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A B S T R A C T   

This paper investigates issues that have arisen in experimental and theoretical studies of the 
stability of a dielectric elastomeric layer bonded to a stiff substrate and subject to a voltage 
difference across the top and bottom conducting surfaces of the layer. The role of equi-biaxial pre- 
stretch of the layer prior to bonding to the substrate is a central factor in the investigation. The 
focus is the competition between wrinkling and creasing and how this competition is affected by 
pre-stretch. A finite element model of the system is employed to generate wrinkling bifurcation 
and advanced post-bifurcation solutions in the form of localized modes, either crease-like or 
groove-like depending on the pre-stretch. The constitutive model includes elastic compressibility, 
but the formulation produces accurate solutions for nearly incompressible materials which 
coincide with the neo-Hookean solid in the incompressible limit. The numerical simulations 
reveal that localized crease solutions exist at voltages below the critical voltage for wrinkling 
bifurcation for equi-biaxial pre- stretches below about 2.4. In this range, the wrinkling bifurcation 
is highly unstable, creasing rather than wrinkling can be expected, and a discontinuous transition 
is predicted with a finite energy barrier that may be overcome due to the presence of surface 
defects. With an equi-biaxial pre-stretch greater than 2.4, a continuous transition is predicted 
with no energy barrier, forming a localized groove due to nonlinear interactions among the un-
stable wrinkling modes.   

1. Introduction 

Electromechanical instability has been recognized as a mode of failure for dielectric elastomer membranes subject to increasing 
voltage (Stark & Garton 1955; Plante & Dubowsky 2006), which limits the amount of energy conversion by dielectric elastomers in 
practical applications (Zhao and Suo 2007; Koh et al., 2011). A series of groundbreaking experiments on pre-stretched dielectric 
elastomeric layers bonded to stiff substrates and subject to a voltage difference across top and bottom conducting surfaces revealed that 
the uniformity of the layers gave way to localized creasing-like instabilities as the voltage difference was increased (Kofod et al., 2003; 
Wang et al. 2011a, 2011b; Wang and Zhao, 2013). These observations occurred only a few years after a clear understanding of the 
competition between wrinkling and localized creasing had emerged for elastomeric layers subject to compression. Hohlfeld (2008) and 
Hohlfeld and Mahadevan (2011), followed up by Hong et al. (2009), showed that localized surface crease solutions existed at 
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compression levels lower than Biot (1963) critical compression for bifurcation into sinusoidal surface wrinkles. Moreover, the finite 
strain crease solutions existed at arbitrarily small sizes, assuming scale effects such as surface tension could be ignored, implying that 
the surface imperfections required to trigger the creasing instabilities could similarly be arbitrarily small. This new understanding 
finally explained the observation that creasing, not wrinkling, was the dominant mode of surface instability for compressed elasto-
meric materials (Tanaka et al. 1987; Gent and Cho, 1999). Many others have also contributed to the understanding of the competition 
between wrinkling and creasing in elastomers subject to mechanical compression (Cao and Hutchinson, 2011; Cai et al, 2012; Diab 
et al., 2013). 

The initial theoretical work on the electromechanical surface instabilities mainly focused on the localized creasing solutions and 
the creasing threshold voltage, i.e., the lowest imposed voltage difference at which the crease solutions exist (Wang et al. 2011a; Park 
et al. 2013). The numerical analysis of the finite strain creasing solution is challenging for several reasons, especially because the 
wavelength of the wrinkling mode is indeterminate and the solution path from the uniform state to the creased state is highly nonlinear 
and unstable. The present paper addresses these issues in the investigation of the competition between wrinkling and creasing. 
Confusion exists in the literature surrounding the critical voltage at which bifurcation into surface wrinkling modes occurs. A recent 
paper by Hutchinson (2021) presenting the voltage at wrinkling bifurcation as a function of pre-stretch for neo-Hookean layers was in 
error and has been corrected by Hutchinson et. al (2022). For an incompressible neo-Hookean layer with ground state shear modulus, 
μ, dielectric permittivity, ε, and an equi-biaxial pre-stretch, λ0, the critical voltage difference across the layer, VW, at the onset of short 
wavelength sinusoidal, plane-strain wrinkling modes is given by 
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μ

√ (
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h

)

=
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where h is the thickness of the incompressible layer in the pre-stretched state prior to bifurcation. With no pre-stretch, λ0 = 1, this 
reduces to VW/h =

̅̅̅̅̅̅̅̅̅̅
2μ/ε

√
, in agreement with an early result of Huang (2005). At a pre-compression of λ0 = 0.6662, Eq. (1.1) is 

satisfied with, VW = 0, corresponding to Biot’s prediction for surface wrinkling under equi-biaxial compression (Biot, 1963). The 
surface wrinkling condition (1.1) underpins the crease analysis in that it provides an upper bound to the voltage at which unstable 
crease formation is expected and because wrinkling bifurcations from the uniform state can evolve to creases. 

The objective of the present study is to uncover creasing solutions as a function of pre-stretch and to provide numerically accurate 
results for the threshold voltage above which stable creases can exist. The highly nonlinear behavior of crease formation is discussed. 
The primary emphasis is on the behavior of imperfection-free layers. However, limited results for one class of imperfections are 
provided revealing the strong sensitivity to small imperfections of the critical voltage required to trigger a crease. It will be seen that 
the difference between the crease threshold and the wrinkling bifurcation diminishes with increasing pre-stretch and appears to vanish 
at pre-stretches above about λ0 = 2.4. With an equi-biaxial pre-stretch greater than 2.4, nonlinear interactions among the unstable 
wrinkling modes lead to groove-like localization. 

Fig. 1. (a) The reference configuration of a dielectric elastomer film of thickness h0, prior to the application of pre-stretch or electrical loading. (b) 
Homogeneous deformation by an equi-biaxial pre-stretch λ0. After the film is pre-stretched, it is then bonded to a rigid conducting substrate such 
that upon the application of electrical loading it is constrained from lateral expansion/contraction along the bottom surface. During electrical 
loading a voltage drop V is applied across the top and bottom conducting surfaces of the film, and a resulting charge Q is exchanged. Above a critical 
electromechanical loading, the homogeneous deformation becomes unstable and bifurcation takes place to form either (c) periodic surface wrinkles 
or (d) periodic creases. 
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2. Critical condition for the onset of surface wrinkling 

Fig. 1 illustrates the reference and deformed configurations of a dielectric elastomer layer. Coordinates in the reference configu-
ration (Fig. 1a) are denoted XI, and those in the current configuration are denoted xi. Note that the coordinates in the current 
configuration can also be written in terms of the displacement as xi = δiJXJ + ui. The deformation gradient is FiJ = ∂xi

∂XJ 
= xi,J = δiJ +

ui,J, and the nominal electric field is EI = − ∂ϕ
∂XI

= − ϕ,I, where ϕ is the electric potential and δiJ is the Kronecker delta relating the 
current configuration to the reference configuration. The dielectric elastomer is assumed to be nearly incompressible, modeled by a 
compressible form of the free energy function. Two forms of the free energy functions are used in this work: 

W(F,E) =
μ
2
(FiJFiJ − 3 − 2lnJ) +

1
2

(

κ −
2μ
3

)

(J − 1)2
−

ε
2

JF− 1
Ki F− 1

Li EKEL, (2.1)  

or 

W(F,E) =
μ
2

(
J− 2

3FiJFiJ − 3
)
+

κ
4
(
J2 − 1 − lnJ2) −

ε
2

JF− 1
Ki F− 1

Li EKEL. (2.2) 

Here, μ and κ are the usual shear modulus and bulk modulus when the material is subjected to infinitesimal deformation, ε is the 
dielectric permittivity, and J = det(FiJ) is the determinant of the deformation gradient. Note that the elastic parts of both of these 
model free energies reduce to the neo-Hookean model in the incompressible limit as κ

μ → ∞. The governing equations of mechanical 
equilibrium and charge balance, i.e. Gauss’ law, are given as, 

PJi,J + bi = 0 in V0 and PJiNJ = ti on S0 (2.3)  

DI,I = q in V0 and DINI = − ω on S0 (2.4)  

where PJi =
∂W
∂FiJ 

is the first Piola-Kirchhoff stress, DI = − ∂W
∂EI 

is the nominal electric displacement, ti is the surface traction, bi is the body 
force, ω is the surface charge density and q is the body charge density. V0 and S0 denote the volume and bounding surface of the 
domain in the reference configuration. Note that the constitutive equations for the stress and electric displacement are provided above 
in the identifications of these quantities. 

