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Introduction

Small geometrical imperfectionis in some structures can be responsible for large reductions
in their static buckling strengths, As is well known, a thin shell is often very imperfection-
sensitive in this sense, with a perfect specimen sometimes having a ¢classical” buckling strength
several times higher than that of an imperfect one. Many analytical studies have sought to
correlate reductions in buckling strength with assumed initial imperfections of various sizes
and shapes. Such studies may eventually provide the quantitative information needed for the
establishment of a statistical theory of buckling, which would relate the probability of buckling
under a given static load to the spectrum of imperfections (see [7]). But at the present time,
the design of shells leans heavily on experiment, and analysis has been mainly useful in identi-
fying imperfection-sensitive structures and in establishing, in a qualitative way, the degree of
this sensitivity.

Analyses have recently been made of the dynamic buckling of shells subjected to transient
loading histories, wherein inertial forces must be considered [2, 3, 4, 5]. There is not as yet a
scientific consensus concerning an appropriate analytical definition of ‘‘dynamic buckling”, or
of the ‘“dynamic buckling load’’, but regardless of this, imperfection-sensitivity can be expected
to be as pertinent to dynamic buckling as to static buckling. It would appear, then, that in
order to solve the problem of dynamic buckling theoretically, we might be faced with the
necessity of having to analyze imperfection-sensitive structures for a wide variety of imper-
fections, for each different kind of transient loading history that is of intevest.

The purpose of the present paper is to explore the possibility of bypassing such repetitious
calculations by seeking to relate the dynamik buckling strength of a given imperfect structure
directly to its static buckling strength. The viewpoint adopted as a working hypothesis is that
the essential effects of imperfections reveal themselves in the extent to which they reduce
static buckling strengths below their ‘““classical” values, and that perhaps knowledge of the
static reduction factors might therefore suffice for reasonably accurate predictions of dynamic
buckling loads, without the need for further details concerning the imperfections themselves.
The true static buckling loads needed in such a correlation, could, of course, be determined
experimentally with much less difficulty than dynamic buckling loads.

In this paper, consideration will be restricted, for the most part, to elastic buckling under
suddenly applied dead loads that are maintained at a constant magnitude. Following a discus-
gion of criteria for dynamic buckling, the implications of some simple imperfection-sensitive
models will be discussed. Next, on the basis of KoITeR’s theory of post-buckling behavior
[6, 7], general approximate theories of dynamic buckling will be formulated and their relations
to the simple models will be studied. Finally, as particular examples, analyses will be made
of the dynamic buckling under suddenly applied axial loads of circular cylindrical shells, stiff-
ened by longitudinal stringers, as well as unstiffened.
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Criteria for dynamie buckling

With vespect to a given structure. consider the cusemble of loading histories q{¥, {) gener-
ated by varying A in the cquation

GUE 1) =2g{® 1) (L = 0), (1)

where g,(Z, £) is a particular function of position ¥ and time ¢, and 2 Is a scalar parameter; we
now propose to define a critical value of A for dynamic buckling.

Let R(A, 1) be a physically significant scalar measure of the response of the structure to
q(#, &) {e.g. a stress. a deflection. an average deflection, cte.}; further, deline

B 1) = max [R(4, D], (2)

DETE
where 47 is the largest value of # that is of interest, A typical plot of 12, (4, 1) vs. 1 might
then look like that shown in Fig. 1. Tf, as the hypothetical plot shows, there is indeed a narrow
range in A over which R .. rises very steeply, the eritical vaiue i, for dynamic buckling will
be defined as the value of 4 in the middle, more or less, of this range.

A sharper definition of Ap. independent of 77 but appropriate for large 7. may sometimes
be possible on the basis of the variation of R, (4, 22} with A, which might display a finite
discontinuity, as shown in Fig. 2a. [Such a disgontinnity is generally not possible in R, (1,7
for finite 7.] Indeed, for some idealized structures, R, (2. oo) could actually be infinite for
all 2 greater than some 4, (Tig. 2h).

The above definition of 4, for finite 7' was introduced in [4] and also used in [J], wherein
curves like that in Fig. T were found; the finite jnmp of Fig. 2a was used, essentially, in
defining critical impulsive loads in [§]. The sharp definitions of Ay implicd by Fig. 2 are mathe-
matically attractive, but the general conditions under which &, (2. o0) could indeed be a
discontinuous function of A are not known,
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Fig. 1. Diagram for estlinating Fig. 20 and L. Hypothetical variations Fig. 3. Idealized colunmnl con-
dynapic bucekling paranigter 7, ol Bwas(4.oc) with « strained by now-livear spring

Implications of some simnple models

Imperfection-sensitivity is exhibited by the three-hinge, rigid-rod column shown in Fig. 3
when it Is constrained laterally at its coentral hinge by a soitening non-lnear spring; a similar
model was used by Karman, Duny and Tsinw [9] in their ploncering clucidation of finite
deformation effects in shell buckling.

