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A B S T R A C T   

Viscoelastic spherical shells exhibit a wide range of time/rate-dependent buckling behaviors 
when subjected to pressure. For certain loadings, buckling can even occur after a significant time 
delay, termed creep buckling. To gain a thorough understanding of the nonlinear time-dependent 
buckling behavior of viscoelastic spherical shells, this work develops an analytical model 
employing the small-strain, moderate-rotation shell theory combined with a linearly viscoelastic 
material law. Numerical results are presented for axisymmetric spherical shells with geometric 
imperfections for two types of loading: a prescribed rate of volume change and a prescribed 
pressure that remains constant after it is applied. The first type reveals the rate-dependent 
behavior of viscoelastic buckling while the constant pressure loading is used to quantify creep 
buckling phenomena. The results show that viscoelasticity and loading rates play important roles 
in the load-carrying behavior of these shells, and the results for the constant pressure loading 
reveal an unexpected and important connection between the short-time elastic buckling limit and 
the long-time creep buckling limit. An imperfection sensitivity map is constructed for the constant 
pressure loading showing three regimes with qualitatively different behaviors: near-instantaneous 
buckling, creep buckling and no buckling.   

1. Introduction 

Spherical shells, serving as essential and indispensable structures and structural components, exhibit diverse functionalities 
(Bartlett et al., 2015; Cheng et al., 2021; Faber et al., 2020; Gorissen et al., 2020; Qiao et al., 2021; Vasios et al., 2021; Yang et al., 2021) 
and have widespread utilization in various engineering fields (Błachut and Magnucki, 2008; Jose et al., 2014). The buckling behavior 
of spherical shells has drawn considerable research attention (Audoly and Hutchinson, 2019; Budiansky, 1974; Dong et al., 2020; 
Huang, 1963; Huang, 1964; Hutchinson and Koiter, 1970; Karman and Tsien, 1939; Koiter, 1969; Paulose and Nelson, 2013; Qiao 
et al., 2020), due to the ubiquitous importance of these structures and the fact that buckling can result in their catastrophic collapse. On 
the other hand, shell buckling offers new opportunities for functional designs of structures as demand by virtue of its nonlinear 
behavior (Bartlett et al., 2015; Chen et al., 2022; Faber et al., 2020; Kochmann and Bertoldi, 2017; Qiao et al., 2021; Reis, 2015). 

Shell theories have been developed to quantitatively predict the critical buckling loads for shells with linearly elastic material 
behavior (Huang, 1964; Hutchinson, 2016; Hutchinson and Thompson, 2017; Karman and Tsien, 1939; Koga and Hoff, 1969; Koiter, 
1969; Krenzke and Kiernan, 1963). Decades of research has shown that there are significant discrepancies between theoretically 
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predicted buckling loads and experimental observations for spherical shells loaded by external pressure, which is attributed to high 
imperfection sensitivity of shells (Carlson et al., 1967; Hutchinson and Thompson, 2018; Kaplan and Fung, 1954; Karman and Tsien, 
1939; Koga and Hoff, 1969; Koiter, 1969). Recently, leveraging a rapid prototyping technique to fabricate elastomeric spherical shells 
with precisely engineered imperfections, researchers have demonstrated that shell theories can nevertheless accurately predict the 
buckling behavior as long as imperfections of accurate geometry are appropriately introduced into the theories (Dong et al., 2020; 
Hutchinson, 2016; Lee et al., 2016; Qiao et al., 2020). 

Although the rich buckling behavior of shells with linearly elastic material behavior has been extensively investigated, shells made 
from viscoelastic materials, on the other hand, can introduce additional novel features to shell buckling behavior due to their inherent 
time-dependent and rate-dependent properties (Brinkmeyer et al., 2012; Che et al., 2019; Dykstra et al., 2019; Janbaz et al., 2020; 
Lakes, 1998; Liu et al., 2021). In particular, the phenomenon of creep buckling, i.e. buckling of a viscoelastic shell after a certain 
delayed period of loading when the shell is subjected to a load lower than its instantaneous buckling load, can occur (Hayman, 1981; 
Minahen and Knauss, 1993; Miyazaki and Hagihara, 2015). Buckling of viscoelastic shells has previously been investigated for metallic 
and composite shells at high temperatures (Kao, 1981; Marques and Creus, 1994; Miyazaki and Hagihara, 2015; Wilson and Vinson, 
1984). The recent trend of building soft robots, architected materials and metamaterials from viscoelastic elastomers motivated the 
following studies of viscoelastic shells (Bartlett et al., 2015; Che et al., 2019; Chen et al., 2022; Dykstra et al., 2019; Faber et al., 2020; 
Janbaz et al., 2020). 

Buckling of viscoelastic beams and plates has been broadly studied (Hayman, 1981; Kempner, 1954; Nachbar and Huang, 1967; 
Vinogradov, 1987). Creep buckling is analyzed in viscoelastic columns (Vinogradov, 1987), shallow Mises trusses (Huang, 1967), 
shallow arches (Huang, 1967), and other simple structural models (Hayman, 1981). The critical buckling time and load, and the 
post-buckling deflection, have been determined (Huang, 1967). Comparing the analytical prediction with the experimental measured 
creep buckling condition of viscoelastic polymeric columns, Minahen and Knauss (1993) showed that analytical modeling can predict 
the short-term and slow growth phases of the responses reasonably well. Buckling analysis was also conducted for viscoelastic plates to 
demonstrate their time-dependent buckling behavior (Hewitt and Mazumdar, 1977; Wilson and Vinson, 1984). The results show that 
viscoelasticity can cause a significant decrease in buckling resistance (Wilson and Vinson, 1984) when the loads are applied for 
sufficiently long periods of time. 

Although the role of viscoelasticity on buckling of beams and plates, which tend to buckle in a stable manner, has been established, 
an understanding of the buckling behavior of viscoelastic shells, especially deep shells, which have the potential to buckle cata
strophically, remains to be revealed with more clarity. In early work by Huang (1965), the governing equations of viscoelastic shallow 
shells were established by applying the corresponding principle of an elastic case with the material property evolving as a function of 
time, from which the critical time for buckling was evaluated numerically. Obrecht (1977) formulated an incremental viscoelastic shell 
theory for cylindrical shells under axial compression. The axisymmetric and/or non-axisymmetric buckling conditions were deter
mined for spherical shells and circular cylindrical shells by a perturbation method (Grigoliuk and Lipovtsev, 1969; Jones, 1976; 
Obrecht, 1977; Vinogradov and Glockner, 1980; Xirouchakis and Jones, 1980), or the finite element method (Miyazaki et al., 1977). 
Imperfections were shown to have a significant impact on shortening the creep buckling time (Kao, 1981). Recently, the creep buckling 
behavior of shell structures, including both cylindrical shells and spherical shells, was reviewed, and creep buckling criteria were 
summarized (Miyazaki and Hagihara, 2015). However, buckling analysis of viscoelastic shells, especially spherical shells, is largely 
based on the shallow shell assumption. Relevant specifically to the present investigation is the study of viscoelastic spherical shells 
made of a silicone elastomer (Stein-Montalvo et al., 2021), where creep buckling of these shells is demonstrated experimentally and 
modelled by simply treating the creep deformation as an evolving defect. Thus, there is ample opportunity to explore the effect of 
viscoelasticity on the rate-dependent buckling and creep buckling of imperfection sensitive shells – this paper represents a step in that 
direction. 

The present paper employs a shell theory capable of describing the deformation and buckling of deep viscoelastic spherical shells 
subjected to external pressure. The small-strain, moderate-rotation shell theory, combined with the standard linear viscoelastic solid 
for the shell material, is used. Imperfection sensitivity of elastic shells (viscoelastic shells evaluated under rapid loading) is first 
analyzed, revealing the knockdown of the buckling pressure due to geometric imperfections. Then, material viscoelasticity and loading 
rates are shown to have appreciable effects on buckling. Distinctly different behaviors are quantified, including near-instantaneous 
elastic buckling, creep buckling with time delays, and no buckling. An imperfection sensitivity map of these distinct responses is 
constructed. 