Fig. 1b illustrates a homogeneous deformation of the dielectric elastomer layer subject to an equi-biaxial pre-stretch λ0 but no 
electrical loading. This in-plane stretch also causes a change in the film thickness from h0 to h. Electrical loading by voltage (V) or 
charge (Q) is then applied to this state of the layer. The in-plane equi-biaxial stretch provides a relationship between an in-plane length 
l in the deformed configuration and that in the reference configuration l0 as l = λ0l0. The electrical loading will cause an additional 
homogeneous deformation of the film for the compressible case (but not for the incompressible case). The homogeneous deformation 
becomes unstable at a critical loading and bifurcates to inhomogeneous deformations in form of either wrinkling or creasing, as 
illustrated by Fig. 1c and d. A linear perturbation analysis was conducted recently by Hutchinson (2021) to predict the critical con-
dition for the onset of the wrinkling bifurcation for an incompressible neo-Hookean layer. A subtle error in the analysis has been 
identified and corrected by Hutchinson et al. (2022). Here, we briefly review the derivation of the critical electromechanical conditions 
to cause wrinkling of the dielectric elastomer film, assuming a compressible form of the free energy function in Eq. (2.1) or (2.2). 
Wrinkling is defined in this work as a periodic sinusoidal deformation that extends over the entire surface (Fig. 1c), as opposed to the 
highly localized deformations that are associated with creasing (Fig. 1d). The critical conditions for creasing will be determined 
numerically in Section 4. 

Here, the entire analysis is carried out in the reference configuration prior to the application of the pre-stretch or electrical loading. 
Analytical solutions for both forms of the free energy functions given in Eqs. (2.1) and (2.2) have been obtained for arbitrary bulk to 
shear modulus ratios, κ/μ, and arbitrary levels of the equi-biaxial pre-stretch, λ0. The general procedure for generating these solutions 
follows that described in Eqs. (2.1)-(2.19) but with the perturbed solutions for the current coordinates taking the form, xi = λ0δiJXJ +

(λ2 − λ0)δi2X2 + αui(X1,X2), instead of the simpler form shown in Eq. (2.5) for λ0 = 1. The details of Eqs. (2.7)-(2.19) are then altered 
accordingly. For simplicity, we present the analytical result for the free energy function from Eq. (2.1) and for the case of no pre-stretch 
(λ0 = 1). The effect of pre-stretch on the critical condition has been discussed in previous works (Hutchinson, 2021; Hutchinson et al., 
2022) for the case of an incompressible neo-Hookean material. 

We look for perturbed solutions about a homogeneous state given by, 

xi = δiJXJ + (λ2 − 1)δi2X2 + αui(X1,X2) (2.5)  

ϕ =
V
h0

(X2 + h0) + αφ(X1,X2) (2.6)  

where V is the voltage applied to the top surface at X2 = 0, λ2 is the homogeneous stretch in the normal direction, αui(X1,X2) is the 
perturbed displacement field, αφ(X1,X2) is the perturbed electric potential field, and α is a dimensionless small parameter. Before 
perturbation, the traction-free condition on the top surface governs the homogeneous deformation state which satisfies the equation, 
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)
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The equilibrium equations and Gauss’ law are expanded to order α1 and yield equations governing the perturbed fields, 

V
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u2,11 +
V

λ3
2h0

u2,22 − φ,11 −
1
λ2

2
φ,22 = 0 (2.8)  

[(

κ −
2
3

μ
)

+ μ
(

1+
1
λ2

2

)]

u2,22 + μu2,11 +

[

λ2

(

κ −
2
3

μ
)

+
μ
λ2

]

u1,21 = 0 (2.9)  

[

λ2
2

(

κ −
2
3

μ
)

+ 2μ
]

u1,11 + μu1,22 +

[

λ2

(

κ −
2
3

μ
)

+
μ
λ2

]

u2,21 = 0 (2.10) 

These equations are subject to the voltage and traction-free boundary conditions on the surface of the film, 

φ(X1, 0) = 0 (2.11)  

[
μ
λ2

−

(

κ −
2
3

μ
)

(λ2 − 1) −
ε V2

2hλ2
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]

u2,1(X1, 0) + μu1,2(X1, 0) = 0 (2.12)  

εV
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2
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3
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2

]
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(
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2
3

μ
)

(1+ λ2)u1,1(X1, 0) = 0 (2.13) 

Taking the wavenumber of the wrinkling solution to be unity, and the wavelength of the wrinkle to be much smaller than h, the 
solution to these equations is, 

φ(X1,X2) =
V

h0λ2
{u2(X1,X2) − U2(1 − A)exp[λ2X2] cos(X1)} (2.14)  

u2(X1,X2) = U2{exp[X2] − Aexp[pX2]} cos(X1) (2.15)  

u1(X1,X2) = − U2

{
1
λ2

exp[X2] −
Aλ2

p
exp[pX2]

}

sin(X1) (2.16)  

where 

Fig. 2. The critical voltage VW for the onset of wrinkling. The solid and dashed black lines are the analytical solutions for the two different forms of 
the free energy function as shown. The red dotted line ( ) is the analytic solution by Huang (2005) given in Eq. (2.24). The green squares ( ) are the 
finite element solutions for the Q1EI4 element (bottom free energy function only), and the blue diamonds ( and ) are the finite element solutions 
for the Q1P0 element that is detailed in this work and is used for the creasing simulations. 
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A =
ε
(
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+ 2λ2

[
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]

ε
(

V
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(
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3 μ
)
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The critical condition for the onset of the wrinkling instability results from an eigenvalue problem required to satisfy the boundary 
conditions (2.11-2.13), yielding 

V = h0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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b = ε
[

λ2
2(λ2 − 1)

(

κ −
2
3

μ
)

− 2μλ2 − p(λ2 − 1)
(

κ −
2
3

μ
)
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c = λ2
2

[

λ2(λ2 − 1)
(

κ −
2
3

μ
)

− 2μ
]2

− p
[

λ2(λ2 − 1)
(

κ −
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(
λ2
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)
μ
]2

(2.22) 

The critical voltage is then obtained by combining Eq. (2.19) with Eq. (2.7). The results of this calculation for the critical voltage for 
an elastomer film with no pre-stretch (λ0 = 1) are shown in Fig. 2 as the solid black line. In the limit of an incompressible material, we 
have κ → ∞, p → 1, a → 0, b → 2ε μ, c → − 4μ2, and the critical condition becomes, 

V
h0

=

̅̅̅̅̅
2μ
ε

√

as κ

/

μ → ∞ (2.23) 

In addition to the solution for this free energy function, the analytic solution for the second free energy function of Eq. (2.2) is 
shown in Fig. 2 as the dashed black line for comparison. The red dots ( ) on Fig. 2 are the analytical solution from the early work of 
Huang (2005), who assumed a linearly elastic material (see Appendix B for details) and obtained a closed form expression for the 
critical voltage as a function of Poisson’s ratio, ν = (3κ − 2μ)/(6κ + 2μ): 

V
h0

=
3 − 6ν + 4ν2

4(1 − ν)
5
2

̅̅̅
μ
ε

√

(2.24) 

Note that this result is closest to the full finite deformation analytic result that uses the free energy function of Eq. (2.1). For a nearly 
incompressible material (i.e., κ/μ ≥ 1000), the critical voltage for wrinkling is well predicted by Eq. (2.23), regardless of the free 
energy function. 