Suppose the spring vestoring force £ is related to its shorteniug a0 by

B o= KL(E — x£?). (3)

where § = /L, and o == 0. [f the unloaded structure has an initial displacement @ = L&, then,

assuming small rotations (&, < 1), statec equilibrium relates the axial load A to the additional
displacement by

(L—24Ag) & — ad = (A §, (4)
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where Ao = K L{2. Thus (Fig. 4a) the perfect column, with £ = 0. can buckle at the “classical”
load A, after which the load drops as £ inercases. With £ 3£ 0 the structure deflects as soon
as load iz applied, and, for & = 0, buckles statically at 1 = d¢ given by the maximum value
attained by A as it varies with &
With 2z = §/&, Bq. (4) gives
(1— Aoz — (x&) 2 = Afig (5)

from which it is evident that 14/3, depends only on the parameter (). and, in fact, by setting
dijdz = 0 we find that

(1— AS/;“C)E = 4(aé) (AS/AC)' (G}

For small (x&), (Agfg) ~ 1 — 2 Voak: the larger «. the more imperfection-sensitive is the
structure.

Next, consider dynamic equilibrium under a time dependent load A(#), assuming & mass M
only at the central hinge; then Eq. (5) changes to

P4 (1 — Mhg) z —(x&) 2% = Alg, (7)
where the dot denotes differentiation with respect to ¢ ]/ K!M. For the case of a step loading
at ¢ = 0 with initial conditions z = 2 = 0, the first integral of (7) is

B2 (L 202 — o () £ = 2 (WAg) 2 (3}

wrﬁ———‘———r ~
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For A sufficiently small the motion is periodic, with & maximum amplitude z,,, that satisfies

(1= &/RC‘) z.Izllle - -é'(& 'i:) z;)uax = J(QL/ZU) Zinax (9)

and gives a relation between A and 2, like that shown in Fig. 8b between R(A oo) and A
The critical value of 4, namely 4,, for which the period becomes infinite and beyond which
Zuax 18 infinite is now dotermined by the condition difdz,,,, = 0; this, with (9), gives

. 16, <
{IL — 2p/hp? = T (&) Apfied- (1)
And now, climinating & between (6) and (10) provides the relation we have sought as
. 3 rdy — ApnE
(Apfhs) = 4"(,: - ,?) - (11)

The variation of Ap/is with A4/, is shown by the =olid curve in Fig. 5.
Thus, the lower is 4,/Ay (and hence the more Imperfect the structure) the smaller a fraction
of the actual static buekling load is the dynamic buckling load; but this fraction is always at
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lcast 3{4. The most important feature of Eq. (11}, which we hope can be generalized, is that
the imperfection itself does not appear explicitly. Note also that as Ay = A, Ay » Ap; this
result for the case of an imperfect structure approaching perfection ig interesting, because
dynamic axial loading of the perfeet structure can never initiate any lateral motion.

A repetition of the above analysis for the case of a cubic spring having the characteristic

F=KL(E—38) (50 (12)
is casily executed. The analogue of Eqg. (4) for static equilibrinm is
(1= jde) & ~ BE = (Ahg) & (13)

and curves like those in Fig. 4b apply: note that now the curve for £ = 0 is symmetrical in &
(with zero slope at & == 0) and static buckling of the imperfoct structure is independent of the
sign of £ The counterpart of Eq. (7) for the dynamic case is

F (L — M) 2 — (BEDY 2F = 22, (14)
from whieh the results
- 3/2 3]/% -y -
(1 —= Aol =" (B [&]) (Asfhc) (1)
and
.oz SVG o ’ .
(1 — Apfhe)®® =" z (/8 1&]) Apfic) (10)
are found. Finally,
2 (ko — Ap\*®
(Apfds) = Vz (ﬂg —) (am

which provides the dashed curve iy Fig. 5. As seen, the results for (Ap/2,) ave not very different
for the two models.

Our intention now is to try to determine whether formulas like (17) and (11) might be
applicable to real structures. To this end, we shall exploit the general static buckling analysis
of Ko1rer and extend it to dynamic conditions.

General analyses
Koiter’s statie theory

Ficld equations. A somowhat less general and slightly modified version of KoITER’s theory
for the static buckling of imperfect elastic structures will be presented briefly.

(Generalized loads, stresses, strains, and displacements will be denoted simply by ¢. o, &,
and u, respectively; depending on the strocture and the theory used in its analysis, cach of
these symbols could stand for cne or more funetions of position. The functional notation
@, (a) will be nsed to denocte a homogeneous functional of u of degree 1; similarly, &,,(w. v}
will mean a homogeneous functional of degree ¢ in « and j in ».