The paper is organized as follows. In Section 2, the small-strain, moderate-rotation shell theory and the viscoelastic material law are 
combined to formulate the viscoelastic shell theory. The equilibrium equations are developed using the principle of virtual work. In 
Section 3, the imperfection sensitivity and the rate-dependent buckling behavior of viscoelastic shells are illustrated for two types of 
loading: a prescribed constant rate of volume change and a prescribed step loading of external pressure. In Section 4, the distinct 
buckling phenomena alluded to above are identified by quantifying the buckling times for the step pressure loading. Systematic re
sponses are identified and summarized in a behavior map. The main findings of the paper are summarized in Section 5. 
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2. Formulation of viscoelastic shell theory 

2.1. Small-strain, moderate-rotation shell theory with a geometric imperfection 

Fig. 1 Schematic of a viscoelastic spherical shell with a Gaussian-shaped imperfection centered at the pole. (a) Coordinates defi
nition (θ, ω, r) and geometry of the shell. (b) A standard linear solid with a free spring of modulus E∞, and a Maxwell element in 
parallel with a spring of modulus E1, and a dashpot of viscosity η. 

The small-strain, moderate-rotation theory (Koiter, 1966; Sanders, 1963) is employed for the shell buckling equations. The 
schematic and coordinates definition (θ, ω, r) are shown in Fig. 1, where θ is the meridional angle, which equals 0 at the equator and π 
/2 at the pole, ω is the circumferential angle, and r is the distance from the origin. The middle surface radius, base angle and thickness 
of the perfect undeformed shell are denoted by R, α0 and h, respectively. A material point on the middle surface of the undeformed shell 
with a coordinate (θ, ω, R) will be located on the deformed shell at 

r̄= uθiθ + uωiω + (R+w)ir , (1)  

where (iθ, iω, ir) are the unit vectors normal and tangent to the undeformed middle surface, and (uθ, uω, w) are the corresponding 
displacements. In this paper, only axisymmetric deflections and imperfections are considered since the essence of spherical shell 
buckling is captured within this limited class of deformations (Hutchinson, 2016); thus, uθ and w are only functions of θ, and uω = 0. 

An axisymmetric dimple-like geometric imperfection wI(θ) is introduced at the apex of the perfect shell shown in Fig. 1a. The 
profile of the imperfection is specified by a Gaussian dimple, 

wI = − δe− (β/βI )
2
, (2)  

where δ is the amplitude of the inward deflection at the apex, β = π/2 − θ is the polar angle, and βI sets the exponential decay width. 
The tensor equations of Sanders (1963) and Koiter (1966) have been reduced to the classical form for spherical shells, and the 
derivation of the middle surface strains and bending strains for spherical shells with an imperfection undergoing non-axisymmetric 
deformation based on the small-strain, moderate-rotation theory is listed in the papers of Hutchinson (2016) and Lee et al. (2016). 
The corresponding non-zero middle surface strains and bending strains under axisymmetric deformation are 

Eωω = W −
(
φ + W,θ

)
tanθ,

Eθθ = W + φ,θ + W,θθ +
1
2
φ2 − WI,θφ,

Kωω = −
1
R

φtanθ,

Kθθ =
1
R

φ,θ,

(3)  

Fig. 1. Schematic of a viscoelastic spherical shell with a Gaussian-shaped imperfection centered at the pole. (a) Coordinates definition (θ, ω, r) and 
geometry of the shell. (b) A standard linear solid with a free spring of modulus E∞, and a Maxwell element in parallel with a spring of modulus E1, 
and a dashpot of viscosity η. 
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where the dimensionless displacements and rotation are defined as 

W =
w
R
,φ = −

w,θ

R
+

uθ

R
,Uθ =

uθ

R
,WI =

wI

R
, (4)  

with the subscripts ‘,θ’ and ‘,θθ’ as the first and second derivatives with respect to θ, respectively, and φ is the rotation. In deriving Eq. 
(3), the second equation in Eq. (4) has been used to express uθ in terms of W and φ, which are regarded as the independent variables. 
Consequently, the strain at an arbitrary position of the shell can be expressed as εαβ = Eαβ + zKαβ, where z is the coordinate in the 
thickness direction of the shell and measured from the middle surface. 

2.2. Viscoelastic constitutive relations 

To formulate the viscoelastic shell theory, the time/rate-dependent constitutive equations of viscoelasticity are developed in this 
section. The Boltzmann superposition principle, stating that the compound response of a material is the sum of the responses to in
dividual loads, is adopted. The stress at time t is the summation of the stress increments at earlier time intervals dτ. The two- 
dimensional stress-strain relations of viscoelasticity under plane stress can be written as: 

σαβ =
1

1 + v

∫t

0

E(t − τ)ε̇αβdτ + v
1 − v2

∫t

0

E(t − τ)ε̇γγδαβdτ (5)  

where E is the modulus, which evolves with time, v is the Poisson’s ratio, which is assumed to be constant, and ε̇αβ = dεαβ /dτ. The 
Greek indices α & β take on values 1 & 2 corresponding to θ & ω, and a repeated Greek index is summed over 1 and 2. 

Specifically, the standard linear solid model (Fig. 1b), which is a special case of the generalized Maxwell-Wiechert model (Lakes, 
1998), is used to describe the material viscoelasticity. It can capture both relaxation and creep with the minimum number of Maxwell 
elements. It consists of a free spring with a modulus E∞, a Maxwell element in parallel with a spring of modulus E1, and a dashpot of 
viscosity η. As a result, the modulus of a standard linear solid shows exponential decay with time during relaxation, E(t) = E∞ +

E1e−
E1
η t. Substituting the time-dependent modulus E(t) into Eq. (5) gives 

σαβ =
1

1 + v

∫t

0

(
E∞ + E1e−

E1
η (t− τ)

)
ε̇αβdτ + v

1 − v2

∫t

0

(
E∞ + E1e−

E1
η (t− τ)

)
ε̇γγδαβdτ

=
1

1 + v

⎡

⎣(E∞ + E1)εαβ −

∫t

0

E2
1

η e−
E1
η (t− τ)εαβdτ

⎤

⎦+
v

1 − v2

⎡

⎣(E∞ + E1)εγγδαβ −

∫t

0

E2
1

η e−
E1
η (t− τ)εγγδαβdτ

⎤

⎦.

(6) 

The resultant membrane stresses and the bending moments can be derived by integrating the stresses through the thickness, 

Nαβ =

∫ h
2

− h
2

σαβdz,

Mαβ =

∫ h
2

− h
2

σαβzdz.

(7) 

For a shell specialized to axisymmetric deformations, the non-zero resultant membrane stresses are Nωω, and Nθθ, while the non- 
zero bending moments are Mωω, and Mθθ: 

Nωω =
h

1 − ν2 (E∞ + E1)(Eωω + νEθθ) −
h

1 − ν2

∫t

0

E2
1

η e−
E1
η (t− τ)(Eωω + νEθθ)dτ,

Nθθ =
h

1 − ν2 (E∞ + E1)(Eθθ + νEωω) −
h

1 − ν2

∫t

0

E2
1

η e−
E1
η (t− τ)(Eθθ + νEωω)dτ,

Mωω =
h3

12(1 − ν2)
(E1 + E∞)(Kωω + νKθθ) −

h3

12(1 − ν2)

∫t

0

E2
1

η e−
E1
η (t− τ)(Kωω + νKθθ)dτ,

Mθθ =
h3

12(1 − ν2)
(E1 + E∞)(Kθθ + νKωω) −

h3

12(1 − ν2)

∫t

0

E2
1

η e−
E1
η (t− τ)(Kθθ + νKωω)dτ.

(8) 

It is convenient to normalize these equations as 
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nωω =
12R2cosθ

h2( 1 − ν2)

⎛

⎝Eωω + vEθθ − Erel

∫T

0

e− (T − τprime)(Eωω + vEθθ

⎞

⎠dτprime),

nθθ =
12R2cosθ

h2( 1 − ν2)

⎛

⎝Eθθ + vEωω − Erel

∫T

0

e− (T − τprime)(Eθθ + vEωω

⎞

⎠dτprime),

mωω = Rcosθ

⎛

⎝Kωω + νKθθ − Erel

∫T

0

e− (T − τprime)(Kωω + vKθθ

⎞

⎠dτprime),

mθθ = Rcosθ

⎛

⎝Kθθ + νKωω − Erel

∫T

0

e− (T − τprime)(Kθθ + vKωω

⎞

⎠dτprime),

(9)  

with 

tv =
η

E1
,Erel =

E1

E1 + E∞
,T =

t
tv
, τprime =

τ
tv
,D =

(E1 + E∞)h3

12(1 − ν2) ,

(mωω,mθθ) =
Rcosθ

D
(Mωω,Mθθ), (nωω, nθθ) =

R2cosθ
D(1 − ν2) (Nωω,Nθθ),

(10)  

where Erel measures the modulus in the Maxwell element relative to the modulus governing rapid straining. The viscoelastic timescale 
tv is defined as the ratio of the material viscosity η to modulus E1 in the Maxwell element, which is used to scale the time. 