3. Finite element methods for wrinkling and creasing 

The weak form of the boundary value problem is derived from variations of the functional in Eq. (3.1) as outlined by Simo and 
Armero (1992). Furthermore, we will focus on the implementation of the Q1P0 element, which is an isoparametric quadrilateral 
element that uses linear interpolations for the displacement fields and piecewise constants for the pressure p, and dilatational θ fields. 
The functional is defined as, 

Π(ui,ϕ, θ, p) =
∫

V0

W(FiJ ,EI)dV0 +

∫

V0

p(J − θ)dV0 −

∫

V0

biui − qϕdV0 −

∫

S0

tiui − ωϕdS0 (3.1) 

Note the introduction of a new deformation gradient FiJ, which is defined as, FiJ = θ
1
3 F̂ iJ where F̂ iJ = J− 1

3FiJ. It will be shown in the 
following that the variation of Π with respect to p dictates that the dilatational variable θ takes on the average of J within a given 
element. Hence FiJ replaces the point-wise distribution of J within the element uniformly with its average for the Q1P0 element. W(FiJ,

EI) is then simply the free energy of one of the forms defined previously in Eq. (2.1) or (2.2) evaluated at FiJ. However, when taking 
derivatives of the free energy we must recognize that FiJ depends on both θ and ui. Setting the first variations of Π to zero results in the 
following consequences for the Q1P0 element (recall that both p and θ are constant within a given element). The variation with respect 
to p yields 

δp :

∫

V0

(J − θ)dV0 = 0 (3.2) 
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which then provides the result that θ is the volume average of J within each element, namely 

θ =
1
V0

∫

V0

JdV0 (3.3) 

Variation with respect to θ then provides the determination of p as, 

δθ : p =
1
V0

∫

V0

1
3

∂W
∂FiJ

FiJ

θ
dV0 (3.4) 

However, this information is not needed for the solution of the system and a reduced variational principle can be formulated solely 
in terms of the displacements and electrical potential by recognizing that the variation with respect to θ can be written in terms of the 
variations of the displacement gradient as, 

δθ =
1
V0

∫

V0

JF− 1
Ji δui,JdV0 (3.5) 

The reduced variational principle is then 

δΠ = 0 :

∫

V0

∂W
∂FiJ

δFiJ +
∂W
∂EI

δEIdV0 =

∫

V0

biδui − qδϕdV0 +

∫

S0

tiδui − ωδϕdS0. (3.6) 

Details of the derivation of the residual vector and tangent stiffness based on this variational principle are given in Appendix A. The 
creasing problem exhibits strongly unstable behavior and so we also note that in some cases additional viscous and inertial terms were 
added to the formulation with the sole purpose of allowing the system to evolve towards equilibrium. Once the system was sufficiently 
close to equilibrium these extra terms were removed, i.e. set to zero, and the equilibrium solutions satisfying the formulation outlined 
above and in Appendix A were then obtained. 

In addition to the Q1P0 element that was developed by Simo and Armero (1992), we also studied finite element formulations based 
on the standard displacement-electric potential formulation, and interestingly, a two-dimensional Hu-Washizu Q1EI4 mixed element 
that has been studied by Auricchio et al. (2013) for the mechanical problem. Mueller-Hoeppe et al. (2009) provide an excellent 
presentation of the analogous three-dimensional element, which can be simplified for the two-dimensional case. For this work, the 
element was enhanced to include standard electromechanical coupling. For mechanical loading only, Auricchio et al. (2013) showed 
that this element shows promise for nearly incompressible materials. Unfortunately, we found that with the standard electrome-
chanical enhancement, this element exhibited hourglassing instabilities for the electrically induced creasing problem. We believe that 
additional non-standard electromechanical enhancements of this element may prove to be valuable, but such investigations are beyond 
the scope of this work. Results for the wrinkling problem using the Q1EI4 mixed element will be included in the results that follow, but 
for the sake of brevity the details of the formulation are not given here and the reader is referred to Mueller-Hoeppe et al. (2009) for 
additional details. 

4. Numerical results and discussion 

4.1. Wrinkling 

The blue diamonds ( ) and green squares ( ) in Fig. 2 are the finite element results for the onset of wrinkling using the Q1P0 and 
Q1EI4 elements, respectively. Note that the wrinkling solution decays exponentially from the deformed surface in the X2 direction with 
a length-scale proportional to the wavelength. As noted previously (Hutchinson, 2021; Hutchinson et al., 2022), the critical voltage for 
wrinkling becomes nearly a constant for l/h < 1 as the short-wave limit. As in the Biot problem, all wrinkling wavelengths (l /h < 1) 
become critical at the same loading level. Hence, for these calculations, a rectangular domain of height h and half-wavelength l /2 = h 
/10 was simulated. The displacements and electric potential of the bottom surface of the domain are fixed to zero. The vertical sides of 
the domain are restricted from horizontal displacement, traction-free tangentially, and charge-free, i.e. the normal component of the 
nominal electric displacement is zero. Electrically the top surface is loaded under charge-control, by enforcing the uniform voltage 
using multi-point constraints. All of the electric potential degrees of freedom on the top surface are tied to the lead node located at (0,
h). A generalized electrical force is then applied to this lead node which is equivalent to the opposite of the total charge residing on the 
entire top surface. The mechanical boundary conditions on the top surface are more complex than simply traction-free. To be able to 
simulate wrinkling, the creasing mode of deformation must be suppressed. To accomplish this the following multi-point constraint is 
applied to the vertical component of the mechanical displacements on the top surface nodes, uN

2 : 

uN
2 =

uL
2 + uR

2

2
+

uL
2 − uR

2

2
cos
(

2πX1

l

)

(4.1)  

where uL
2 is the vertical displacement of the leader node at (0, h) and uR

2 is the vertical displacement of the other leader node at (l /2,h). 
The first term must be included to allow the compressible film to change thickness freely as voltage is applied to the surface. The second 
term is then used along with equal magnitude and oppositely directed forces on the two leader nodes to probe the generalized applied 
moment as a function of the deformation amplitude, (uL

2 − uR
2 )/2, for the surface. Note that no imperfection is used in these calcu-
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lations. Instead, charge (or equivalently voltage) is applied to the top surface up to a fixed level and then the generalized moment is 
applied. The critical voltage for the onset of wrinkling is then determined at the charge/voltage when the slope of the moment- 
amplitude response goes to zero. The slope is positive below the critical voltage and is negative above the critical voltage. 

The results of this simulation process are shown in Fig. 2 for both the Q1P0 elements and the Q1EI4 elements. We note that both 
element types perform reasonably well up to κ/μ ≈ 1000. This corresponds to a Poisson’s ratio of ν = 0.4995. However, beyond κ /
μ ≈ 1000 the Q1P0 element begins to yield results that are significantly above the analytical prediction of the critical voltage. On the 
other hand, the results for the Q1EI4 elements begin to decrease below the analytical result for larger values of κ /μ, but to a much 
milder extent than the increase seen for the Q1P0 element. This suggests that the Q1EI4 element may be superior. However, for 
creasing simulations the Q1EI4 element exhibited an hourglassing instability at the critical load when creasing was not suppressed. 
Hence, the Q1P0 elements are used in the simulations of creasing, with a bulk to shear modulus ratio of κ/μ = 1000. This value is taken 
for the rest of this work focusing on the nearly incompressible behavior, for which the numerical results from the Q1P0 elements are 
reasonably close to the analytical results for the onset of wrinkling. 

