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The initial postbuckling behavior of a shallow section of o spherical shell subject to
external pressure is studied within the context of Koiter's general theory of postbuckling
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deviations, relative fo the shell thickness, of the shell middle surface from the perfect .

configuration.

Intreduction

IN THIS PAPER, the initial postbuckling behavior of
a spherical shell subject to external pressure loading is determined
on the basis of Koiter's general theory of postbuckling behavior
[1].2 As might well be expected, the most important features of
this problem show a striking similarity to aspects present in the
behavior of cylindrical shells under axial compression. Imperfec-
tions in the shell geometry are found to have the same severe
effect on spherical shells as has been demonstrated for axially
compressed cylinders {1, 2].

Perhaps the main feature which distinguishes this investigation
from previous work is that here consideration has not been re-
stricted to rotationally symmetric buckling deformations. In
faet, it is clearly demonstrated that the initial postbuckling be-
havior is decidedly not rotationally symmetric but is analogous
to the cylindrical shell behavior in which a number of modes com-
bine to give rise to the highly imperfection-sensitive character
of the structure.

Thompsen [3] has also employed the Koiter theory to study
the initial postbuckling behavior of the complete sphere. His
approach, however, is fundamentally different than that taken
here because of the restriction to rotationally symmetric deforma-~
tions. This work will be discussed further in the body of the
present paper. Other investigators [4, 5, 6] have determined
the large-deflection behavior with the aid of various methods
but in each case under the aforementioned assumption of rota-
tional symmetry. The large-deflection, rotationally symmetric
equilibrium configurations appear to be in reasonable agreement
with experimental observations in the same large-deflection range,

To obtain a clear understanding of the effects of imperfections
on the buckling strength of this structure, it is necessary to study
its initial postbuckling behavior. It is this study which forms the
substance of the present paper.

Shallow-Shell Equations

Nonlinear shallow-shell equations will be employed in this
analysis. The counsistency of applying this representation to the
complete sphere will be discussed as the analysis proceeds. In
anticipation, however, we remark that the adequacy of this de-
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. strain-displacement relations are mnonlinear.

seription follows from the fact that the characteristic buckle
wavelengths are small compared to the shell radius. Thus it
is possible to choose a shallow section of the shell surface in which
the buckle pattern is duplicated may times.* For essentially the
same reason, the initial postbuckling behavior of an axially com-
pressed eylinder can also be obtained within the context of
shallow-shell theory (which, for cylinders, is identical to non-
linear Donnell theory).

A shallow section 8, of the sphere is imagined to be isolated as
shown in Fig. 1. Cartesian coordinates = and y are chosen in the
base plane of the shallow section, and z is normal to this plane.’
The stress-strain relations and the bending strain-displacement
relations of shallow-shell theory are linear while the membrane
Listed here are
these nonlinear relations which, along with the other shallow
shell equations, are given, for example, by Sanders [7]. The
membrane strains €, €, and ¢, are given in terms of the tangen-
tial displacements 7 and V and the normal displacement W by

€2

1
U.+ W/E + Py Wt
1 .
e =V_ + W/ + 5 w2 (1)

1 1
g — 5 (U-u + V-z) + E WmW.ir

where R is the radivs of eurvature of the spherical section.

The three equilibrium equations of nonlinear shallow shell
theory can be replaced by one equilibrium equation and one
compatibility equation written in terms of W and a stress func-
tion F, These two equations are

3 Here, shallow is taken in the sense that the slopes of the surface
measured from the section base are small and, thus, the shallow shell
approximations are valid.
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Fig. 1 Shallow section of complete sphere
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+ 2F|zyW-zw = -p {2)
1

1
Tk ViR — 3 VW ot W Wy — W= 0 (3)

where D = Eh3/12(1 - p?); E and » are Young's modulus and
Poisson's ratio, respectively; % is the shell thickness, V4 and
V? are the two-dimensional biharmonic and Laplacian operators;
and p is the external pressure. The resultant membrane stresses
are given in terms of the stress function by

Ny=F,, N,=F, ad N, =—F,

Classical Buckling Analysis

Prior to buckling the perfect spherical shell is in a uniform
membrane state of stress (V) = N,' = —4pR) with an associated
inward radial displacement Wy = ~(1 — »)pR2/2Eh. With