2.3. Principle of virtual work and equilibrium equations 

To enforce the principle of virtual work, the virtual normal displacement and rotation of the middle surface are indicated as δW and 
δφ, and the associated virtual strains are δεαβ = δEαβ + zδKαβ. The internal virtual work of the shell can be expressed as 

IVW =

∫

S

dS
∫ h

2

− h
2

dzσαβδεαβ =

∫

S

(
NαβδEαβ + MαβδKαβ)dS, (11)  

where S denotes the area of the middle surface with dS = 2πR2cosθdθ for a spherical shell. 
When the shell is subjected to a uniform inward pressure p in the radius direction, the external virtual work is 

EVW =

∫

s
pRδWdS +

∮

C

[
QδW +TθδUθ − MnδW,n

]
Rds. (12)  

where Q is the normal edge force, Tθ is the in-plane edge resultant traction, C is the boundary, and s denotes the length of the edge of 
the shell. Mn is the component of the edge moment, Mn = Mαβnαnβ, where the vector n is the normal to the edge tangent to the shell. 

Next, the equilibrium equations are derived from the principle of virtual work, which states that IVW=EVW for all admissible δW 
and δφ. The divergence theorem is applied to convert the equations to the form that permits identification of independent variations. 
Besides the dimensionless variables and parameters defined in Eq. (10), a normalized pressure is introduced as 

p̃ =
R3cosθ

D
p. (13) 

The equilibrium equations are obtained as (see Appendix A for details) 

mθθ,θθ + (tanθmωω),θ −
(
1 − ν2)

[
nωω + nθθ +

(
nθθ

(
φ − WI,θ

))

,θ

]
+ p̃ = 0,

mθθ,θ + tanθmωω +
(
1 − ν2)( nωωtanθ + nθθ,θ − nθθ

(
φ − WI,θ

))
= 0.

(14) 

Finally, we take the time derivative of the above equilibrium equations, which can be expressed in terms of φ and W through the 
constitutive equations Eq. (9) and the strain–displacement relations Eq. (3). Only the terms related to the highest order of the un
knowns are expanded explicitly; the other terms are readily computed in the numerical code. The equilibrium equations for the time 
rates of change become 
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φ̇,θθθ = −
1
A

[
Ċ − 2tanθ

(
ṁθθ,θ + tanθṁθθ

)
− ṁθθ + (tanθṁωω),θ

+ṁθθ,θ
(
φ − WI,θ

)
+ mθθ,θφ̇ + tanθṁωω

(
φ − WI,θ

)
+ tanθmωωφ̇

− (1 − ν2)[ṅωω + ṅθθ + ṅθθ
(
φ,θ − WI,θθ

)
+ nθθφ̇,θ − ṅωωtanθ

(
φ − WI,θ

)

− nωωtanθφ̇ + ṅθθ
(
φ − WI,θ

)2
+ 2nθθ

(
φ − WI,θ

)
φ̇]+

˙p∼
]

+
A
A2

[
C − 2tanθ

(
mθθ,θ + tanθmθθ

)
− mθθ + (tanθmωω),θ + mθθ,θ

(
φ − WI,θ

)

+tanθmωω
(
φ − WI,θ

)
−
(
1 − ν2)[nωω + nθθ + nθθ

(
φ − WI,θ

)

,θ

− nωωtanθ
(
φ − WI,θ

)
+ nθθ

(
φ − WI,θ

)2
]+p∼

]

Ẇ ,θθθ = −
(
W,θ + φ,θθ + φ̇φ,θ + φφ̇,θ − WI,θφ̇,θ − WI,θθφ̇

)

+
1
B
[
Ḋ − tanθ

(
1 − v2)ṅθθ + ṁθθ,θ + tanθṁωω

+(1 − ν2)( ṅωωtanθ − ṅθθ
(
φ − WI,θ

)
− nθθφ̇

)]

−
Ḃ
B2

[
Ḋ − tanθ

(
1 − v2)nθθ + mθθ,θ + tanθmωω

+(1 − ν2)( nωωtanθ − nθθ
(
φ − WI,θ

))]
,

(15)  

with the definition of 

A = cosθ

⎛

⎝1 − Erel

∫T

0

e− (T − τ’)dτ’

⎞

⎠,B = −
12R2

h2 A,C = RvKωω,θθA,D =
12R2

h2 vEωω,θA. (16) 

The present formulation describing the deformation of viscoelastic spherical shells with geometric imperfections has led to a system 
of nonlinear ordinary differential equations (ODEs), which will be solved using the finite difference method and the combined bvp4c 
solver (a finite difference code that implements the three-stage Lobatto IIIa formula to solve boundary value problems for ODEs) in 
MATLAB (Kierzenka and Shampine, 2001). The clamped boundary condition requires W = W,θ = φ = 0 at the base while the analytical 
nature of the functions W and φ under the axisymmetric condition requires W,θ = φ = φ,θθ = 0 at the pole. And note that numerical 
approximations are adopted, and high-order terms are neglected when solving the ODEs. Buckling problems under two types of loading 
are examined in this work: i) a prescribed rate of change of the shell volume and ii) prescribed pressure that is held constant once after 
it is applied. In addition, the case of a prescribed rate of volume change will be compared with a case that is easier to implement 
numerically but of less physical interest, a prescribed rate of change of the pole displacement. When the pressure serves as the control 
variable, the equilibrium equations (Eq. (15)) and viscoelastic constitutive relations (Eq. (9)) are solved with prescribed evolution of 
pressure with time. When the pole deflection is set as the control parameter, the dimensionless pressure p̂ = pR3/D is regarded as an 

Fig. 2. Effect of the imperfection amplitude δ/h on the load-carrying behavior of viscoelastic shells with Erel=0.4, under a high rate of volume 
change, γv = 0.9623, and with the other parameters fixed at values used throughout the paper: α0 = π/3, R/h = 50, βI = 10∘, v = 0.5. (a) 
Normalized pressure versus normalized displacement at the pole. (b) Normalized pressure as a function of normalized volume change. For the 
smallest imperfection shown, δ/h = 0.2, snap back behavior occurs when p ≅ pmax and those curves are terminated there. 
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extra unknown with an additional ODE dp̂/dθ = 0 added to the set of equations, Eqs. (15) and (9). The deformation of the shell can be 
obtained numerically if dynamic snapping does not occur, which would require consideration of inertia. Volume control is achieved by 
setting the volume of the shell as an additional variable and adding an extra constraining ODE relating the volume and deflection to the 
equation set. The pressure is again treated as an extra unknown variable. The procedure under volume control also behaves well until 
conditions for dynamic snapping are attained. 