4.2. Creasing 

Park et al. (2013) have previously studied the creasing problem with similar numerical methods. The distinction in this work is on a 
more detailed study of the equilibrium states, both stable and unstable, associated with creasing. Additionally, the effects of 
pre-stretch, distance between creases, and conducting defects are also studied. Fig. 3 shows a solution for a creased state along with the 
quantities that are used to study creasing. The downward displacement of the crease tip is denoted by u and the downward force on the 
crease tip, which is used to study the unstable branch of the creasing response, is denoted by F. The area of the surface of the periodic 
domain is A = lt, where t is the out-of-plane thickness, and Q is the total charge residing on the surface of one periodic domain. Note 
that for the wrinkling simulations the wrinkling wavelength and the length of the periodic domain are equal and are both denoted by 
the length l. After the presentation of results for perfect films, a small conducting channel of length a that is not able to open me-
chanically is introduced within the calculations. As with the wrinkling calculations, only a half-periodic domain is modeled in the 
creasing calculations, with symmetry boundary conditions on the left (x1 = 0) and the right (x1 = l/2). We first study the cases with a 
relatively small domain having an aspect ratio of l/h = 2, where the pre-stretch λ0 = l/l0 varies. The effects of the domain size on the 
creasing behavior are discussed afterwards. The choice of this periodic domain size was motivated by the work of Park et al. (2013). 
The results to be presented utilize a mesh density that is doubled in both directions with respect to that shown in Fig. 3. The boundary 
conditions for the creasing problem without the conducting channel are similar to those for the wrinkling problem aside from the 
multi-point constraints on the vertical displacement of the top surface. They are repeated here for clarity: the displacements and 
electric potential of the bottom surface of the domain are fixed to zero, the vertical sides of the domain are restricted from horizontal 
displacement, tangentially traction-free, and charge-free, the top surface is loaded electrically under charge-control by enforcing the 
uniform voltage using multi-point constraints, i.e. all of the electric potential degrees of freedom on the top surface are tied to the lead 
node located at (0,h). Additionally, the top surface is traction-free except for the cases where a single nodal force F is applied to induce 

Fig. 3. Features of the creasing problem showing a result (color contours are for electric potential) with a lower mesh density (for viewing clarity) 
near the crease than what was used to report the results in Figs. 4-12. Those results utilize a mesh density that was doubled in both directions with 
respect to this figure. In addition to the parameters shown in Fig. 1, also shown are the nodal displacement and nodal force on the node at the crease 
tip, and a small non-opening conducting channel/crack of length a under the crease. This is the imperfection that is studied and argued to trigger 
creasing at voltage levels below the critical levels required for wrinkling. Note that the dimensions h and l are the film thickness and periodic domain 
size as measured with respect to the pre-stretched state and prior to the application of the voltage/charge. 
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the crease. 
Fig. 4 shows the fundamental behaviors uncovered by these calculations for a film with l/h = 2, κ/μ = 1000, and no pre-stretch (λ0 

= 1). Fig. 4a shows the downward displacement of the crease tip versus the applied charge and 4b shows the voltage versus charge 
response. Note that the critical voltage or charge for wrinkling is Vh

̅̅
ε
μ

√
= Q

A ̅̅̅̅̅ε μ√ =
̅̅̅
2

√
, as predicted by Eq. (2.23) for the incompressible 

limit. For these calculations the film has no imperfections and the stable equilibrium solution for the system is the flat state up to the 
critical wrinkling voltage, with a constant slope for the V-Q curve (nearly incompressible). Even with a small perturbing force F the 
film remains stable in the flat state until the critical voltage or charge. At the critical charge level, the surface instability can be 
triggered by the force, forming a localized crease at the stable equilibrium state. This equilibrium state is sufficiently removed from the 
flat state such that special methods must be used to compute it. We have found two methods. The first, which has been used by Park and 
co-workers, is to allow the system to evolve dynamically (Park et al., 2012 & 2013; Park and Nguyen, 2013). For this method we 
include inertial terms as well as viscous terms to damp the vibrations. Once the vibrations have settled then the inertial and viscous 
terms can be “turned off” and converged solutions for the creased state can be found. Here we note that the creased state as shown in 
Fig. 3 does not necessarily involve self-contact of the surface, as will be discussed in more detail later. In contrast, the creases formed by 
compression with no electric fields always involve contact (Hohlfeld, 2008; Hohlfeld and Mahadevan, 2011; Hong et al., 2009). 

Once the system reaches the stable equilibrium branch of the creased state, the charge can be increased/decreased to probe the full 
extent of this branch. The upper solid blue branch of the displacement-charge response in Fig. 4a and the lower curved blue branch on 
the voltage-charge response in Fig. 4b constitute this stable creased branch. Upon exploring the lower limit for the charge on the 
creased branch we find another critical point at Q/A ≈ 1.16 ̅̅̅̅̅εμ√ and V/h ≈ 1.14

̅̅̅̅̅̅̅̅
μ/ε

√
. Below this level of applied charge the only 

equilibrium state is the flat film. A third branch of interest residing between 1.16 < Q
A ̅̅̅̅εμ√ <

̅̅̅
2

√
is shown as the dotted red lines on 

Fig. 4a and b; This branch connects the two stable branches and represents an unstable equilibrium solution. The method for obtaining 
this branch also offers a second approach for locating the stable creased branch. The procedure is as follows. Apply charge to the flat 
film up to a value in the range 1.16 < Q

A ̅̅̅̅εμ√ <
̅̅̅
2

√
. Hold the charge fixed at this level and then increase the downward displacement of 

the crease, u, while computing the force F required to maintain this node in position. The force-displacement responses for three such 
excursions are shown in Fig. 5, with the associated zero-force points, open circles for the unstable equilibria and filled circles for the 
stable equilibria, also indicated on Fig. 6a and b. Once a point on the stable branch is found, then this can be used to probe the 
remainder of the stable branch without any force applied. Note that the unstable branch is very close to the first stable branch for the 
flat state in the charge-voltage plane (Figs. 4b and 6b), because a small local deformation does not cause a significant change in the 
overall capacitance of the dielectric elastomer. 

When considering the results in Fig. 5 we must recognize that the force F is not a concentrated point force, but rather a consistent 
nodal finite element force. Hence, it is more appropriate to regard it as a load distributed over the length of two elements, which for 
these calculations is 2hE = h/100. Given this caveat, it is interesting to note that the flat state is stable against small perturbations at 
the charge/voltage levels shown in Fig. 5 and there is a finite barrier that must be overcome to evolve to the equilibrium creased state. 
It will be shown that conducting defects are effective at overcoming this barrier between the flat and creased states. The magnitude of 

Fig. 4. Fundamental behaviors of creasing by the finite element calculations for a dielectric elastomer film with l/h = 2, κ /μ = 1000, and no pre- 
stretch (λ0 = 1). (a) The downward displacement of the crease versus the applied charge. (b) The applied voltage versus the charge. The solid blue 
lines are stable equilibrium solutions. The dashed red lines are unstable equilibrium solutions. The dotted black line is an unstable non-equilibrium 
path at fixed charge between the flat equilibrium state and the creased state at the critical voltage of V/h =

̅̅̅̅̅̅̅̅̅̅
2μ/ε

√
. 
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this barrier decreases as the applied charge increases. At the critical charge for wrinkling, Q/A =
̅̅̅̅̅̅̅̅
2εμ

√
, the barrier disappears, as the 

slope of the force-displacement curve becomes zero at u = 0. However, the calculation diverges before reaching the equilibrium 
creased state at the critical charge level, because of severely distorted elements at the crease tip. Nevertheless, the stability of the flat 
state (against small perturbations) is determined by the initial slope of the force-displacement curve. Moreover, by integrating the 
force-displacement curve in Fig. 5, we can calculate the energy difference between the flat state and the creased state. Evidently, the 
stable equilibrium creased state has a higher energy at Q/A = 1.16 ̅̅̅̅̅̅ε μ√ , but has a lower energy at Q/A = 1.2 ̅̅̅̅̅εμ√ (see Fig. 5). At a 
charge level slightly above Q/A = 1.16 ̅̅̅̅̅̅ε μ√ , the two stable equilibrium states have the same energy. Denote this charge level as QM. 
Then, for QM/A < Q/A <

̅̅̅̅̅̅̅̅̅
2 ε μ

√
, the equilibrium creased state has a lower energy than the flat state. Thus, while both the flat and 

creased states are stable against small perturbations in the range QM/A < Q/A <
̅̅̅̅̅̅̅̅̅
2 ε μ

√
, the creased state is the global energy min-

imum. It is found that QM/A is slightly larger than 1.16 ̅̅̅̅̅̅ε μ√ in this calculation with l/h = 2 but approaches a value of 1.14 ̅̅̅̅̅̅ε μ√ when 
the computational domain size l/h increases (see Fig. 10). 