F=—3{z+ v*pR + f
and

W = —(1 — »)pRY2Eh + v

f and w are zero prior to buckling. The eritical pressure p,,
often called the classical buclkling pressure, at which bifurcation
from the prebuckling state of stress oceurs, is predicted by the
lineer buckling analysis. The linear buckling equations are
obtained by substituting for F and W into equations (2) and {3)
and then linearizing with respeet to f and w. One finds

DV4% + m; vy 4 % pRVar = 0 (4)
and
"1 1
J— [ ¥ =
Zn Vif 7 Vo = 0 (5)

Periodie solutions to these homogeneous eigenvalue equations
are sought in the form of products of sinusoidal functions such as

T Y
w = ¢os (.?.:= E)?cos (k,, E)
z ¥
f= Bcos (sz) 1o’ ] (ky E)

The eigenvalue associated with this choice is

28
R

(6)

P= (B 4 5,07 + @~4k.? + k,2)] (N

with B = —EhE(k,2 + k2™, and where

g = 12(1 — p2) (%)2

The classical buckling pressure is found by minimizing p as given
by equation (7} with respect to &, and %y This critical pressure is

e, 2B (R
P = ABM/RY? = ( R) 8)

and is associated with any combination of wave numbers %, and
k, satisfying

ko 4kt = go (9)

This critical pressure, obtained on the basis of shallow shell
theory, is exactly that predicted by equations for a full sphers
(see, for example, Fliigge [S]).
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The shallow shell representation of the portion S, of the com-
plete sphere can only be valid if the wavelengths of the buckle
pattern are small compared to the radius of the shell or—what
is the same—if the wave numbers &, and %, are both large com-
pared to unity. Associated with the eritical buckling pressure
is & multiplicity of buckling modes and, as seen from equation
(9), combinations of %, and k, are possible such that both are of
order g and, therefore, sufficiently large. An exception to the
requirement. of large wave numbers occurs if either %, or ky, is
identically zero, that is, if the buckling deformation is independ-
ent of either # or . In such cases, as well, the shallow-shell
deseription is accurate for shallow sections of a complete sphere.
This is ansalogous to the situation for axial buckling of eylinders
for which the shallow-shell equations are accurate for the axi-
symmetric mode but not, for example, for the Euler column mode
in which only one wavelength, in effect, spans the shell eircum-
ference. .

The inital postbuckling behavior of the spherical shell is in-
vestigated in the remainder of this paper. It will be seen that
sets of either two or three of the buckling modes associated with
the classical buckling pressure couple -give rise to a load-
deflection bebavior which falls sharply in the initial postbuckling
regime. As previously indicated, the analysis will be carried out
within the framework of Koiter's general theory of postbuckling
behavior. This theory is outlined in the next section.

Koiter Theory for Multimode Buckling

The procedure which is sketched in this section is an appliea-
tion of the variational principle of potential energy to obtain
equations characterizing equilibrium in the prebuckling and
initial postbuckling regimes of a structure with a multiplicity of
buckling modes associated with the eritical buckling Ioad.
These equations are in the form of simultaneous nonlinear,
algebraic equations relating the magnitude of the exbernally
applied load to the deflections in the various buckling modes.
The magnitudes of assumed geometrical imperfections also
appear. The notation and development of Koiter's general theory
displayed here is taken for the most part from reference [9].
The reader is referred to this reference or Koiter's [1] own work
for certain arguments and points of rigor which there is no need
to reestablish here.

Generalized stress, strain, and displacement fields are denoted
by o, ¢, and u, respectively. The magnitude of the applied load
system is taken to be directly proportional to the load parameter
A. : o

The potential energy expression for the structure is con-
veniently written in the compaet form

PE = L {7, €] — MBuw)

> (10)
where, of course, the stresses and strains are caleulated from the
kinematically admissible displacement field . Here, in general,
fe’, €'} denotes the internal virtual work of the stress field o
through the strain field ¢”; and ABi(x) is the work of the applied
force field of intensity A through a displacement v of the structure.

We consider only structures which can be adequately described
by nonlinear strain-displacement relations of the form

€ = Ln(w) + %Lz(u) (11)

where Iy and L, are homogeneous functionals which are linear
and quadratic, respectively, in . Furthermore, the stress-
strain relations are assumed to be linear and are written sym-

bolically as
o = Hy(e) {12)

where H, is a linear, homogeneous functional of the sirain com-
ponents. The set of nonlinear shallow shell equations is of this
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form. With this notation, for example, L; is zero in calculating
the bending strain while L, is W .2 in calculating ..