3. Rate-dependent buckling behaviors 

In this section, we begin by investigating the effects of geometric imperfections on buckling pressure of viscoelastic shells. It is 
known that the classical prediction for the critical buckling pressure of a perfect elastic hemi-spherical shell with α0 = π /2 under 
uniform pressure loading is only slightly different from the result for a full spherical shell (Zoelly, 1915), pc = 2E(h/R)2/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − v2)

√
, 

where E is the Young’s modulus for the elastic shell. The precise value for the hemispherical shell depends on whether it is clamped or 
simply supported at the equator. The critical buckling pressure of imperfect shells can be significantly reduced below pc due to the 
imperfection sensitivity of shell buckling, which leads to large knockdown factors observed experimentally (Evkin and Lykhachova, 
2017; Gerasimidis et al., 2018; Hutchinson and Thompson, 2017, 2018; Karman and Tsien, 1939; Koga and Hoff, 1969; Koiter, 1969; 
Krenzke and Kiernan, 1963; Lee et al., 2016; Liu et al., 2021; NASA, 1969). For the dimple imperfections of the type considered in this 
paper, buckling is localized at the pole, and the boundary conditions at the equator, or at other values of α0, have no influence on the 
buckling pressure if they are sufficiently strong and if the shell is sufficiently deep, which typically corresponds to the dimensionless 
parameter [12(1 − v2)]

1/4cos(α0)
̅̅̅̅̅̅̅̅̅
R/h

√
> 3 (Evkin and Lykhachova, 2019; Huang, 1965; NASA, 1969). In this paper, the ratio of the 

buckling pressure, the maximum pressure the shell can support pmax, to pc is used to quantify the discrepancy of the actual buckling 
pressure from the theoretical prediction; in the formula for pc the initial modulus (E1 +E∞) for the viscoelastic material governing fast 
straining is used to replace the elastic modulus E of an elastic material to define a reference critical buckling pressure, i.e., 

pc =
2(E1 + E∞)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − v2)

√

(
h
R

)2

. (17)  

3.1. Buckling under a prescribed volume change 

We first examine the effect of imperfections on the loading-carrying behavior of viscoelastic shells under fast loading. For these 
calculations, the viscoelastic shell is loaded at a high rate of volume change with the time-dependence of the pressure solved as 
described earlier. The volume change rate is chosen sufficiently large such that the shell material responds elastically with modulus 
(E1 + E∞), i.e., viscoelastic effects are essentially absent. For purposes that will be clear in what follows, we define two dimensionless 
loading rates, γν measuring rate of volume change and γd measuring the rate of the pole displacement: 

γv =
d

ΔV/V0
dT andγd = −

dWpole

dT
(18)  

where the dimensionless quantities, T and Wpole, have been defined earlier, ΔV is defined as the volume change from t = 0 to time t, and 

Fig. 3. Volume change and pole displacement with time for the imperfect viscoelastic shells in Fig. 2. (a) Volume change as a function of time for 
imperfection amplitudes δ/h = 0.2, 0.3, 0.5, 1.0. ΔV is the volume change from t = 0 to time t. (b) Normalized displacement at the pole versus 
normalized time. The computation stops at infinite slope, where p ≅ pmax, for δ/h = 0.2. The additional parameters are those specified earlier and 
used throughout the paper. 
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V0 = − 2πR2h(1 − sinα0)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 + ν)/(1 − ν)

√
is an estimate of the volume change for the deep spherical shell associated with the critical 

pressure in Eq. (17), which ignores the constraint of the clamped boundary in the small boundary layer at the base of the shell. 
The plots in Figs. 2 and 3 are computed with a prescribed, rapid rate of volume change, γv = 0.9623, with Erel = 0.4. Throughout 

the paper, the geometric parameters are fixed at α0 = π/3, R/h = 50 and βI = 10∘, with Poisson’s ratio set at v = 0.5. Note that in 
this paper, we will not provide the results for perfect and near-perfect shells to avoid numerical singularity and other complex behavior 
near the buckling, such as localization (Audoly and Hutchinson, 2019). Instead, we will focus on small, but realistic, imperfections 
with δ/h ≥ 0.2. For each choice of imperfection amplitude, δ/h = 0.2, 0.3, 0.5, 1, the normalized pressure, p/pc, as a function of the 
displacement at the pole, here normalized by the shell thickness, wpole/h, always first increases, reaches a maximum value, and then 
decreases monotonically (Fig. 2a). It is well known that the elastic buckling of shells is highly sensitive to imperfections (Koiter, 1969), 
with an exceptionally dramatic reduction of buckling loads in the range of small imperfections, and this is reflected in Fig. 2. As the 
imperfection amplitude increases, the buckling pressure further decreases but tends to a plateau. The corresponding pole displacement 
at the critical pressure increases monotonically but is never much larger than one, or at most two, shell thicknesses at the maximum 
load point. The fact that shell buckling occurs at such small deflections helps explain why the small-strain, moderate-rotation shell 
theory is accurate in these applications. Fig. 2b presents results for the same shells but as normalized pressure as a function of 
normalized volume change, ΔV/V0. For shells with the smallest imperfection in Fig. 2b (δ/h = 0.2), both p/pc and ΔV /V0 decrease 
along the equilibrium path after attaining the maximum pressure, which is a salient feature of a snapping-back buckling (Budiansky, 
1974; Chen and Jin, 2020), indicating that the shell will buckle unstably under either pressure or volume control. For the larger 
imperfection amplitudes, the critical volume at the onset of buckling becomes smaller, and the post-buckling slope changes from 
positive to negative, eventually reaching nearly zero. The buckling capacity of the shell is reached in the range of relatively small pole 
deflections, with the attainment of the maximum pressure occurring when wpole ≅ − h. In all cases in Figs. 2 and 3, the loading rate, γv 
= 0.9623, is very high and there is virtually no viscoelastic relaxion. The buckling behavior of these viscoelastic shells is essentially the 
same as an elastic shell with the short-time modulus E = E1 + E∞. Consequently, the results in these figures are essentially identical to 
those of the elastic shells reported in the literature (Lee et al., 2016). This agreement provides one check on our viscoelastic shell 
model. 

Fig. 3 displays the data in Fig. 2 plotted against dimensionless time, as volume change versus time in Fig. 3a and as pole 
displacement versus time in Fig. 3b. Because the rate of volume change is prescribed to be constant with γv = 0.9623, the plot in Fig. 3a 
is simply a straight line, but the points at which the buckling pressure pmax is attained for the four imperfection levels is indicated. In 
Fig. 3b, one can see that for the smallest imperfection, δ/h = 0.2, the curve terminates at the point where snap back would occur under 
this prescribed rate of volume change. Note in Fig. 2 that the point of maximum pressure is nearly coincident with snap back (the 

Fig. 4. Middle surface profiles of the initial and deformed states for the imperfect viscoelastic shell with δ/h = 0.3 in Fig. 2 under volume control 
with γv = 0.9623 compared with those computed using pole displacement control with γd = 0.458. The latter rate is chosen such that the two 
loading conditions give nearly coincident predictions in the early stages of loading. At t/tv = 0.024, the shells under volume control and 
displacement control are deformed to almost the same position. At t/tv = 0.029, a sharp increase of the buckling deflection has occurred under 
volume control, which would be even more dramatic for smaller δ/h, and less so for larger δ/h. No drop exists for displacement control. 
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maximum pressure is attained just before snap back occurs, which is usually the case for thin shells). The shells with the three larger 
imperfections have monotonically increasing pole displacements over the time plotted (Fig. 3b), and it can be seen in Fig. 2b that these 
shells having a prescribed constant rate of volume change do not undergo snap buckling at the maximum pressure. Instead, these shells 
will undergo stable buckling after the maximum pressure is attained with the buckle amplitude increasing monotonically with the 
increasing volume change. 

Fig. 4 displays the initial and deformed shapes of the middle surface of the imperfect viscoelastic shell with δ /h = 0.2 at three 
dimensionless times, t/tv = 0, 0.024, 0.029, for both a fixed rate of volume change (γv = 0.9623) and a fixed rate of pole displacement 
(γd = 0.458), where x/R and y/R are the normalized coordinates in the cross-section of the shell as defined in Fig. 1. The two rate 
measures were chosen such that both loadings produced essentially the same rate of volume change in the early stages of loading. 
Imposing the pole deflection rate is simpler to implement numerically than the volume change rate, and the former leads to a larger 
range of stable behavior than the latter, as will be seen. However, prescribing the volume change rate is a much more accurate 
representation of how experiments are typically performed. The initial shape of the shells deviates slightly, but visibly, from the 
perfectly spherical shape due to the initial imperfection. In Fig. 4 at t/tv = 0.024 the shapes of the imperfect viscoelastic shells deviate 
from those of the perfect, consistent with the amplitude of the imperfection, and remain almost identical for the two loading condi
tions. However, in the time between 0.024 and 0,029, the pole displacement of the shell subjected to a fixed rate of prescribed volume 
change undergoes a sharp increase in the buckle deflection (c.f., Fig. 3b) while the shell with a prescribed rate of pole displacement 
undergoes a much smaller change. Although not shown, at even larger deflections when the pole displacement is larger than about wpole 

/R = 0.1, the vicinity of the pole is approximately an inverted cap with radius of curvature − R. 
The viscoelastic material exhibits time- and rate-dependent behavior, which are expected to result in new features of shell buckling. 