The strain-displacement relation will be written

1 >
g = Ly (u) + Y Ly (i) (18)
an¢ the notation
e = Lo (u}

will be used for the linear part of e, The bilinear operator Ly {u, v) = Ly (v, w) is then defined
by the identity

Loglu A v} = Lyu) 4 2Ly (0. o) = Ly (0)

and has the property Ly (e, u) = Ly(u).
It will be assumed that for ¢ and o in equilibrium (in the presence of a displacement ) the
principal of virtual work
I (g, de) = Ky (g. du) (L
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holds for all du, where I,, is internal virtual work, and E, is external virtual work; here
8e = be + Ly, (u, du), where de = L, (du). Eq. (19) can be regarded as a variational equation
of equilibrium. Finally, to complete the set of field equations, we postulate the linear stress-
strain relatton

o = H(e) (20)
and also assume the reciprocal relation

I, [H, (&), &] = I}y [H; (&5), 5]. (21)

Trivial solution for the perfect structure. Now suppose the prescribed part of the external
loading is Aq, and that wherever loads are not prescribed, there are linear, homogeneous,
prescribed geometrical conditions on u; then, for variations du that are admisssble (in the sense
that they do not violate these geometrical conditions) the external virtual work is just

AEy (g, 6u) = A B, (du).
With the use of the abbreviated notation {, } for I ;(, ), the equation of equilibrium becomes
{0, 0e} — A B,(0u) =0 (22)

for all admissible du.
We now assume that the perfect structure has the ““trivial” solution Agy, A&y, Au, for stress,
strain and displacement, where u, has the property

. Ly (tg, ) = 0 (23)
for all du; then it follows that L, (uy) = 0, g, = ¢;, 65 = H; (¢,), and the equilibrium equation is
{Aa,, de} — A B, (6u) = 0. (24)

Thus, the trivial solution is governed by a linear theory.!
Classical buckling of the perfect structure. To discover the eigenvalue A, for classical
buckling we set
u = Agug + ug (2b)

in the field equations, retaining only linear terms in the buckling mode u,. Then, by (23),
i &€= Aoeo + ec,
where eg = L, (ug), and, with s; = H,(ep),

6 = Agoy + s¢.
Also,
de = de + Ly (ug, 6u)
and the equilibrium equation is
{AcGo + 3¢, 6 + Ly;(ug, du)y — A B, (du) = 0.

But, by (24), and with further linearization, this gives

Ag{og, Ly (ug, du)} + {80, de} =0 (26)
as the variational statement of the problem for the lowest eigenvalue Ay (as well as for the
higher ones). Note that (26) implies

Ao{og La(ug)} + {805 e} = 0 (27)

{UO! Ly, (u(l)’ u(2))} — {8(1), 6(2)} = {3(2)’ e(l)} =0 (28)

for any two buckling modes uV, u® associated with distinct eigenvalues A1 and A®. In what
follows, we will first assume a single mode u¢ (arbitrary, of course, to within a scalar factor)
associated with Ag; later multiple buckling modes will be considered.

and also that

1 We are really assuming something about g,, as well as a perfect structure, when we postulate (23);
for certain loadings the hypothesis of linear behavior before buckling is not tenable.
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Post-buckling behavior of the perfect structure. When A reaches i, the structure can
begin to suffer deviations in the shape of ug from its trivial configuration, and, simultaneously,

A will deviate from 4,. The displacement of the structure in a slightly buckled state can always
be written

’M:}.uo—'—gug“’_w: (29)

where the buckling mode u is now considered normalized in magnitude in a definite way,
where w is orthogonal to uy in the sense of Eqgs. (28), and where £ is a scalar. The stress is then

0 = Aoy + &3+ 5 EH, Ly (ug)] + Hy [Ly ()] -+ & Hy Ly (ugsw)] + 5 Hy [Ly ()]
and the equilibrium Eq. (22), simplified by use of (23) and (24), becomes
§ A0 Ly (g, w)} + {50, 06}] ‘
+ 8 [(s0: Lus (s 80)) + 5 (Hy( Ly (o), 0} ]
+ 5 L Ly (w0)), Ty (g, 0}
+ Ao, Lys (1w, b)) + {8y (Ly (), 3¢}

+ & U{sgr Loy (w, du)} + {Hy{Lyy (ug, w)), 0e} + {Hy(Ly (w)), Ly (ug, ou)})
N — (30

where the terms not written explicitly are all non-linear in w. It is useful to regard A as a func-
tion of £, and to assume, tentatively, the asymptotic representation

w:§2u2+§3u3+"'
for w, hopefully valid for small . The stress is then

6 = Aoy + E3g + 808, + 5 Hr(Lo(ug)) ] + 8185 + Hy(Lyy (g wp)) ] -~ (1)
and the equilibrium Eq. (30) becomes