An initial deviation #% of the unloaded structure from the per-
fect form is called the initisl imperfection. In the presence of an
initial imperfection, the strain arising from an additional dis-
placement u is

¢ = Li(u) + %Lz(u) + In(u, %) (13)

where Ly (u, @} = Ln(#, u) is the bilinear, homogeneous funetional
of % and % which appears in the identity

La(u + @) = Li{u) + 2Ln(w, @) + Ls(@)

(As an illustration, if the initial deviation of the shell middle
surface from a spherical shape is denoted by W, then, by shallow-

shell theory, e, is, using (1) and (13}, U, + Wik + % w2

+ W .W,, where W is the additional radial displacement.)

It is assumed that there are seversl linearly independent
buckling modes ¢, u,®, ..., associated with the eritical
value of the load parameter A, The complete displacement of
the structure is written quite generally as

uo=hu + 3, Eu™ + 4 (14)

where Aup is the prebuckling displacement of the perfeet strue-
ture subject to the external load intensity corresponding to A.
For the spherical shell under uniform pressure, this is just a
uniforim radial displacement. Each of the modes » (? s faken
orthogonal to one another and each is orthogonal to #. The
orthogonality condition is

{aﬂ: Lll(uc“}:. 'U.,(f))} =0 1 7= j

where gy = H\[I1{u)]. Imperfections in the form of the buckling
modes may result in significant reductions of the buekling load;
thus we take

a =3 Eum (15)

Now, the potential energy is evaluated using the expressions
for w and % with equations (12)-(14) and the orthogonality
eonditions. The result is:

PE = const + % O — A28 oy, Lg(untf))}

+ 5 (28, L(ZEu®)} + BEEM o0 L)

+ terms of order 4 £E2, ... (16)

where 5,0 = H[Iq(%,9)]. Only terms up to and including
third powers of the £ and imperfection terms such as ££ in the
potential energy are displayed. This expression for a “quadratic
structure” is in the form given by Koiter [{1d), equation (28)].
It ie noted that it does not appear in potential energy sinee it
contributes to quartic but not cubic terms in the £ The potential
energy expression in the truncated form given here can provide
an accurate description of the structure only so long as the &
and imperfections £; are sufficiently small to insure that the terms
negleeted are small compared to those retained.

Equilibrium equations relating the & to the load parameter
A\ are obtained from the requirement that the first variations of
the potential energy with respect to the £; vanish. These
equations are ’

Bl — MA) + [{ZEs, La(ZEum, u0)}

{89, Tl ZE ™)1/ (= N 70, Lalee,)})
= VA

_|_

N}|H

i=1,2... (17)
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Finally, we give the generalized load-deflection relation for a
perfect, multimode structure, which can be obtained from the
general theory; namely,

Biw) AN 1 M oo, Lalu, )]

Bfwe) N, 2 ? 4" 3 Taw L)) (18)

where, from equation (10), Bi(u) represents the generalized dis-
placement through which the external loading system acts, and
where e = Ao

Posthuckling of Spherical Shell: Two Operative Modes

In forming the nonlinear equations of equilibrium for the
spherieal shell, it is necessary to take into account all the buckling
modes associated with the eritical buckling pressure; that is,
all modes whose wave numbers satisfy

k.t k2 = @t ®

It will be shown that the nonlinear equations for the £; decouple
into separate sets of equations corresponding to interaction
between either two or three of these critical modes. Two modes
will interact when oune of the operative modes has a zero wave
number associated with either the x or y-coordinate, This case
is considered first, and the three-mode situation is discussed in
the next section.