In this paper, the load-carrying behavior of viscoelastic shells is examined over a wide range of loading rates, from extremely slow 
loading (γv = 0.0067) to extremely fast loading (γv = 0.9608). As a comparison, buckling results for shells having strictly elastic 
material are also generated. The isotropic linearly elastic material law is employed for the elastic shell, i.e., 

Nαβ =
Eh

(1 − v2)
[
(1 − v)Eαβ + vEγγδαβ

]
,

Mαβ =
Eh3

12(1 − ν2)
[
(1 − v)Kαβ + vKγγδαβ

]
,

(19)  

and solved together with the equilibrium equations (Eq. (14)) and strain-displacement relations (Eq. (3)). 
For viscoelastic spherical shells undergoing a wide range of fixed rates of volume change, strong strain-rate-dependency of the 

buckling pressure is observed in the plots of p/pcvs. − wpole/h in Fig. 5a and in the companion plots of p/pcvs. ΔV/V0 in Fig. 5b. The 
maximum normalized pressure, p/pc, increases with the increase of the loading rate due to the reduction of relaxation, clearly indi
cating that higher pressures are required to buckle a viscoelastic shell under a higher strain rate. Stated otherwise, the buckling 
pressure can be substantially reduced when the shell is loaded slowly and as much time is allowed under load as needed. Two 
asymptotic limits of buckling pressure are relevant. For this example, at the slower loading rates (γv = 0.0067 & 0.0097), the time to 
attain the maximum pressure is 3 to 4 times the viscoelastic timescale, i.e., T ≅ 3 or 4, as seen in the companion plot in Fig. 6, where the 
time-dependence of the pole displacement of these shells is presented. The time to deform the shell to displacements much larger than 
those at the maximum pressure, such as − wpole/R = 0.1 for example, is approximately 10 to 15 times the viscoelastic timescale as seen 
in Fig. 6. In these two cases, almost full relaxation occurs, and the response is governed by the long-term modulus, E∞. As a result, the 
plots p/pcvs. − wpole/h (Fig. 5a) and p/pcvs. ΔV/V0 (Fig. 5b) approach those of the elastic shell computed with modulus E = E∞. On the 

Fig. 5. Rate-dependent buckling behaviors of elastic and viscoelastic shells (Erel=0.4, δ/h = 0.3) under different volume control loading rates (γv =

0.0067 ∼ 0.9608). (a) Normalized pressure versus the normalized displacement at the pole. (b) Normalized pressure as a function of the normalized 
volume change. The additional parameters are those specified earlier and used throughout the paper. 
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Fig. 6. Normalized displacement at the pole versus normalized time for the viscoelastic shells in Fig. 5 under different loading rates (γv =

0.0067 ∼ 0.9608). 

Fig. 7. The influence of imperfection and loading rate on the normalized buckling pressure pmax/pc of viscoelastic shells (Erel=0.4). (a) Normalized 
buckling pressure as a function of loading rate for different imperfection amplitudes (δ/h = 0.3, 0.5, 1). (b) Normalized buckling pressure as a 
function of the imperfection amplitude under different loading rates (γv = 0.0095, 0.0955, 0.9549). The additional parameters are those specified 
earlier and used throughout the paper. 
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other hand, for the two highest loading rates of γv = 0.3170 & 0.9608, the corresponding dimensionless times are much smaller, and 
the level of relaxation is smaller. Consequently, the effective modulus of the shell is close to the instantaneous modulus E1 + E∞, and 
the curves for the two high loading rates in Fig. 5 approach those of the elastic shell computed with modulus E = E1 + E∞. The 
maximum pressure occurs at nearly the same value of the pole deflection, i.e., wpole ≅ − h, for all the loading rates. 

The influence of imperfection and loading rate on the normalized buckling pressure pmax/pc of viscoelastic shells is further revealed 
in Fig. 7. In Fig. 7a, pmax/pc increases significantly within the loading rate range 0 < γv < 0.1 and then reaches a plateau at larger 
loading rates. In Fig. 7b, the qualitative dependence of pmax/pc on imperfection amplitude δ/h is similar for all the loading rates. 
Further insights on this trend will be gained in the investigation of the constant pressure loading. Almost all the increase of magnitude 
of pmax/pc occurs when the loading rate increases from 0.0095 to 0.9549. However, as seen in Fig. 7a, the change of pmax /pcwith the 
loading rate under fixed δ/h is highly nonlinear, because of the exponential decay of the modulus with time. 

In Fig. 8 the load-carrying responses of the viscoelastic deep spherical shells are investigated for three relative moduli of relaxation 
(Erel=0, 0.4, 0.8) under a moderate loading rate γv = 0.0194 to reveal the dependence on Erel. The predictions for an elastic shell 
computed with E = E1 + E∞ are included in this figure. When Erel = 0, no relaxation occurs in the material, and the corresponding 
curves in Fig. 8 almost coincide with those of the elastic shell. Small discrepancies are observed in the vicinity of the peak pressure 
caused by small numerical errors associated with the difference between the models in the time-dependent and time-independent 
cases. On the other hand, when Erel increases, notable decreases are observed in p/pc and there is a small decrease in the pole 

Fig. 8. Effects of material viscoelasticity (Erel=0, 0.4, 0.8) on the loading-carrying behavior of spherical shells subjected to a moderate loading rate 
γv = 0.0194. (a) Normalized pressure versus normalized displacement at the pole. (b) Normalized pressure as a function of the normalized volume 
change. The additional parameters are those specified earlier and used throughout the paper. 

Fig. 9. Effects of material viscoelasticity (Erel=0, 0.4, 0.8) on the load-carrying behavior of shells at an extremely small volume control loading rate 
(γv = 9.62× 10− 5), with the pressure normalized by two critical buckling pressures, pc and p∞

c . The other geometric parameters of the shells are the 
same as those in Fig. 8. (a) Normalized pressure versus the normalized displacement at the pole. (b) Normalized pressure as a function of the 
normalized volume change. Blue solid lines and red dash lines are overlapped. 
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displacement and volume at the onset of buckling. 
Next, we examine the situation when the shell is deformed under an extremely small loading rate, γv = 9.62× 10− 5. Under this low 

loading rate, the effective modulus of the shell is expected to be nearly the long-term nodulus E∞. Recall that the critical reference 
buckling pressure, pc, has been defined using the high strain-rate modulus, E1 + E∞, for the viscoelastic shells. To delineate the slow 
rate limit for the buckling pressure, the ‘slow’ critical reference bucking pressure is re-defined using E∞, i.e., 

p∞
c =

2E∞
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − v2)

√

(
h
R

)2

. (20) 

We normalize the pressure in two ways, p/pc and p/p∞
c , and plot each as a function of − wpole/h and ΔV/V0 for three values of Erel 

(Fig. 9). It can be seen that p/pc for a given − wpole/h or ΔV/V0 decreases as Erel changes from 0.4 to 0.8, as in the trend in Fig. 8, but it is 
always lower than the corresponding value in Fig. 8 due to the lower loading rate. However, with the pressure normalized by p∞

c , 
curves for different values of Erel (red dashed and dark blue solid lines) overlap, and approach the curves identified by Erel = 0 for p /
pcvs. − wpole/h (Fig. 9a) and p/pcvs. ΔV/V0 (Fig. 9b). This indicates that for extremely slow loading, the mechanical behavior of the 
shell is effectively governed by E∞, despite different values of Erel. 

Before proceeding to discuss spherical shells subjected to step pressure loading, we digress to emphasize that, with the exception of 
the results for ΔV/V0, the results for the buckling pressure determined for the specific shell geometry and other parameters plotted in 
the figures in Section 3.1, as well as those to follow in Sections 3.2 and 4, are approximately independent of both h/R and α0, assuming 
the shells are thin, deep and the imperfection width parameter, βI, scales with 

̅̅̅̅̅̅̅̅̅
h/R

√
. This assertion follows from the extensive study of 

Hutchinson (2016) using dimensionless parameters. The imperfection scaling is detailed in that earlier reference, and the fact that 
there is very little dependence on α0 if the spherical cap is deep follows from the fact that the buckling mode is localized near the pole of 
the shell, as illustrated in Fig. 4. There is a dependence of ΔV/V0 on h/R due to the fact that, when the pressure changes, the entire shell 
undergoes some radial displacement. 