It must be disclosed that there are no contact constraints enforced in any of the calculations in this work and interpenetration of the 

Fig. 5. The consistent nodal force F versus the induced crease tip displacement u of a perfectly flat film with no pre-stretch at three levels of applied 
charge. The dots indicate the zero-force solutions with the open circles on the unstable branch, and the filled circles on the stable branch, also 
marked on Fig. 6. 

Fig. 6. A detailed view of Fig. 4a and b, with the stable (filled circles) and unstable (open circles) equilibrium points corresponding to those shown 
on Fig. 5. 
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creased surface is numerically allowed and does occur in several regimes of the electromechanical loading. For example, for the present 
case under discussion here, while there is no interpenetration or contact at the critical creasing charge Q/A = 1.16 ̅̅̅̅̅̅ε μ√ , self-contact 
does occur if the electrical loading is increased to a charge level of Q/A = 1.196 ̅̅̅̅̅̅ε μ√ , and the contact area increases further with 
additional electrical loading. Fig. 7a shows the deformed shape of the crease at the critical charge Q/A = 1.16 ̅̅̅̅̅̅ε μ√ , and Fig. 7b shows 
the state where self-contact first occurs at Q/A = 1.196 ̅̅̅̅̅̅ε μ√ . For Q/A = 1.196 ̅̅̅̅̅̅ε μ√ , interpenetration occurs in the crease and thus the 
crease solution is no longer physically meaningful. Nevertheless, the critical condition for the onset of the creasing instability can be 
determined from these calculations. 

Another observation of note from Fig. 7 is that upon formation, the crease extends to a finite depth of approximately 0.13h for the 
case shown. This is in apparent contrast to the mechanically induced creasing problem where it is accepted that there is no length scale 
controlling the crease depth (Hohlfeld, 2008; Hohlfeld and Mahadevan, 2011; Hong et al., 2009). For the electromechanical problem 
here, the formation of a crease creates a concentration of charge along the crease tip. This acts like a line of charge that is attracted to 
the bottom electrode at the depth h. Thereafter the crease deepens to minimize the combination of elastic and electrical energy in the 
film. In this problem the film thickness plays a critical role as a length scale in the post-bifurcation behavior. 

We now identify two critical voltages of interest. The maximum voltage where the flat state is stable (against small perturbations) is 
called the wrinkling voltage, VW, since this corresponds to the analytical result for the onset of wrinkling discussed in Section 2, and the 
minimum threshold voltage where the creased state is stable is called the creasing voltage, VC. For the case with no pre-stretch dis-
cussed above, VW/h =

̅̅̅̅̅̅̅̅̅̅̅
2μ/ ε

√
and VC/h = 1.14

̅̅̅̅̅̅̅̅
μ/ε

√
(see Fig. 6a). For V < VC, the flat state is the only equilibrium state and is thus 

stable against all perturbations (small or large). For Vc < V < VW, the flat state is stable against small perturbations, but nucleation of 
creases is possible with a barrier that may be overcome due to the presence of surface defects. For V ≥ VW, the flat state becomes 
unstable against small perturbations, and nucleation of creases can occur with no barrier. Therefore, the two critical voltages, VW and 
VC, set the upper and lower theoretical bounds for the critical voltages in experiments where surface defects are commonly expected. 
Theoretically, it is possible to determine another critical voltage VM between the two bounds, for which the flat state and the equi-
librium creased state have the same energy. This corresponds to a Maxwell condition at which a crease can extend with no change in 
voltage. Then, for VC < V < VM, the creased state has a higher energy than the flat state; for VM < V < VW, the creased state has a lower 
energy than the flat state, so that the creased state is the stable state with the global minimum energy whereas the flat state is 
metastable. It is found, that VM/h is slightly larger than 1.14

̅̅̅̅̅̅̅̅
μ/ε

√
in this calculation with l/h = 2 but approaches 1.14 ̅̅̅̅̅̅ε μ√ when the 

computational domain size l/h increases (see Fig. 10). 
Next we discuss the effects of pre-stretch on the critical voltages. Fig. 8 shows the two critical voltages for a range of equi-biaxial 

pre-stretch, 0.666 < λ0 < 3. First note that the critical wrinkling voltage from the finite element simulations with κ /μ = 1000 is 
practically identical to the analytic solution given in Eq. (1.1) for an incompressible neo-Hookean material. Additionally, the critical 
voltage for wrinkling drops to zero at an equi-biaxial stretch level of λ0 = 0.666, which is the critical equi-biaxial stretch for 
compression induced surface wrinkling first derived by Biot (1963). In contrast, the critical voltage for creasing drops to zero at an 
equi-biaxial stretch level of λ0 = 0.736, which is nearly identical to the critical equi-biaxial stretch for compression induced creasing 
obtained previously (Hohlfeld and Mahadevan, 2008 and 2011; Hong et al., 2009). Again, self-contact was not prohibited in the 
creasing calculations and interpenetration of surfaces does occur in a range of loading cases. The absence of contact constraints does 
not affect the critical voltage for creasing since the initial transition to creasing does not involve self-contact. However, after a finite 
level of creasing develops, self-contact can occur, as shown in Fig. 7b. On Fig. 8, self-contact occurs for the finite crease at the critical 
creasing voltage for equi-biaxial pre-stretches in the range of 0.736 < λ0 < 0.9. For λ0 > 0.9 self-contact does not occur at the critical 
creasing voltage, but it may occur upon increased electrical loading to higher voltages. Furthermore, the critical creasing behavior can 
also be separated by the character of the transition from the flat state to the creased state at the critical voltage VC. Here we identify a 
discontinuous transition, which is characterized by a jump in the crease displacement at VC (see Figs. 4 and 6), versus a continuous 
transition, which is characterized by no jump in the crease displacement at VC (see Fig. 9). The finite element calculations establish the 
change from the discontinuous to continuous transition at an equi-biaxial stretch level of λ0 ≈ 2.4. However, note that the wrinkling 

Fig. 7. The deformed shapes of the crease for the film with no pre-stretch, λ0 = 1, as reported in Figs. 4 and 6: (a) at the critical charge for creasing 
Q/A = 1.16 ̅̅̅̅̅εμ√ , and (b) at the charge level Q/A = 1.196 ̅̅̅̅̅εμ√ when self-contact first occurs in the crease. The color contours represent the elec-
tric potential. 
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voltage VW and the creasing voltage VC are nearly indistinguishable for a biaxial stretch level of λ0 > 2 in Fig. 8. 
We compare the critical voltages to the experiments by Wang et al. (2011a), also shown as the purple markers in Fig. 8. The 

measured critical voltages for the creasing instability in Ecoflex (a silicone elastomer) films increased with increasing pre-stretch, 
similar to the critical creasing voltage (VC) in Fig. 8. For the case of no pre-stretch (λ0 = 1), the critical voltage was measured to 
be around VC/h ≈ 1.03

̅̅̅̅̅̅̅̅
μ/ε

√
, which is slightly lower than the numerical result of 1.14

̅̅̅̅̅̅̅̅
μ/ε

√
(by ~10%). With an equi-biaxial pre--

stretch (λ0 > 1), the data was more scattered, with an average value of VC/h ∼ 2
̅̅̅̅̅̅̅̅̅̅
μ/ ∈

√
VC/h ∼ 2

̅̅̅̅̅̅̅̅
μ/ε

√
for λ0 = 2 and 

∼ 3
̅̅̅̅̅̅̅̅̅̅
μ/ ∈

√
∼ 3

̅̅̅̅̅̅̅̅
μ/ε

√
for λ0 = 3, both in close agreement with the numerical results in Fig. 8 for VC. A theoretical model was also 

presented by Wang et al. (2011a), which predicted the critical voltage as 

VC

h
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ
ε
(
1.06 + λ2

0 − λ− 4
0

)
√

(4.2)  

where the value of 1.06 was obtained by fitting to the experiments for the case of no pre-stretch (λ0 = 1). As shown in Fig. 8, Eq. (4.2) is 
fairly close to the numerical result for λ0 > 1, but it under-predicts the critical voltage for λ0 < 1. In particular, Eq. (4.2) predicts a zero 
critical voltage for λ0 = 0.863, considerably larger than the critical equi-biaxial stretch for compression induced creasing (Hohlfeld 
and Mahadevan, 2008 and 2011; Hong et al., 2009). In addition, Wang et al. (2011a) calculated the critical electric field for the 
creasing instability, following the method by Hong et al. (2009). However, their numerical results appear to have considerably 
overestimated the critical voltage, as noted by Hutchinson (2021). One possible cause may be their assumption of self-contact in 
calculating the potential energy of the creased state, which is not the case for λ0 > 0.9 at the critical voltage. 