ETA{og, Lny (ug, 0u)} + {s¢, de}] _

+ £ [A{0p, Lyy (s, 80)} - {83, 8¢} + {80, Ly (o 8u)} -+ 5 {Hy Ly (1)), de}]

+ 84 {og, Lyy (ug, du)} + {85, 0¢} + {80, Ly (s, 0u)} + {H,(Ly, (ug, us)), de}

+ {sg, Lyg (s 00} + 5 {Hy (L () Ly (g B0} + - - - = 0, (32)

where e, = L;{u,), 8, = H(e,), etc., and where the omitted terms are of degree &* and higher.
The variation du = ug 08 gives the scalar equation relating 4 to &

- — ) {0, Ly (uc)} + {80’ 2 (%e)}

+ & [2 {805 Ly (g, ug)} + {80, Ly ()} + 5 {Hl( (ug))> Ly (ug) }] + - 0, (33)

where the orthogonality to u; of u, and uz; has been used, as have Eqgs. (21) and (27).
Next, set du = du, where du is orthogonal to ug, in (32), to get

£ [}*{00’ Lny (ug, 80)} + {55, 8¢} + {s¢s Ly (g 0u)} + 5 {Hl( (), Oe }]
+ 8 [A{og, Ly (ug, Su)} + - -1 +--- =0. (34)

Then, since ligmol = A, cancelling out &2 and letting & vanish gives
-

Ao {00s Ly (g, 80)) + {5, 82} = — {ss Lyy (ugr 00} — 5 (Hy(La(ug)), 62 ) (35)

41 A Gortler, Applied Mechanies



642 B. Buprawswy and J. W. HoreRrYsox

the solution of which for u, {orthegonal to u.) can then be used to evaluato the coefficient of £3
in {33)., To obtain more terms in {33) would require =olving equations analogous to (35) for
g, Uy, and s0 on.

Behavior of the imperfect structure. Now suppose that the structure has a small initial.
stress-free, displacement u = £uc in the shape of the classical buckling mode. and then under-
goes an additional displacement u when the external loading is applied. The strain-displacement
relation (18) must be changed to

6= Ly(u 4+ ) + 5 Lolw + u) - L) —

! Ly ()

'?
1 .
= Ly (u) +§ Lg(at) 4+ EL (u, ). (36)

The variational eguation of egunilibrinim (22) still hiolds. but new
de = de 4 Ly (u. ow) — EL, (wp, du). (30

We can still represent « in the form {29). and then regard 4 as a function of £ and £: an appro-
priate representation for w is now

w4+ Euy 4
El&uyy + 52“21 ]
[s Uy + & “')‘) ]
+ - (38)

The expression (31) for ¢ is augmented by terms involving products of £ and §, of order §¢
and higher; similarly, the term

E{do,. L o)
together with others of order &£ and h.lgher are added to the variational Eq. {32). Then the
extra terms in {33) are
Eifoy Tulue)} + 0(£8). (39)
while these added to (34) are just 0(£§). Note that h_ug) AE 5y =0 for all & 5~ 0. but that

lim lim A& & = i.. Hence, lot-ting- £ — 0 in the modified version of (34), cancelling out &%,
E-xD L)

and then letting £ — 0 reveals that u, is the same as in the case of the perfect structure.
Following Ko17ER, we now limit curselves to a first approximation for the influence of £

on A by neglecting all terms 0(££). adding only (39) to the equilibrium equation {33). The result

then implied for A(g, & still displays the above mentioned non-uniform limiting behavior for

vanishing & and £, and will therefore constitute a uwiformly valid approximation for small &

and &,

If, in (33), {50 Ly(ue)} = 00t follows {with the vse of (27)1 that for sufficiently small &,
. . 38 Isp. Lolug)) 8
(L= 2y += 7 e =1 (40}

which is entirely analogous to Eg. (4} for the simple model with a guadratic spring. On the
other hand, if {s,., Ly{v.)} —= 0. the equation

saf 1
:af:{"‘c'- La(teenen)y — sy Ly lue )y — — VA (L)) L-z(uc)}] ;
R A - . = = (41)

VBge € p A
which is essentially kg, (13} for the cubie spring model. is found to hold for small enough £.
The structure represented by Eq. (40)1s always imperfection-sengitive (for one =ign or the other

e

of £); the “eubic” structure of Bq. (41) is imperfection-~ensitive only if the coefficient of £ is
negative.!

I Note that {5, 2.} is twice the strain energy of lincar elasticity theory — and hence positive; it follows
from Eq. (27) that {— oy, Ly{u.)} is positive when A, = .
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Multiple buckling modes. If corresponding to A, there are several simultaneous, linearly
independent buckling modes u(R, w2, ..., the displacement during loading is written » =
Aug + 2 Enu(g) -+ w where, for convenience, the modes are made orthogonal to each other,
and w is orthogonal to all of them. With the initial imperfection

u = Z z:n u((?)
and with the retention onlyof terms up to order &,¢,, simultaneous equations for the £ ’s
analogous to Eq. (40) are readily found to be

£l — ko) 6, <“>} (5 50, L D)
5 6 LT} = S8 60, ). (42

This quadratic approximation, independent of w, will be adequate for the example of the circu-
lar eylinder under axial compression, but it can, of course, be improved; indeed, if all the qua-
dratic terms should vanish, a better approximation becomes essential.