Translating from the general notation to the shallow-shell
notation, we take as 4, ‘

1, = h cos (qu %) N 65t)

with the associated stress function
T
fot = —ERR%%™* cos (qo E)

Of all the modes satisfying (9), only a mode with &, = /2,
and thus &, = +/3 g0/2, will interact with w,, as will be shown.
For u.®, take

w1 = hgin —l—qoi sin(ﬁqa i)
¢ 2% R 2 R
3 {20)
1 3
1. = —ERhigy~* sin (E o %) s (T % %)

The coefficients of the various terms in the equilibrium equa-
tions (17) are easily calenlated. Some of the details are shown
as follows: First, ’

Moo Ltuo] = —= pt [ (o opas
Sa
2Bk f ( x)* '
= - sin g — | d8
B J, R
Fhs
==

where 8 is the area of the shallow section. Consistent with the
fact that the buckie wavelength is short compared to the char-
acteristic length of the section S, only the constant part of sin?

da % = -;—(l-cos 2¢0 %) is evaluated in arriving at the forego-
ing expression. Similarly,
ER?
)\c{ﬂ'o, Lﬂ(urta))} = "2_1‘32 S

and
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{59, Lafu,®)) PRCTCCE

S
3¢z
16 2"
where ¢ = [3(1 — p®)]"/2. This last coefficient, which gives rise
to coupling between w, and w,®, would vanish if the &, asso-
ciated with w2 were not %go. The other nonzero coupling
coeflicient is

{509, Ly (2,0, uc(z))} = [fo P00, a0, 42

So
- fc.zy(g)wc.z(nwcry(z)]dS

3C En?

[ ——

16 R?
while
{3c(1): Lll(ucu)) uﬂ(Z))} {scu): L2(ucu))}

{88, La(u, M)}

{89, Lo(u, @)}
0

I
It

Lastly,

2 Eh3
Aoy L)} = ———— — 8§

{00y Ln(uo)} o R

With these coefficients, the two equilibrium equations for £
and £ in terms of the external pressure p become

_ P _Ez Pz
(1 pc)gl 32"EZ Po

(1—1’-)52—99515w 4
Pe 8 De
and it is important to note that the deflections in the modes,
£ and £, as well as the imperfection magnitudes, & and &,
are messured relative to the shell thickness. This follows from
the choice of w. (" and w,® in equations (19) and (20).¢

For the perfect shell (§ = & = 0), equations (21) and (22)
admit only the trivial sclution when the prebuckling pressure
is less than the critical value p,. When p attains p,, bifurcation
from the membrane state of stress occurs, and the equilibrium
equations are easily solved for £ and £.:

- 36-2

16 i
&= *5 (1 pc)

This behavior, sketched in Fig. 2, is characteristic of a
“quadratic-type” structure and has been discussed by Koiter
[1] in some detail for the general ease. The equilibrium pres-
sure in the postbuckling regime is greatly reduced even where
the buckling deflections are only a small fraction of the shell
thickness; i.e., & and & a small fraction of unity.

The generalized load-defleciion relation valid in the initial
postbuckling region is easily calculated using equation (18).

1]
4

(21)

I
|
grel

(22)

i

The generalized displacement Bi{u) in this case corresponds .

to the average normal displacement;, wavg of the shallow sec-
tion. One finds

Wavg P 16 P \?
Mavwg P, __ % (1 _P
wS WA =) ( m)

4 Note that eguations (21) and (22), as well as the predictions to
be obtained from them, do not depend on the area of the shallow
section Sa.

(23)

where
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Fig. 2 Pressure-mode defection behavior

1
wp = _(:_) & I
31 + v
is the prebuckling normal displacement at the bifurcation
pressure. )
An imperfect shell suffers deflections in the buckling modes
with the first application of external pressure. The behavior

for the case £ = 0, £ > 0 is also depicted in Fig. 2. Prior to
buckling, the load increases with deflection in the £-mode with

£ = Ep/p.

= 24
1 — o/, (24)

until the coefficient of & in equation (22) vanishes. At this point,
bifurcation occurs. Following bifurcation, the equilibrium
pressure falls with deflections oceurring in both modes; thus
the maximum (buckling) pressure, denoted by »* is the bi-
fureation pressure which satisfies

*Y\2 *

( 1 — ﬂ_) = 9 & 2

Pe 87 p

Small imperfections (relative to the shell thickness) result in

large reductions of the buckling pressure as shown in the plot
of eqlla.tion (25) in Fig. 3.

If & = 0 but & = 0, the maximum value of 2 is obtained by

substituting for & in terms of £, from equation (21) into equation

(22) and determining then the value of p such that dp/d&; = 0.
One finds

(25

(26)

8 If we had chosen w® = k cos {quz/2R)sin (‘\/Equy_/ 2R) instead
of (20}, equation (25} would be (1 — p¥*/p.)t = —9CLp*/8p, and
thus valid for & < 0.