3.2. Buckling under a rapidly applied pressure which is then held constant 

The buckling behavior of viscoelastic spherical shells under prescribed constant rates of volume change has been investigated in the 
above section. In this section, we will focus on the buckling of viscoelastic shells under a constant prescribed pressure that is lower than 

Fig. 10. Pole deflections normalized by the shell thickness, wpole/h, plotted against time for an imperfect viscoelastic shell (δ /h = 0.3, βI = 10∘) for 
different external pressures p/pc from 0.35 to 0.60 that are ramped up rapidly and then held constant. When subjected to different levels of sustained 
pressures, the shell shows three types of response, including near-instantaneous buckling under sufficiently high pressure, creep buckling under 
intermediate pressure, and no buckling at sufficiently low pressure. 

T. Liu et al.                                                                                                                                                                                                              



Journal of the Mechanics and Physics of Solids 169 (2022) 105084

13

the maximum pressure pmax the shell can support under rapid loading. Stated in another way, we investigate the phenomenon of creep 
buckling of an imperfect shell of viscoelastic material subjected to steadily applied external pressure. The evolution of the pole 
deflection and volume change with time for different applied pressures and imperfections is computed, and it will be seen that the 
buckling behavior of these viscoelastic shells can be classified into three categories. 

In the simulations presented in Fig. 10, the external pressure is applied almost instantaneously to a viscoelastic shell (α0 = π /3, R 
/h = 50, δ/h = 0.3, βI = 10∘, Erel= 0.4, v = 0.5) and then held constant. In carrying out the simulations, the pressure is increased 
from 0 to the final steady value in the short time period tloading/tv = 0.01. Consequently, in the nearly instantaneous ramp-up of the 
pressure, the shell responds effectively as if it were elastic governed by the fast-loading modulus E∞ + E1. The constant pressure 
applied, p/pc, ranges from 0.35 to 0.6, and it will be seen that a variety of shell buckling phenomena are revealed. The computed pole 
deflections are plotted as functions of time under different pressures in Fig. 10 for the shell with an imperfection having δ /h = 0.3 that 
buckles elastically at p/pc ≅ 0.60 (with E = E1 + E∞). Following the rapid ramp-up, the pole deflection increases over time caused by 
the creep occurring in the viscoelastic material under constant stress. However, as seen in Fig. 10, the growth rate of the deflection is 
distinctly different for different pressures. When this shell is subjected to a relatively low pressure (p/pc = 0.35), the growth rate 
decreases with time, and finally reaches zero, indicating that the shell does not buckle. Non-buckling behavior occurs for pressures 
below a pressure threshold which depends on the level of imperfection. For pressures somewhat above this threshold, the growth rate 
of the pole deflection increases with time until it becomes infinite (i.e., a vertical slope in Fig. 10) at a finite time. The shell would 
undergo snap buckling at this time. This phenomenon is an example of creep buckling as it occurs in imperfection-sensitive shells. The 
simulations have been terminated at this critical time. The critical time is referred to as the buckling time, tbuckling. In the range of 
applied pressures in which creep buckling occurs (approximately 0.36 < p/pc < 0.58 for the cases in Fig. 10), the buckling time is a 
strong function of the applied pressure (see ahead the curve for this imperfection in Fig. 13). The upper end of the pressure range for 
creep bucking (p/pc ≅ 0.60 for the shell in Fig. 10) is the elastic buckling pressure, which in turn is strongly dependent on the level of 
imperfection, as discussed in more detail later. 

Based on the examples discussed above, the time range for the buckling behavior of a shell subjected to a constant applied pressure 
is divided into three types: essentially instantaneous buckling when the shell buckles elastically at pmax, creep buckling when the slope 
of the wpole/h - t/tv curve decreases with time and reaches negative infinity at a finite time tbuckling, and no buckling when the slope of 
the wpole/h - t/tv curve increases with time and eventually approaches 0. These results explain the aspects of shell creep buckling 
observed in experiments (Stein-Montalvo et al., 2021), and they quantify the relationship between the buckling time and pressure. A 
material point in a viscoelastic shell that is subjected to a constant pressure experiences a reduction in modulus with time, leading to 
creep of the shell. Even if the instantaneous elastic buckling pressure is higher than the prescribed pressure, the shell may buckle after 
finite time due to the drift towards the lower effective modulus. If the applied pressure is lower than the buckling pressure for a shell 
with the long-time modulus E∞, buckling cannot happen even after long times. By contrast, instantaneous buckling can be expected if 
the pressure is higher than the buckling pressure for a shell with short time modulus, E∞ + E1. 

The results discussed above have been for a single imperfection (δ/h = 0.3) that causes the shell to buckle instantaneously at p 
/pc ≅ 0.60. The effect of the imperfection amplitude on the buckling process is shown in Fig. 11 with all the other geometric and 
material parameters unchanged (α0 = π/3,R/h = 50, βI = 10∘, Erel = 0.4, v = 0.5). The relation between the applied steady pressure 
and the buckling time, tbuckling/tv, is shown in Fig. 11a for the imperfection amplitude considered above, δ/h = 0.3, and for a larger 
imperfection amplitude δ/h = 1. For both imperfection amplitudes in Fig. 11a, the buckling time increases as the applied pressure is 
lowered below the level causing instantaneous buckling, and the curve reaches a plateau in pressure at buckling times greater than 
about tbuckling/tv = 2 for each of the two imperfection levels shown. For pressures below the plateau, buckling does not occur. Fig. 11b 
cross-plots the buckling pressure versus the imperfection amplitude for three dimensionless buckling times: short, intermediate and 

Fig. 11. Relation between prescribed pressure, buckling time and imperfection amplitude for shells subjected to a rapidly applied pressure that is 
then held constant at p. (a) Pressure versus buckling time for two imperfection amplitudes. (b) Pressure versus imperfection amplitude for three 
fixed buckling times. 
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‘long’. On each curve, the shell buckles at the time indicated. We have only plotted one curve for ‘long’ buckling times (the lowest 
curve in Fig. 11b), but this curve is approximately applicable for pressures applied for all times greater than about tbuckling /tv = 2. This 
is the long-time limit. At a given imperfection amplitude, the shell will never buckle at pressures below the lowest curve. These 
imperfection-sensitivity curves have features that are qualitatively similar to the corresponding curves for elastic shells. For imper
fection amplitudes greater than about δ/h = 1, they level off at a plateau pressure. Of course, the nature of the cross-plot is that the 
plateau is lower for a longer time allowed for buckling, but the result for tbuckling/tv = 3 is essentially the long-time limit. 

4. Viscoelastic behavior and a map of buckling behavior for viscoelastic shells subjected to constant pressure 

The material viscoelasticity determines the creep buckling behavior of the shells, and this connection is pursued in this section. The 
viscosity η is embedded in the dimensionless time while the relative modulus, Erel = E1/(E1 + E∞), is the other dimensionless 
parameter controlling the time dependence with the limit Erel = 0 corresponding to the absence of viscosity and non-zero values of Erel 

Fig. 12. Pole deflection, wpole/h, as a function of time for different viscoelastic properties (Erel=0.4 to 0.9), when an external pressure p /pc = 0.27 is 
applied rapidly to the shells and then held constant. The shell has imperfection amplitude, δ/h = 0.3, with other parameters given in the text. 

Fig. 13. Normalized buckling time, tbuckling/tv, of viscoelastic shells as dependent on Erel and applied pressures. tbuckling/tv versus Erel for three pressure 
loadings (p/pc=0.25, 0.42, 0.50) for a shell with imperfection δ/h = 0.3 and other parameters given in the text. 
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Fig. 14. Buckling modes for viscoelastic shells with imperfection δ/h = 0.3 with respect to the holding pressure p/pc and material viscoelasticity 
Erel. The color bar shows tbuckling/tv, which changes from 0 to infinity, corresponding to three types of buckling behaviors: near-instantaneous 
buckling, creep buckling at finite time, and no buckling. 