The outline of some of KoITER’S results has now been completed. It may be mentioned that
Korrer’s derivations lean on the prineiple of stationary potential energy; we have preferred
to write variational equations directly by way of the principal of virtual work. We turn next
to the introduction of inertial loads.

Dynamie theory

Inertial loads. In order to incorporate dynamic effects into the general static field equa-
tions heretofore considered it suffices to include inertia loading g¢; in the external virtual work
E,, of Eq. (19). This loading can be written as the linear functional of acceleration

o2
ar = — My (%) (43)
and. then the variational equation of equilibrium (22) becomes
{o, 8¢} + By [ M, (5 atz) bu] — 2B, (6u) =0, (44)

where o, 4, and 4 are now time-dependent. The operators E,, and M, are assumed to obey the
reciprocal relation

B [My(a), b] = Ey [M,(b), a]. (45)
In the present analysis we will set
M (ug) =0 (46)

or, in words, the inertia loads associated with the “trivial” displacements will be neglected.
(We are therefore explicitly ignoring the kind of dynamic effects studied by Goopier and
MclIvor [10] wherein breathing oscillations of a laterally compressed ring transfer their energy
to bending motion.) Turning, now, immediately to consideration of the imperfect structure,

with initial displacement Zu, as before, we can still assert that the additional displacement
is given by (29) in the case of a unique classical buckling mode u,. We consider next the “qua-
dratic’’ and “cubic” structures separately.

Quadratic structure. We note that the static analysis of the imperfect quadratic structure
was tantamount to letting w vanish in the equilibrium Egq. (30), dropping the term in &3,
adding the imperfection term (39), and then letting du = u, 6&; doing this again, but including
the extra term

23
(55 ) Bn {31, (), S0} (47)
in the equilibrium equation? gives
dzé A
ar Byy (M (u), ugh + &L — Afhg) {s¢: €} + {Sc’ 2 ()} = TCE{SG’ e} (48)

2
1 Note that the term % B[ M, (uy), 6u] is dropped on the basis of the assumption (46).

41*
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which, by appropriate changes of variable, is exactly reducible to Eg. (7) for the simple
“guadratic’” model. Consequently, the implications of the study of the simple model for sudden-
ly applied loads, in particular Eg. (11) relating 4p. Ag. and 7, appear applicable to structures
for which {sg, Ly(ug)} == 0. This is subject. of course. to the qualification implied by the
assumption {46) that the characteristic time associated with the establishment of the displace-
ment Ay, is very small compared with that required for the growth of the additional contribu-
tion £ug to the total displacement w.

Cubie structure. The result (41) for the cubie structure would follow from the variational
Eqg. (33, augmented by the imperfection term (3%9), by execution of the steps (a) let w = yu,,
where u, is the solution of (34), dropping all terms of order higher than p and »£&; (b) take
du = uy &y, letting £ = A4 in the resulting equation. and drepping terms of order higher than
v and &5 (e) finally, take du = up 0f. Now we add
d*

et Ve

B, [("2‘5 M) L (). éu}

to (30) and repeat these steps, getting

AT AT (P
("{gf/z)kn (A (ug). ua] 4 (W)En RUNCIORCEY

+ oy — £ [Apioa. Do)y + fra.eat] = 0, {(19)
s 'y
(rng) By 1M (o), wg) = (55 s [ () e
3

. A S
- & (1 - j*) e ) + 5 UH, (r, ()} Ly(up)}
» 2

. L $4 e
= w8280, Ly {ty. ugdt A {80, Lolup}) = Z}{x(« ot (A0)
To facilitate study of these equations, we will assume that the buckling mode wu, is also a natural
vibration mode of the unloaded structure. The variational squation for a natural vibration mode
of frequency w is
(s-de} = @By [ (). ou}

for admissible du. Consequently, since {sq, g0 = 0. it follows that B[ (ug). w,] =
By (M (ny), we ] = 0.
Noting that the frequency wg of the mode wg is given by