T T T T T
10 -
08 2 MODE CASE, FQ. 25 i

2 MODE CASE, £Q. 26
Fioe 3 MODE CASE,

06— 4
04— |
ozl- J

o i [ i ! ! !

o 0.2 04 06 CE 10 12

IMPERFECTION - §

Fig. 3 Buckling pressure of imperfect spherical shells (r = 1/3)
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This formula is also plotted in Fig. 3, and it is seen that an im-
perfection in the form of the £r-mode causes a greater reduction
than an equal imperfection in the £-mode.

Three Operalive Buckling Modes

Interaction between two modes oceurs only if one mode has a
zero wave number; otherwise, the modes will interact in sets
of thres. To illustrate such a situation, we take as 4™, w9,
and

w0 [ Rk 7] z ¥
fccl) = "'EhaqD—z_ 008 | Qo _R_ gos quﬂ E
ETACE B h T T . Y
i ] = [ agee o (o E) n(png)
and
mwc(‘”- B 3 1 . T . ' Y
L@ 17 | ~ERwgm1 ™" (““g" E) o (’9 . E)

where, by equation (9), e + 82 = 1{{ = 1, 2, 3).

The coefficients in the algebraic equilibrium equations are
evaluaied in much the same manner as in the last section.
Coupling between the three modes will oceur only if coefficients
such as {s,®, Lu(e,®, ¥, ®)} do not vanish. Evaluating this
term, we find

{scu); Lll(ucm)) ue(a))} = f [fe.yu(nwc.zcz}wc.z(a)
)

+ fc.z—::(nwc.y(z)wz.y(s) - fc.zy(l)(wc.z(mwe.uts) + wc.ym)w:.z(a))]ds

¢ Eh?

alir iy Sol — Prloscs + 0138534

— afasBs + anfrafy)

if &z + oz = e and §1 + Bz = G but is zero otherwises These
two equations, along with the conditions &;? + 8, = 1, uniquely
determine the magnitudes of any five of the & and 8 in terms of
the remaining one. From this follows the statement made earlier
that the equilibrium eguations decouple into sets made up of
three interacting modes unless, of course, one mode wave number
is zero. Then the three-mode case degenerates to the case
diseussed in the last section.

The remaining nonlinear, coupling coefficients are nonvanish-
ing only under the same conditions and are easily found to be

{8, Lip(u,™, @)}

C ER*

=3 R So(Btonce + catfifs + s + caBeBiay)

‘and

{5, Lnylu,®, a2}
C Eh3

= "85 m S(Brlanc: — BB + sfaciBs ~ ouBiBian)

with all others zero. Finally,

Af o Lo(u,®}} = S S =123

Re
The coefficient of the nonlinear term in each of the three
equilibrium equations is
{scu); Lll(uc(g); uc(ﬂl)} + {sc(z):l Lll(uc(l)s uc(a)}}
+ {89, Dulu,™, u,®)]

6 Actually, there are other combinations for which this coefficient
will not vanish; for example, ca + s = —az and f1 + Bz = —8s,
but these are, in effect, included within the ecombination listed
earlier.
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Fig. 4 Generalized lcad-deflection curves for shallow seclion of perfect
sphere

This coefficient reduces to a constant value,

sc B
32 R

independent of which three-mode set is under consideration.

Thus the three equilibrium equations for a given decoupled set

are

(I—'*")E1—_£2£a=— & (28)
Pe
PN X, P
(1 - pc) b- g be= 28 (29)
(1 - “—') E - — Elfz =— E:« (30)
Pe

If a threemode set is operative in the initizl postbuckling
deformation of the perfect sphere, then

e _e M p
E“Ez‘s““sc(l pc)

and the generalized load-deflection relation, again using equation

(18), 1s
W p o, 32 [ py?
ws 21 =) (1 pc) @1

One notes that the load-deflection relation for the three-mode
case differs from that for the two-mede situation. The initial
postbuckling load-deflection curves for both cases are plotted
in Fig. 4.

