to specific material parameters, but the simple 
1D formulas for buckling, (3.2) and (3.3), generalizing Shanley’s 
tangent modulus load to include gradient effects, make it possible to 
generate accurate results for any set of geometric and material param-
eters for all but very stubby columns. For the incremental models, it 
remains to explore the initial post-buckling behavior and the effect of 
initial imperfections, although we are confident that physically realistic 
predictions will ensue. It also remains to determine the gradient 
enhancement of the incremental bending stiffness for columns of various 
cross-sections. Even more importantly, experimental studies of column 
buckling in the micron scale range are called for. Such studies will 
provide further guidance in choosing the specific SGP material model for 
these applications. 
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