{8 eah .
2 —— [ — -
Y0 F M, g ) (51)
let T = wgt in (49) and (50). and let 7 = &/&, 2z, = /&% to get
2y (e, — #f) = 0. (52)
A (1 — Mgz — Ek[zz, — ray] = Adg, (53)
where
L — 2Hspe Ly (Uas Ul + 182,51, (?[(,:)E
- {5 ea)
& (L (L)) Latug))
= 2 {&ps Ty (g, ug)) {8 Ly(ughy
AC{%>L2("L2)} o {Sgs €9}
K ‘U%Eu (31, (). 5]
: 4
and () = - {)
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Note that the static result (41) is recovered from (52) and (53) when the time dependent
terms are dropped, and that the structure is imperfection-sensitive only if £ > 0 and r <C 1. The

parameter # can be written z
(@ \? iy Ap=0.45
w ()

where ®? is the Rayleigh quotient s
for free vibrations obtained from u, Al 045

~2 {82, €2} 55)-

@® = By [ M (uy),s u,] ( 5) Un 40
and 7 is the Rayleigh quotient for 20 T
classical buckling ZZ

R UYL 56) %

A= {09, Ly(us)} (06)

_ 0
It is certain that A > 1, by Ray- !

leigh’s principle!, but there is no ¢
general rule for the ordering of wg

- . . T
and w, because wis not necessaril

? ¢ y Fig. 6. Typical responses for cubic structure (two degrees of freedom)
the lowest natural frequency.

For 7 very large, (52) implies 2, = 27, the use of which in (53) gives Eq. (14) for the simple
model, with 8 identified as k(1 — r), and then the result (17) and the dashed curve of Fig. 5
apply. In order to study the implications of (52) and (53) for finite n these equations were solved
numerically for various combinations of #, r and & for the case of a suddenly applied load with
initial conditions 2z, = 2z, = 2, = 2, = 0. Typical responses found for z; and z, are shown in
Fig. 6, which shows how closely the dynamic buckling parameter (evidently associated with a

10
! ; T ~ln=a5
il N | 2 1w ==
29 = ~ — &
o8 - ] =
b /4/ J et //,<>5”
N 3 /( 50
ta ; < Koo ~ (Simple model)
3, 7/ (Simple model) L |(Simple model) L~
)
<
05 r=0 "r=0.4 r=08
0.50 a2 0.4 3 2] 0o 02 04 a5 a8 0o 02 0.4 22 a8 10

Asfhg—= Asfap —~ i)y —=

Fig. 7. Dynamic buckling loads of cubic structure

response pattern like that of Fig. 2b) can be estimated. Fig. 7 shows how A5/i¢ thus found
varies with Ag/As [as given by Eq. (16)] for several values of 5 and r. The lower r, the greater
is the imperfection sensitivity, and the closer do the results tend to approximate those for the

simple model (5 = oo). Note that the predictions of the simple model are, in all cases, conser-
vative.

Multiple buckling modes. With the simplification
By [M; (uf), ud’] = 0 (m 5 m), (57)
1 In fact, since u, is orthogonal to u¢ in the sense of Eq. (27), Ais larger than the second eigenvalue of the

classical buckling problem.
41B Goriler, Applied Mechanics
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which holds rigorously if each classical buckling mode u{ is also a vibration mode, the coupled
dynamical equations that correspond to the static Iigs. (42) are

H):g m (X (m) _ (n) 1 iI = T ‘-'m))
SR RSN IY: ML b At Y e kil | IR T
(\wtnr dt? 10 S {Scz'm, eén)} ¢
where
ol = £, (3 (Eg”); u(an)l )
{500, elmy

Simultaneous solutions of these equations for various £, would lead to iy, which could

then be compared with the Ag that is implied by the solution of the static Egs. (42).

Examples: Cylindrieal shells under axial compression
Narrow pancls between longifndinal stiffencrs

On the basis of his general theory KoITer has studied [71] the influence of initial imper-
fections on the static buckling under axial compression of a long, thin cylindrical cylinder
(Fig. 8a) subdivided into rarrow panels by stiffeners that remain straight but offer no resist-

a0ar

soonocf

-
3

ConooeeanauBan
430000asEF000 300G 30

a ' b

Fig. 8a and b. Stiffened cylinder. o) georetrical parameters; by domain of imperfection sensitivity

ance to twisting. Let us identify the load parameter 1 with the average compressive stress;
the classical buckling stress is associated with a repeating pattern of square buckles between
the stiffeners, and in terms of the “narrowness’ parameter

1 ; b
b =5-[12(1 —Q"'ZHMW (59)
is given by s
n2l)
A = gzh (F + 84) (60)

where D = Eh*12(1 — »?), B is Young’s modulus and » is Poisson’s ratio. The parameter 6
must not exceed unity for the panel to be considered narrow; for all § > 1, A; remains equal
to the critical value for an unstiffened cylinder. Korrer shows that the narrow panels constitute
a structure of the cubic type, and that there is imperfection-sensitivity only for 0 > 0.64.
Combinations of h/R and opening angles ¢ = b/R between stiffeners for which the panel is
both “‘narrow’ and imperfection-sensitive are shown by the shaded region in Fig. 8b.