Fig. 9 shows the continuous transition from the flat state to a periodically groove-like (shallow, smooth-bottomed, and localized) 
undulated surface for the case with an equi-biaxial pre-stretch λ0 = 3 and with periodic domain sizes of l/h = 2 and l /h = 28. Unlike 
the discontinuous transition shown in Fig. 4 for λ0 = 1, the voltage and undulation displacement increases continuously with the 
applied charge near the bifurcation, similar to the classical buckling of elastic plates under compression. The critical voltage, VC /h =
3
̅̅̅̅̅̅̅̅
μ/ε

√
, is nearly identical to that predicted for onset of wrinkling by Eq. (1.1), independent of the domain size. Thus, the onset of 

bifurcation with the continuous transition can be well predicted by the linear perturbation analysis as detailed in Hutchinson (2021) 
and Hutchinson et al. (2022). Beyond the critical electrical load, the flat state is unstable and surface undulations develop with no 
barrier. The post-bifurcation behavior involves nonlinear interactions among simultaneously unstable wrinkle modes of short 
wavelengths, forming a downward groove-like undulation (Fig. 9c and d). In contrast, the onset of bifurcation with a discontinuous 
transition (Fig. 4) has a critical voltage lower than that for onset of wrinkling, and there exists an energy barrier between the flat state 
and the creased state with a highly localized deformation. Therefore, with increasing pre-stretch, the bifurcation mode transitions from 
discontinuous creasing-like (λ0 < 2.4) to continuous groove-like (λ0 > 2.4). A similar creasing-wrinkling transition was observed 
previously in elastomer films under electric fields by varying the ratio between surface energy and shear modulus of the elastomer 
(Wang and Zhao, 2013). 

Fig. 9c, for λ0 = 3, raises the issue of the effect of the periodic domain size l/h. First note that the depth of the groove increases 

Fig. 8. The critical voltages for wrinkling (red curve), creasing (blue curve), Eq. (4.2) (green dotted line) and experimental measurements (purple 
markers) from Wang et al. (2011a). The curve for the creasing voltage is divided into three regions. For 0.736 < λ0 < 0.9 the transition to creasing 
results in self-contact. This region also has a jump in the transition from the flat to the creased state, similar to the behavior shown in Figs. 4 and 6. 
For 0.9 < λ0 < 2.4 the initial transition to creasing does not result in self-contact, but the transition to creasing is discontinuous. Finally, for λ0 > 2.4 
the transition does not result in self-contact and is continuous with behavior similar to that shown in Fig. 9. 
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Fig. 9. The groove-like response for l/h = 2 and l/h = 28. (a) The groove-like surface displacement-voltage behavior, (b) the voltage-charge behavior, and (c) and (d) deformed surface shapes at 
multiple charge levels for the dielectric elastomer film with an equi-biaxial pre-stretch λ0 = 3. The critical voltage for creasing for this case is, VC/h = 3

̅̅̅̅̅̅̅̅
μ/ε

√
. A continuous transition is observed, in 

contrast to the discontinuous shown in Fig. 4 for λ0 = 1. The case with l/h = 2 is not long enough to allow the localized groove geometry to fully develop without interacting with a neighboring groove. 
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continuously from zero starting at the critical voltage/charge, VC
h

̅̅
ε
μ

√
= QC

A ̅̅̅̅̅ε μ√ = 3. Furthermore, the shape of the deformed surface is not 

of the functional form of that found in the analytical wrinkling analysis, i.e. u2 ∼ cosx1 and u1 ∼ sinx1. A shape such as this can form as 
a superposition of the multiple simultaneous sinusoidal eigenmodes associated with the critical wrinkling voltage in the short 
wavelength limit, as shown by Hutchinson (2021). However, the deformed surface shape clearly does not appear as localized as in the 
creasing case with λ0 = 1 (see Fig. 7). These observations motivated the need to study the effects of the periodic domain size l /h. 
Fig. 9d shows the deformed surface shape for the case with λ0 = 3 and l/h = 28. The more localized groove-like deformation pattern of 
the surface now becomes evident. Additionally, to the precision that can be expected from the finite element calculations, the critical 
voltage for bifurcation does not change for l/h = 28 from that for l/h = 2. This feature of the critical voltage was verified over the 
entire range of pre-stretch that was studied. While the critical voltage for bifurcation is unaffected by the periodic domain size, the 
post-bifurcation response is clearly altered. Further discussion of the localized mode form above the discontinuous/continuous 
transition is presented in the Conclusions. 

The effects of the periodic domain size on the post-bifurcation responses are further illustrated in Figs. 10 and 11 for the case with 
no pre-stretch, λ0 = 1. Fig. 10 are the analogous plots to Fig. 6 and include the same curves for l/h = 2. However, the abscissa for 
Fig. 10a has been changed to the normalized voltage as opposed to the normalized charge. These two plots illustrate features that are 
common to post-bifurcation behaviors. 

Fig. 10a includes data from Fig. 6a for l/h = 2, but now plotted as the normalized depth of the crease, u/h, as a function of the 
normalized voltage. Results computed for l/h = 8 and l/h = 28 plot on top of those for l/h = 2 because the localized crease geometry is 
not altered by increasing the length of the computational region assuming is not less than about l/h = 21. On the other hand, the 
behavior seen in Fig. 10b for larger l/h reflects the fact that the vertical component of the electric displacement over almost all the layer 
is linearly related to the applied voltage as D2 = − ε V/h except in the region of localized deformation where the electric displacement 
becomes highly concentrated. As creasing proceeds, most of the additional charge added to the surface migrates to the localized crease. 
Thus, the solution branch as plotted becomes closer and closer to the linear uniform solution as l/h becomes large. For this plot, the 
limit for l/h → ∞ would lie on top of the result for the uniform layer, as seen in the trend in Fig. 10b, with a lower bound at VC

h

̅̅
ε
μ

√
= QC

A ̅̅̅̅̅ε μ√

= 1.14 as the critical condition for creasing. This behavior is akin to necking in bars and to the post-buckling behavior of thin-walled 
tubes where the additional post-bifurcation deflection is localized to the neck or buckle as longer and longer geometries are considered. 

Fig. 10a illustrates that the post-bifurcation crease deflection versus the applied voltage is largely independent of the periodic 
domain size for l/h ≥ 2. Additionally, Fig. 11 shows the deformed surface profiles for the creased state at the critical applied voltage of 
VC/h = 1.14

̅̅̅̅̅̅̅̅
μ /ε

√
for λ0 = 1. Here it is evident that for λ0 = 1 the crease is highly localized and deep as opposed to λ0 = 3 in Fig. 9 

where the groove-like profile is shallower and more extended. Most importantly, the shape of the crease in Fig. 11 is relatively 
insensitive to l/h, fully confirming the localized nature of the crease solution for λ0 = 1. 