Fig. 15. Two normalizations of the applied pressure (p/pc and p/p∞
c ) as functions of tbuckling/tv for four values of the relative modulus (Erel=0.2, 0.4, 

0.6 and 0.8). The curves of p/pcvs. tbuckling/tv converge for all Erel at tbuckling/tv = 0, which is the elastic buckling load for a shell with modulus E1 +

E∞. The curves of p/p∞
c vs. tbuckling/tv converge for all Erel at the limit tbuckling/tv → ∞, which is nearly same as the elastic buckling load for a shell with 

modulus E∞. The two red dots represent the convergent values for p/pc and p/p∞
c . 
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corresponding to time-dependence. The example presented in Fig. 12 illustrates the influence of Erel on shell responses for pressures 
that are rapidly applied and then held constant. For all the simulations in Fig. 12, the pressure is p/pc=0.27 with responses computed 
for a wide range of the relative modulus, Erel = 0.4 to 0.9. The other parameters are those used in the other examples (α0 = π /3,R /h =

50, δ /h = 0.3, βI = 10∘, v = 0.5). As in the previous simulations, the initial loading rate is tloading/tv=0.01. The pole deflection as a 
function of time is plotted for six values of Erel. At the applied pressure and for the imperfection amplitude of the shell in Fig. 12, the 
shell does not buckle when the relative relaxation is sufficiently low (Erel ≤0.5), even after long-term creep, and stabilizes in a 
deformed configuration that has been influenced by material creep. When Erel is greater than about 0.5 for this example, buckling 
occurs after a time delay that depends on Erel: the larger Erel, the less time required to buckle. Fig. 12 reveals that even for Erel=0.9 the 
shell does not buckle until t/tv approaches approximately 1 under the pressure p/pc=0.27. 

The effect of Erel on tbuckling/tv under three pressures, p/pc = 0.25, 0.42 and 0.50, is further explored (Fig. 13) for the shell with 
imperfection amplitude δ/h = 0.3. It is seen that, subjected to certain pressures p/pc, tbuckling/tv can increase without bound as Erel 

diminishes to a limit depending on the pressure. For values of Erel below this limit, buckling will not occur. Moreover, this limiting 
value of Erel increases with decreasing p/pc. For p/pc=0.25 and 0.42, these limits are roughly Erel = 0.55 and Erel = 0.3, respectively. 
The elastic buckling pressure of this shell is about p/pc ≅ 0.60 (c.f., Fig. 7a), and thus the limiting value of Erel for the shell subjected to 
p/pc = 0.5 in Fig. 13 occurs somewhere in the range Erel = 0 to 0.2, outside the range in which computations were performed. 

The effects of the material viscoelasticity (Erel) and holding pressure (p/pc) on the buckling modes of imperfect viscoelastic shells 
with δ/h = 0.3 are summarized in Fig. 14. Three types of buckling behavior are explicitly classified by tbuckling/tv, including again near- 
instantaneous buckling, creep bucking at finite time and no buckling. Note that instantaneous buckling here is defined as tbuckling /tv 

< 0.05, which is prone to occur for high values of Erel and p/pc. On the other hand, shells do not buckle if Erel and p /pc are relatively 
small. In the middle region, creep buckling is observed for moderate values of Erel and p/pc. For a fixed Erel, the buckling mode changes 
in a sequence from no buckling, creep bucking to instantaneous buckling with the increase of p/pc. As for a fixed p /pc in a wide range of 
0.1 ≤ p/pc ≤ 0.55, shells only exhibit the mode of no buckling and creep buckling, and near-instantaneous buckling only takes place 
when p/pc ≥ 0.55. 

Fig. 15 reveals important insights to time-dependent buckling of viscoelastic shells. As in Fig. 13, the shell has an imperfection 
amplitude δ/h = 0.3 and it is subjected to a rapidly applied pressure p that is then held constant. In Fig. 15, the applied pressure on the 
vertical axis is normalized in two ways, p/pc and p/p∞

c . The dimensionless time to buckling appears on the horizontal axis. Curves for 
each of the two pressure normalizations are shown for four values of the relative modulus, Erel = 0.2, 0.4, 0.6 and 0.8. Recall that the 
short-time elastic buckling pressure for the shell with this imperfection is p/pc ≅ 0.60, and any pressure exceeding this value will 
‘instantaneously’ collapse the shell. The curves of p/pc vs. tbuckling/tv in Fig. 15 show that at any pressure below p /pc ≅ 0.60 either no 
buckling occurs or the buckling time is finite, depending on Erel. For every value of Erel, the curves for this normalization converge to 
the ‘short-time’ buckling pressure, p/pc ≅ 0.60, in the limit of very short loading times. The convergence is expected, as discussed 

Fig. 16. Two imperfection sensitivity maps presenting the short-time and long-time limits for buckling for pressures that are rapidly applied and 
then held constant at p. In (a) the normalization p/pc is used, and in (b) the normalization p/p∞

c is used. The construction of the maps is described in 
the text. In (a), the short-time limit (heavy curve) for instantaneous elastic buckling applies for all Erel, and any pressure on or above this curve 
produces immediate collapse of the shell. Each of the light curves, corresponding to a specific value of Erel, gives the pressure at which the shell 
undergoes creep buckling with buckling occurring at the long-time limit. Below this curve (for the given value of Erel), buckling never occurs. For 
pressures lying between the short-time limit and the long-time limit, creep buckling occurs at some finite time. In (b), the long-time limit (heavy 
curve) applies for all Erel; for any pressure below this curve buckling never occurs. For pressures lying on or above each of the light curves, for a 
specific Erel, buckling occurs instantaneously. For pressures lying between the light curve (for the given value of Erel) and the heavy curve, creep 
buckling occurs at some finite time. 
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earlier, because for very short buckling times viscous behavior plays essentially no role, and the material responds elastically with 
modulus E1 + E∞, which is the modulus employed in defining pc in Eq. (17). Now, consider the ‘long-time’ buckling limit when tbuckling 

/tv is large and focus on the curves in Fig. 15 that employ the normalization p/p∞
c . These curves, for each value of Erel, converge for 

large tbuckling/tv to a common long-time limit, and, moreover, this limit is almost the same numerically as the short-time limit just 
discussed, but now for the other normalization, i.e., p/p∞

c ≅ 0.60. Recall that p∞
c , defined in Eq. (20), is the elastic buckling pressure of 

the perfect shell with the long-time modulus E∞, and note that 

p
/

p∞
c = (1 − Erel) p

/
pc. (21) 

The convergence in the long-time limit of p/p∞
c to a buckling pressure that is independent of Erel and equal to the short-time limit 

expressed as the other normalization can be explained as follows. By Eq. (21), the short-time pressure p/p∞
c is always less than p /pc and 

thus the shell does not buckle when the pressure is first applied. Correspondingly, because the short-time modulus controls the very 
early deflections of the shell, those are less than required to buckle the shell. In the ensuing response when the pressure is held 
constant, the shell creeps and the deflections increase. In the long-time limit, the deflections are determined only by E∞, with no 
influence of Erel, and, thus, if p/p∞

c equals the short-time limit for buckling, the shell will just reach the buckling condition at large 
times. The parameters specifying the viscous behavior, E1 and η have no influence on this limit. While this result can be rationalized by 
the argument just given, it is a remarkable result. The results in Fig. 15 were computed for a shell with the imperfection amplitude, δ /h 
= 0.3. We have carried out additional calculations for δ/h = 0.5 and δ/h = 1 to verify that the long-time limit is indeed equal to the 
short-time limit expressed in the other normalization and independent of Erel for these two other levels of imperfection. 

The coincidence of the short-time and long-time limits for the two respective pressure normalizations, independent of Erel, enables a 
simplified and insightful way of viewing buckling under constant pressure for spherical shells made of viscoelastic materials of the 
standard linear solid. We construct imperfection-sensitivity maps which divide the pressure range into three regions: instantaneous 
elastic buckling, time-dependent creep buckling, and no buckling. For plotting the maps, we use the following formulas for the two 
coincident limits discussed above: 

p
pc

= 0.2 + 0.8e− 3δ/h (short − time limit)
p

p∞
c
= 0.2 + 0.8e− 3δ/h (long − time limit) . (22) 

The formula, p/pc = 0.2+ 0.8e− 3δ/h, is a realistic representative approximation to the elastic buckling of thin spherical shells with 
an imperfection at the pole for any h/R, as long as it is sufficiently small so that the shell can be regarded as thin. The buckling pressure 
plateaus at p/pc = 0.2 for ‘large’ imperfections. More accurate results depend on full details of the imperfection, as can be found in 
Hutchinson (2016) and Lee et al. (2016), and the formula used in Eq. (22) can be readily replaced by any other elastic imperfection 
sensitivity relation. 