We wish now to check some of the simplifying assumptions made in the last section in the
course of establishing the probable conservatism of the predictions for dynamic buckling ob-
tained from the simpie cubic model. We note first that, as assumed, the clagsical buckling mode
is indeed a natural mode of vibration if inertial loads in the longitudinal and circumferential
dircetions are neglected; in shallow shell theory this simplification is justified for sufficiently
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low frequencies. Next, to estimate how quickly the “trivial’’ stress state would be established
relative to the time it would take for the buckling deformations to dovelop, we introduce the
parameter § defined as the ratio of the time for an axijal stress wave to traversc a buckle (of
length b) to the quarter-period of the natural mode just mentioned. Assuming the one-dimen-
sional wave speed |/E/p, this ratio is found to be

[2(62 + 6-2) /R
A ey
Loci of constant values of § are given by the dotted lines in Fig. 8%, the small values that
occur tend to discount the possibiliby of serious error incurred by the assumption § = 0 that
was, effectively, made in the general dynamic analysis.

5= (61)
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Fig. 9a and b. Paramcters for the dynamic analysis of stiffened cylinders

It may be of interest to estimate, next, how conservative might be the dynamic buckling
loads given by Hg. (17) for the simple model. On the basis of KoitEr’s detailed calculations,
we find that the parameters » and # [see Egs. (52) and {53)] vary with # as shown in Figs. 9a
and 9b; the curves for » arc for varions values of the ratic of stiffener mass to skin mass.
Although heavier stiffeners tend to lower » and hence (see Fig. 7) tend to raise the dynamice
huckling strength, the results are not very sensitive to stiffener mass. All told, the curves of
Fig. 7 indicate that, for most of the ranges 0.5 <C r < 1 and 2 <9 << 4 that appear appropriate
for imperfection-sensitive narrow panels, the predictions of the simple model (5 = oo) are not
unduly conservative,

Unstiffened eylinder

The unstiffened cylinder under axial compression has a multiplicity of buckling modes
associated with the classical critical compressive stress

28
le=—3 (62)
where
Ry2 .
ph = 1201 Y (E) (43)

and tho influence (notoriously great) of imperfections on the buckling strength has been studied
by Koirvew {6, 7] on the basis of his general theory. A self-contained analysis, aimed at the
evaluation and study of the dynamical Eqs. (58), will be given here.

In a Donnell-type non-lincar theory for circular cylindrical shells

h 8tF

DV = AS[F, W] — 7o (654)
WF = s w28 (159)
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o’ &b &fa % &%a b N . _—
where S[a, b] = 5 3t 4+ — Gt R °iwdy Gwdy and where 1 is the radial displacement, F is
the Airy stress function, & and y are axial and circumferential coordinates, respectively. With

rcference to the operator L, of the general theory [see Xq. (18)], note that the non-linear

. i ) . 1 faWe 1 79W
contributions to the normal and shear membrane strains e, ¢, and y,, are o (Ct) VT (a_y) ,
¢l oW

and = W 1espect1vely The classical buckling equations are obtained by letting
(

doy?

P2
and then linearizing Kqs. {64) and (65) with respect to f and w to get
. & ho o
.Dq H’ —I—h;\.c o _‘-FOI
¥ W
‘]ﬂf R (‘c.'c'-'

It is then easily found that the lowest cigenvalue .. given by Bq. (62},} corresponds to the
modes

: . (pr = ny) ;

W=ec"""7p (65)
D? _L_(?’?IC:K:“‘!I) .
f= = [Fh]e" R (67)

where p and » are related by
Pt — pep — n¥ = 1. (68)

For Doxxery’s theory to be applicable, the wave number # should be large, but the special
casc n = 0, p = py 15 also acceptable. We will limit ourselves to consideration only of the
simultaneons ocourrence of this axisymmetric mode and the one with square buckles corre-
sponding to n = py/2, p = p,/2: thus we can use & and &, in Eqgs. (58) as the coefficients of
the modes

W — hcos 27 W) = hsin L FE cos %y
R and e
[N = —13}?;—-' cos g—jf,—i,'—r : &= — L—);,- sin g"; cos ?}%
respectively, and then Eqgs. (38) may be written
o I 7.\‘(1)1 o [586Y, L))
+&é I’{ P, Ly (ug) w4+ {58, Ly (ui})
+ B L )} + 5 69, L@y | = G0k (59)
ﬁ[;?m]-z Lgfiz (L= A &s A ’{'7")1, ;ic?l} {% E{s, Ly ()
+ & 526 Ly (g, w @)} 4 (48 La(w @)
B, Ly, w3 2 L) | = (i) & (70)

Now, by Eq. (20

2aklh?