The final set of simulations to be presented concern the introduction of a small conducting, mechanically closed, channel of length a 
to trigger the transition to creasing near the critical voltage VC. Recall that for the cases with a discontinuous transition, there is a finite 
barrier between the flat state and the equilibrium creased state at VC, and so the flat state is stable against small force perturbations (see 
Fig. 5). We also studied the effects of small but smooth localized perturbations of the meshed geometry and the story is the same, the 
flat state is stable against small perturbations up to the critical voltage for wrinkling VW. It is hypothesized that small conducting 
defects as shown in Fig. 3 (a vertical segment of length a located at x1 = 0 and penetrating into the elastomer layer), may act to trigger 
the transition from the flat to the creased state at the lower critical voltage VC. In this work two defect sizes were studied, one with a /h 
= 1/120 (green curves in Fig. 12) and a second with a/h = 1/48 (crimson curves in Fig. 12). Note that these defects were not resolved 
with a fine mesh but rather implemented within the same mesh used to study the perfectly flat film. The shorter channel is only two 
elements deep and the longer is 5 elements deep. The goal here was to introduce a physically motivated defect geometry with an 
intensity that increases as the electrical loading is increased. Strictly speaking such defects introduce electrical “crack”-like singu-
larities into the structure, but we have made no effort to resolve or characterize this singularity. Hence, these results should be 
interpreted with these caveats in mind. 

Fig. 12 illustrates the effect of the conducting channel on the displacement-charge and voltage-charge response of a nearly 
incompressible dielectric elastomer film with no pre-stretch (λ0 = 1) and a periodic domain size of l/h = 2. The primary feature of 
these results is that the flat state is no longer stable at the critical creasing voltage VC. In fact, the downward deflection of the channel 
begins as soon as any voltage is applied to the film. However, significant displacements of the crease and deviations from the linear 
voltage-charge response only become evident near VC. It is of note that the behaviors for the longer channel show a smooth transition 
from the nearly flat to the creased state, while the shorter channel still shows a discontinuous transition near VC. However, in contrast 
to the case with no defect, where the flat state is stable at VC, the case with the small-channel defect is unstable at a voltage of 
approximately V/h = 1.14

̅̅̅̅̅̅̅̅
μ /ε

√
. We suspect that it is this type of conducting surface defect that acts to trigger the creasing instability 

at electrical loading levels of V/h ≈
̅̅̅̅̅̅̅̅
μ /ε

√
for λ0 = 1 in experiments (Wang et al., 2011a, 2011b), which are significantly lower than 

the critical voltage for wrinkling instability, V/h =
̅̅̅̅̅̅̅̅̅̅̅
2μ /ε

√
. 

1 For small l/h the crease deformation is influenced by the periodic boundary conditions. Consequently, the displacement/voltage behavior is 
somewhat different, and the critical voltage for creasing is larger than that shown in Figure 10 but remains below the critical voltage for wrinkling. 
For example, when l/h=0.5 the critical voltage for creasing is Vc/h=1.246√(μ/ε). 
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Fig. 10. (a) The crease deflection versus the applied voltage for three different periodic domain lengths and no pre-stretch, λ0 = 1. All three cases collapse onto one another. (b) The voltage versus 
charge response for the same cases. 
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5. Conclusions 

Fig. 8 presents a consistent theoretical picture of the juxtaposition of wrinkling and creasing instabilities in a nearly incompressible 
dielectric elastomer layer that is first subject to equi-biaxial pre-stretch, bonded to a rigid substrate, and then subject to a voltage 
difference imposed across the layer’s upper and lower conducting surfaces. The results in this paper were computed using a 
compressible elastic solid whose incompressible limit is neo-Hookean. The results in Fig. 8 were computed with a ratio of bulk to shear 
modulus given by κ/μ = 1000 corresponding to a Poisson’s ratio, ν = 0.4995 and, therefore, essentially the incompressible limit. With 
no imposed voltage, the Biot wrinkling instability occurs at an equi-biaxial pre-compression of λ0 = 0.666 while the threshold for the 
creasing instability is at the smaller pre-compression, λ0 = 0.736. With no pre-stretch, λ0 = 1, the critical voltage for the wrinkling 
instability is VW/h =

̅̅̅̅̅̅̅̅̅̅̅̅
2μ / ε

√
while the critical voltage for creasing is about 20% lower at VC/h = 1.14

̅̅̅̅̅̅̅̅̅
μ / ε

√
. The voltage at the onset 

of wrinkling for the neo-Hookean solid increases with pre-stretch as given by Eq. (1.1). As the pre-stretch increases, the difference 
between the critical voltages at the onset of wrinkling and the creasing threshold diminishes and, according to the numerical simu-
lations carried out in this paper, becomes zero for λ0 greater than about 2.4. The transition from the flat state to the creased state is 
discontinuous for λ0 < 2.4 but becomes continuous for λ0 > 2.4. In the range of 0.736 ≤ λ0 ≤ 0.9, the crease solutions have self- 
contact, but for λ0 > 0.9 the threshold crease solutions are open, i.e., do not have self-contact, although at some voltage above 
threshold self-contact will generally occur. At pre-stretches above λ0 = 2.4, the bifurcation mode that emerges in our simulations is 
localized (c.f., the discussion related to Fig. 9) and in the shape of a groove-like entity. 

In most respects the theoretical picture in Fig. 8 aligns nicely with the experimental data of Wang et al. (2011a) for silicone 
elastomer layers subject to equi-biaxial pre-stretch in the range 1 ≤ λ0 ≤ 3. Critical voltages corresponding to the occurrence of 
crease-like modes were measured for multiple layers (typically 4) at each of the following pre-stretches: λ0 = 1, 1.5, 2, 2.5, & 3. The 
scatter of the measured voltage ranged from about 10 to 20% at each pre-stretch level. As discussed in the body of the paper, the mean 
value of the measured voltage is reasonably close to the predicted crease threshold in Fig. 8. The scatter is consistent with the strong 
imperfection-sensitivity expected for creasing and localization, and no doubt in some part due to difficulties in conducting the ex-
periments. One possible inconsistency between the present theoretical findings and the experimental data is that the greatest scatter 
(about 20%) occurs for layers with pre-stretch λ0 = 2.5 for which a continuous transition is predicted by the present simulations and is 
not expected to be imperfection sensitive. Indeed, the scatter of the experimental data for λ0 = 3 is only about 10%. Moreover, the 
difference between highly localized creases and groove-like deformation predicted by the present simulations has not been observed. 

The initial post-bifurcation Koiter analysis carried out by Hutchinson et al. (2022) (see also the supplementary materials of that 
work) also predicted decreasing imperfection-sensitivity and decreasing intensity of the instability with increasing equi-biaxial 
pre-stretch, but it does not predict the definitive transition to continuous initial post-bifurcation behavior that emerges in the simu-
lations in this paper for λ0 > 2.4. This may reflect a limitation (or possibly an error) in the initial post-bifurcation analysis. The initial 
post-bifurcation analysis considers only the terms in the perturbation expansion of next higher order beyond those determining the 
wrinkling condition, and it is possible that the neglected higher-order terms may be important. Another interesting feature of the mode 
that is predicted for pre-stretches above the discontinuous/continuous transition is that it appears to be immediately localized. We are 
unaware of any other example where a stable bifurcation gives rise to a localized bifurcation mode, although superposition of the 
multiple sinusoidal modes could make this possible. These are open issues worthy of further exploration. 

A clear transition between creasing and wrinkling has been exhibited by another set of experiments on constrained elastomeric 
layers conducted by Wang and Zhao (2013). As noted in Hutchinson (2021), surface energy, γ, places a lower limit on the size of 
wrinkles or creases with the relevant dimensionless parameter being γ/μh. The experiments of Wang and Zhao (2013) involved 

Fig. 11. Deformed surface shape (half-crease) for two different periodic domain lengths, l/h = 2 (red) and l/h = 28 (blue), with no pre-stretch, λ0 =

1, at the critical creasing voltage of VC/h = 1.14
̅̅̅̅̅̅̅̅
μ/ε

√
. The larger plot is focused near the crease, and the inset is a wider view-frame. 
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Fig. 12. (a,c) Crease displacement-charge, and (b,d) voltage-charge behaviors for the dielectric elastomer film with no pre-stretch (λ0 = 1) and a small conducting defect. The green curves (with red 
dashed unstable branch) are for a conducting channel depth of a/h = 1/120 and the crimson curves are for a depth of a/h = 1/48. The results of Figs. 4 and 6 are repeated here for comparison. 
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measuring the critical voltage and observing the mode shapes for a sequence of layers with increasing γ/μh. For sufficiently small γ /μh 
creasing was observed, but above values of γ/μh on the order of unity wrinkles were observed. By including surface energy, we believe 
the approach introduced in this paper should be able to accurately characterize this transition and the behavior associated with it. 