It is straightforward to generate the imperfection sensitivity plots in Fig. 16 by making use of the relation Eq. (21) between the two 
pressure normalizations, i.e., p/p∞

c = (1 − Erel)p/pc. Consider first the plot using the normalization p/pc in Fig. 16a. In this plot, the 
short-time limit indicated by the heavy curve is the instantaneous buckling pressure for all Erel. For pressures on or above this curve the 
shell buckles immediately and catastrophically. The light curves in this plot correspond to the long-time buckling pressure, dependent 
on Erel. Any pressure below this curve (for a given Erel) does not result in buckling, while any pressure between the heavy curve and the 
light curve produces creep buckling of the shell at some finite time. The more significant the viscoelasticity, i.e., the larger Erel, the 
larger the spread between the long-time and short-time limits. The plot in Fig. 16b using the normalization p/p∞

c reverses the 
juxtaposition of the curves. Now, the long-time limit indicated by the heavy curve is independent of Erel, while the light curves rep
resenting short-time (instantaneous) elastic buckling depend on Erel. In Fig. 16b, buckling never occurs for pressures below the heavy 
curve, while buckling is instantaneous for pressures above the light curve (for the given Erel). Creep buckling at finite time occurs for 
pressures between the heavy curve and light curve. It is important to emphasize again that the imperfection sensitivity plots in Fig. 16 
are essentially independent of both h/R and the base angle, α0, if the shells are thin, deep and if βI scales with 

̅̅̅̅̅̅̅̅̅
h/R

√
. 

5. Conclusions 

This paper establishes a viscoelastic shell theory for predicting the nonlinear time-dependent buckling behavior of viscoelastic 
spherical shells subjected to uniform external pressure. The small-strain, moderate-rotation shell theory is used in conjunction with the 
standard linear solid to describe viscoelastic shells with geometric imperfections. The equilibrium equations are obtained by the 
principle of virtual work. Analyses are carried out numerically for two types of loadings representative of those employed in exper
imental studies, one involving volume control and the other pressure control. Specifically, under volume control a rate of volume 
change is prescribed, and under pressure control a pressure is prescribed that is applied very rapidly and then held constant. 

Buckling behavior of spherical shells is investigated for these two classes of loadings over the full range of viscoelasticity and 
imperfection amplitude with emphasis on exposing the imperfection sensitivity as well as the time-dependence. An important and 
unexpected coincidence of the limits for short-time elastic buckling and long-time creep buckling is discovered and discussed in 
Section 4 for the constant pressure loadings. The coincidence can be stated simply as the following. For a given imperfection, the short- 
time elastic buckling limit, normalized as p/pc, is equal to the long-time creep buckling limit, normalized as p/p∞

c , where pc is the elastic 
buckling pressure of the perfect shell determined using the short-time elastic modulus, E1 + E∞, and p∞

c is the elastic buckling pressure 
of the perfect shell determined using the long-time elastic modulus, E∞. The simplicity of this result permits construction of a map of 
buckling behavior over the entire range of pressure, imperfection amplitude and viscosity. The map delineates three regimes of 
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behavior: no buckling, creep buckling at finite time, and essentially instantaneous elastic buckling. 
In this work, we focus on the buckling of viscoelastic shells under the assumption of axisymmetry. It should be noted that shells 

could undergo a secondary buckling transition, where the dimple loses its axisymmetry at sufficiently large volume changes (Knoche 
and Kierfeld, 2014), and the non-axisymmetric buckling has been studied in literature (Hutchinson, 2016; Knoche and Kierfeld, 2014; 
Taffetani et al., 2018). In those cases, non-axisymmetric shell equations with bifurcation analysis are needed. 

Experiments would be good validations for the theoretical predictions in this work. The creep buckling phenomenon of spherical 
shells has been demonstrated in the existing literature (Stein-Montalvo et al., 2021), but systematic experiments are needed, which will 
be a topic for future work. 

CRediT authorship contribution statement 

Tianzhen Liu: Data curation, Formal analysis, Methodology, Software, Writing – original draft, Writing – review & editing. 
Yuzhen Chen: Formal analysis, Validation, Writing – review & editing. John W. Hutchinson: Conceptualization, Investigation, 
Methodology, Supervision, Writing – review & editing. Lihua Jin: Conceptualization, Formal analysis, Funding acquisition, Investi
gation, Methodology, Supervision, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare no conflict of interest. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work is supported by the startup fund from Henry Samueli School of Engineering and Applied Science at the University of 
California, Los Angeles, and National Science Foundation through a CAREER Award No. CMMI-2048219. T. L. acknowledge the 
support by the Fundamental Research Funds for the Central Universities (No. 2242022R20022) and Jiangsu Funding Program for 
Excellent Postdoctoral Talent (No. 2022ZB133). 

Appendix 

Appendix A. Derivation of equilibrium equations using principle of virtual work 

In Section 2.3, the equilibrium equations are derived by postulating the principle of virtual work. Here, the details of the derivation 
are presented. According to Eq. (11), the internal virtual work of the shell under axisymmetric deformation can be expressed as 

IVW =

∫

s
(NωωδEωω + NθθδEθθ + MωωδKωω + MθθδKθθ)dS. (A.1) 

Based on the middle surface strains and bending strains in Eq. (3), the virtual strain components are written as 

δEωω = δW −
(
δφ + δW,θ

)
tanθ,

δEθθ = δW + δφ,θ + δW,θθ + φδφ − WI,θδφ,

δKωω = −
1
R

δφtanθ,

δKθθ =
1
R

δφ,θ.

(A.2) 

Substituting Eq. (A.2) into Eq. (A.1), the internal virtual work is given in Eq. (A.3), 

IVW =

∫

s

[

Nωω
(
δW −

(
δφ+ δW,θ

)
tanθ

)
+Nθθ

(
δW + δφ,θ + δW,θθ +φδφ − WI,θδφ

)
− Mωω

1
R

δφtanθ+Mθθ
1
R

δφ,θ

]

dS. (A.3) 

Applying the divergence theorem to the derivative terms (twice to the second derivative term), we can obtain 
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IVW =

∫

s

[

Nωω(δW − δφtanθ) +
(

Nωω,θtanθ + Nωω
1

cos2θ

)

δW + Nθθ
(
δW + φδφ − WI,θδφ

)
− Nθθ,θδφ

+Nθθ,θθδW −
1
R

Mωωδφtanθ −
1
R

Mθθ,θδφ
]

dS

+

∮

c

(

− NωωtanθnθδW + Nθθnθδφ − Nθθ,θnθδW + NθθnθnθδW,n − (Nθθnθtθ),tδW +
1
R

Mθθnθδφ
)

ds

+NθθnθtθδW|corners

(A.4) 

where S denotes the area of the middle surface, C is the boundary, and nθ and tθ are the normal and tangent unit vectors on C. 
When the shell is subjected to a uniform inward pressure p in the radius direction, the external virtual work is expressed as in Eq. 

(12). EVW can be expressed as Eq. (A.5) using the second equation in Eq. (4). 

EVW =

∫

s
pRδWdS +

∮

C

[
QδW +Tθδφ+(Tθnθ − Mn)δW,n + TθδW,t tθ

]
Rds. (A.5) 

Now we enforce IVW=EVW for all admissible virtual displacements δW and δφ in S, and get 

Nωω + tanθNωω,θ +
1

cos2θ
Nωω + Nθθ + Nθθ,θθ = pR,

− Nωωtanθ + Nθθφ − NθθWI,θ − Nθθ,θ −
1
R

tanθMωω −
1
R

Mθθ,θ = 0.
(A.6) 

The equations can be normalized using Eqs. (10) and (13). Then the second equation, after a derivative with respect to θ is taken on 
both sides, is inserted into the first equation, and finally the equilibrium equations in Eq. (14) are obtained. Similarly, by independently 
varying δW, δφ and δW,n on the boundary C for non-zero terms, we can obtain the relations among the boundary forces, moment and 
internal stress quantities 

Q = − Nωωtanθnθ − Nθθ,θnθ,

Tθ = Nθθnθ +
1
R

Mθθnθ,

Tθnθ − Mn = Nθθnθnθ.

(A.7) 

Either Q or W, Tθ or φ, and Tθnθ − Mn or W,n should be specified on C. Specifically, we employ W = W,θ = φ = 0 at the base for the 
clamped boundary condition in this work, which ensures the boundary term in Eq. (A.4) is satisfied. 
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