2aR FVU)
{s“] w}—fa? f Ay fdr[o =3

! This agsumes that the cylinder is jong and that there are no degrading effects associated with the ends,
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where { 3 R is the cylinder length. Similarly
(@) _ 7B
Sor R '

4B
Further
22K ! (1) pqpri3) @ g s - 3
BW H @y eWwt, ew Ty — Bk
@) al, w2y = A Y 2
(8B Ly (u = hf dyfdas[ W G e T mwdy 9 aj} V31— )5
and
i 22 p(1) /o2 2 ‘ — BiRE
(1) 2ny o W o T, 2, Bk
{64 Lz(uc))} =h f fdx {F_x%(——@i) J = — g3 = 7
& 0 s
hut

(S8 Ly} = (59, Ly(ul)) = 59 L@y = ) Ly (ol @ = 0.
Finally, with circumferential and axial inertias neglected, the use of Eq. (51) gives the
vibration frequencies
(!j(” e 1/2 -' £
2
and
i _ V21 E
W =5 |
associated with the two buckling modes. And so, with the variable change v = @¢. Eqs. (69)
and (70) become

(E) (L — 2o & — (35) 83 = o) £, (1)
fo+ (L= Mo — () 616 = W20 &, (12)

where ¢ = ]/3(1 — 22,

If Ez =0, & 5= 0 (le. only axisymmetric imperfections assunied) static buckling of the
eylinder ocours by a bifurcation process in which & remains zero while & varies with 1 as

_ AReEy
= 1— Ajly
until the coelficient of £, in Eq. (72) — which is homogeneous in £, — vanishes; this gives
for the static compressive buckling stress the equation
! 2 ez -
(L= 22 = [ 55 ]| Gslheh. (73)

which was found by Korrer in [7]1. On the other hand, if & = 0, &, =% 0, simultaneous solu-
tion of (73) and (72) gives, statically,

9 =
(L Mgl & — or P88 = (fAc) (1 — Mlg) &
which implies that A, == is must satisfy?
9V3ec %
(1 — Agfde)? = [ V3o §2|} (74)
In the presence of both 51 and 52, maximization of A leads to

3
|1~ et = (%8 ot
1 — A jiy

= (WSl ny.

,-\
-3
=L

=

* In [7], this result is shown to hold, with & replaced by | & |, under much less restrictive assumptions
on the choice of non-axisymmetrical bhuckling modes.

* An analogous, bui different, result was given by Korrer in [12] for another type of non-axisymmetric
imperfection which led to a bifurcation type of buckling instead of the attainment of a “smooth” maximum
in the variation of 4 with £ as found here.
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In order to see how the dynamic buckling load varies with Ag/Ay the dynamical Egs. (71),

(72) were solved numerically for various imperfection ratios &/€, and the results for Ap/A¢
together with the corresponding roots (Ag/A¢) of Eq. (75) were used to plot Ap/Ags against Ag/io
in Fig. 10. The curves indicate that A;/Ag is lowered more by the non-axisymmetric com-

» ponent of the imperfection than by the axisymmetric

&, one (although the reverse is true for Ag/d,) and the low-
i &, | est values of Ay/Ag are found for & = 0. A good approx-
054 ’ ( imation to this case can be found analytically by drop-
T e ) T | | | ping &/4in Eq. (71) to get
[1-Apldp 2= .
§a7/ /7“15/26'/ }/2_'/2'0/1'5) 52 + [1 - }'/}'C’] 52 |:64 /1/}- )] 52 (}'/j‘(,' 52’
A { the solution of which provides
06
9
} (1 — ApfAe)? ~[ 4L ‘Ezd (AplAc). (76)
5
Y l% 26 08 10 Combining (74) and (76) gives
S[AL — — 2 —
Fig.10. Dynamic buckling stress of axially (11_—31)//;2) = l/2 (Ap/ls)’ (77)
loaded cylindrical shell 8/7¢

from which the lowest curve in Fig. 10 is obtained.
It may be mentioned, finally, that the ratio of the time it takes an axial compressive stress
wave to travel a half-wave-length of a buckle to its stress-free quarter-vibration-period hasthe

small value
— 2 VT
S Ba-aTV R

Concluding remarks

for all of the buckling modes.

The three simple Egs. (11), (17) and (77) that have been uncovered in this paper are all clo-
sely approximated, conservatively, by the formula

Aplhs = w«zl (78)
for the ratio of dynamic to static buckling strength in the case of a suddenly applied load
that is then maintained at a constant value. In the absence of a more detailed analysis, this
formula — or the still more comfortable one 1, = 0.7 1y — is suggested as a basis for design.

1t is very tempting, next, to study the implication of the simple models for other types of
dynamic loading histories. Thus, for example, the simple quadratic model will buckle under an
impulsive loading 4 = IJ(f) at the value

4 /A 1 2
I‘V’( =) =%m)
where o is the stress-free natural frequency. Can formulas like this be applied reliably to

structures in general ? Which natural frequency o should be used ? The situation appears more
uncertain than in the case of step-function loading, but seems well worth exploration.
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