Finally, it seems worthwhile to call attention to another application of current interest where stable localized solutions exist at loads 
below the critical bifurcation condition. Starting with the work of Horak et al. (2006), , and continued by Kreilos and Schneider (2017). 
Formation of surface wrinkles and creases in constrained dielectric elastomers subject to electromechanical loading and Groh and 
Pirrera (2019), stable localized buckling solutions of axially compressed elastic cylindrical shells have been identified which exist at 
loads roughly 50% below the bifurcation load of the perfect shell. As in the present paper, the numerical methods employed by the 
authors of these papers permit the delineation of the evolution of the localized modes along the stable branches of the solutions. Like 
the phenomenon investigated here, where for the discontinuous bifurcation the crease depth at the critical voltage Vc scales with the 
layer thickness, the localized shell buckles also have a well-defined size determined by the thickness to radius ratio of the shell. 
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Appendix A. Additional details of the Q1P0 Element Formulation 

For the 4-noded Q1P0 element, the electric potential and displacement fields are interpolated from the associated nodal values, ϕM 

and uM
i , using standard bilinear shape functions, NM, where the superscript M ranges from 1 to 4 and summation is assumed over the 

repeated superscripts in the formulae below, and as shown BM
i = ∂NM/∂XI. 

ϕ = NMϕM → EI = NM
,I ϕM = BM

I ϕM (A.1)  

ui = NMuM
i → FiJ = BM

J uM
i → FiJ = B̃

M
iJkuM

k (A.2) 

Note that the BM
i are independent of the deformation, but the B̃

M
iJk are dependent on the deformation and given as follows, 

B̃
N
iJk = θ

1
3J− 1

3

(

δikBN
J +

1
3
θ− 1FiJ B̂

N
k −

1
3

F− 1
Lk FiJBN

L

)

(A.3)  

where, 

B̂
N
i =

1
VE

∫

VE

JF− 1
Ji BN

J dV0 (A.4) 

Here, VE represents the volume of the element. Furthermore, for the derivation of the tangent stiffness, the variations of B̃
N
iJr with 

respect to the nodal displacements uM
s are required and given as, 

d̃B
NM
iJrs =

1
3
θ

1
3J− 1

3

[

−
2
3
θ− 2FiJ B̂

N
r B̂

M
s −

1
3

θ− 1FiJ

(
B̂

N
r F− 1

Qs BM
Q + B̂

M
s F− 1

Qr BN
Q

)
+

θ− 1δis B̂
N
r BM

J + θ− 1δir B̂
M
s BN

J +
1
3
FiJF− 1

Qr F− 1
Ls BN

QBM
L + FiJF− 1

Qs F− 1
Lr BN

QBM
L − δisF− 1

Qr BN
QBM

J − δirF− 1
Qs BN

J BM
Q + θ− 1FiJ d̂B

NM
rs

] (A.5)  

where, 

d̂B
NM
is =

1
VE

∫

VE

JF− 1
Ji F− 1

Ls BN
J BM

L − JF− 1
Li F− 1

Js BN
J BM

L dV0 (A.6) 

With these definitions in hand the contributions to the residual associated with the first terms of Eq. (3.6) are, 
∫

V0

∂W
∂FiJ

δFiJ +
∂W
∂EI

δEIdV0 = δuN
i

∫

V0

∂W
∂FkJ

B̃
N
kJidV0

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
Ru,N

i

− δϕN
∫

V0

∂W
∂EI

BN
I dV0

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
− Rϕ,N

(A.7) 

Then the tangent stiffness is derived from 
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d
[∫

V0

∂W
∂FiJ

δFiJ +
∂W
∂EI

δEIdV0

]

= δuN
i Kuu,NM

ij duM
j + δϕNKϕu,NM

j duM
j + δuN

i Kuϕ,NM
i dϕM + δϕNKϕϕ,NMdϕM (A.8) 

where 

Kuu,NM
ij =

∫

V0

(

B̃
N
kLi

∂2W
∂FkL∂FpQ

B̃
M
pQj +

∂W
∂FpQ

d̃B
NM
pQij

)

dV0 (A.9)  

Kuϕ,NM
i = Kϕu,MN

i = −

∫

V0

(

B̃
N
kLi

∂2W
∂FkL∂EQ

BM
Q

)

dV0 (A.10)  

Kϕϕ,NM =

∫

V0

BN
I

∂2W
∂EI∂EJ

BM
J dV0 (A.11) 

Each Newton-Raphson iteration then requires the solution of the linear system given by 

Kuu,NM
ij duM

j + Kuϕ,NM
i dϕM = Fu,N

i − Ru,N
i (A.12)  

Kϕu,NM
j duM

j + Kϕϕ,NMdϕM = Fϕ,N − Rϕ,N (A.13) 

Where Fu,N
i and Fϕ,N are the standard generalized electromechanical forces given as, 

Fu,N
i =

∫

V0

biNNdV0 +

∫

S0

tiNNdS0 (A.14)  

Fϕ,N = −

∫

V0

qNNdV0 −

∫

S0

ωNNdS0 (A.15)  

Appendix B. Critical condition for the onset of wrinkling by a linear elasticity analysis 

Here we summarize the linear elasticity analysis by Huang (2005) for wrinkling. In this analysis, we assume the material to be 
linearly elastic with a shear modulus μ and Poisson’s ratio ν. Further assuming no pre-stretch (λ0 = 1), we calculate the change in the 
elastic strain energy and the electrical energy from the homogeneous state (Fig. 1b) to the wrinkled state with a sinusoidal perturbation 
to the flat surface (Fig. 1c). At the limit of short wavelength ( l

h ≪ 1), we obtain 

ΔUelastic =
k

4(1 − ν) μA2 (B.1)  

ΔUelectric = −
k
4

ε E2
0A2 (B.2)  

where k = 2π
l is the wavenumber, A is the wrinkle amplitude, E0 = V

h is the electrical field in the homogeneous state (before pertur-
bation). The elastic energy in Eq. (B.1) was obtained for an infinitely thick, linearly elastic substrate in the previous studies of thin film 
wrinkling by many (e.g., Huang et al., 2005). 

The total energy change (per unit area of the surface) is: 

ΔU = ΔUelastic + ΔUelectric =
1
4

kμA2
(

1
1 − ν −

ε
μE2

0

)

(B.3) 

Thus, the critical condition for the wrinkling instability is obtained by setting ΔU = 0, which predicts a critical electrical field: 

EW =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ
ε

1
1 − ν

√

(B.4) 

The electrical field in the homogeneous state (before perturbation) depends on the applied voltage and the change of thickness 
(assuming compressible). For a given voltage, the thickness change from the reference state to the homogeneous state is obtained as 

δ
h0

(

1 −
δ
h0

)2

=
ε V2

4μh2
0

1 − 2ν
1 − ν (B.5)  

where δ = h0 − h. 
At the critical electrical field for the onset of wrinkling, we have 
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δc

h0
=

1
4

1 − 2ν
(1 − ν)2 (B.6) 

Thus the critical condition in terms of the applied voltage is: 

VW = EW h = h0

(
3 − 6ν + 4ν2

4(1 − ν)5/2

) ̅̅̅
μ
ε

√

(B.7) 

At the limit of an incompressible material, we have ν = 0.5 and VW/h0 =
̅̅̅̅̅̅̅̅̅̅̅̅
2μ / ε

√
, which is identical to Eq. (2.23). 
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