If the shell is éimperfect with an imperfection in only one of the
modes—E; > 0, say—the prebuck}mg deformation is in the
Ermode

. Ep/p.
b=y /26

Bifurcation from this solition will occur at the value of » when
the determinant of the coefficients of £ and £ in equations (28)
and (29) vanishes. This gives the buckling pressure of the im-
perfect shell, whieh is found to be

(1 _ %)2 g 2" 32)

]

This relation is plotted, along with the results for two-mode
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situation, in Fig. 3. A single imperfection in the three-mode
case is not as degrading as a single imperfection when two modes
are gperative,

Discussion of Resulfs

The equilibrium equations of the general theory decouple into
sets of either two or three interacting modes. The set, or eom-
bination of sets, which is actually operative in the initial post-
buckling regime of the perfeci sphere is indeterminate within the
context of the general theory. This indeterminacy parallels
the initial postbuckling situation for axially compressed eylindri-
cal shells which Koiter studied via his general theory. Like the
spherical shell, the eylindrical shell has a multiplicity of buckling
modes associated with the classical buekling load; but unlike
the sphere, all the modes can couple through the nonlinear terms
in the equilibrium equations. The relative magnitudes of these
modes, however, remain undetermined by the general theory.
On the other hand, the load-end shortening relation is uniquely
determined by the genera] theory. The generalized load-deflec-
tion relation (i.e., p versus wavg) for the sphere is not uniquely
determined by the general theory but depends on whether a
two or three-mode set is operative. Quite likely, the inde-
terminacy in both problems would be removed if higher-order
terms were retained in the potential energy expression.

An imperfection in the form of any given mode has the effect
of determining which set of modes will be operative. The im-
perfection which appears to cause the greatest reduction in the
maximum support pressure is that in the form of the £-mode of
the two-mode case {see equation (26)]. For axially compressed
cylindriecal shells, imperfections in the form of the axisymmetric
buckling mode are most critical [2]. The relation of buckling
load to imperfection for eylinders with this imperfection is

*\2 *

(1 — ?\_) - S_CE_;\_

A, 27N
where A*/A, is the ratio of the buckling load to the classical
buckling load. Here, the imperfection magnitude is measured
relative to the shell thickness in the same manner as in the anal-
ogous formulas in this paper. The effect of the most critical
imperfection on each structure is almost identical [eompare this

equation with equation (26)].

With the restriction that the deformations be rotationally
symmetric, Thompson {3] hss shown, using equations for 2
complete sphere, and on the basis of Koiter's general theory,
that the slope of the pressure-deflection curve is negative in the
initial postbuckling regime according to

opled  3VI v f B\
R e (R)

where 4 is the buckling deflection at the pole of symmetry. For
small values of A/R, this slope will be quite small compared to
the corresponding values predicted by the present analysis,
9[3(1 — »9)]¥¥/16 and 9[3(1 — »2)]'/2//8.

The comparison between the two results is more meaningful,
however, if deflections of the complete sphere away from the
pole are considered, since the relatively large deflections of the
rotationally symmetric buckling mode only occur near the poles.”
Buckling deflections away from the poles aré on the order of
(h/R)"* of A and, thus, referred to deflections of this magnitude,
the slope of the pressure-deflection eurve will be on the order of

7 The author is indebted to Professor Koiter for a helpful discus-
sion of this point. Professor Koiter [11] has obtained some resulis
for multimode buckling of externally pressurized spherical shells,
based on equations for the complete sphere. Although there is some
diffienlty in ecomparing the two approaches, the two sets of results
are at least In qualitative agreement. The main difference appears
to be that, while the results obtained from the shallow shell approach
are independent of B/h, those based on the complete sphere equation
are not.
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(h/R)*. It follows, then, that the rotationally symmetric
analysis indicates that, for comparable reductions in the buckling
pressure, the imperfection magnitudes must be on the order of
(R/R)'/* times the values predicted by the present analysis.
The rotational-symmetry restriction precludes the possibility of
the strong coupling between critical modes which has been
demonstrated here.

Limitations of General Theory

As previously emphasized, one can have confidence in the general
theory only when the terms dropped from the potential energy
expression are sufficiently small compared to the terms retained.
In particular, the larger the imperfections, the more one should
question the buckling load predictions.

When the imperfection is in the form of a buckling mode with
one zero wave number, it is possible to obtain an independent
estimate of the buclding pressure of the spherical shell. If we
take an imperfection in the form .

W = £h cos golz/R)

the nonlinear shallow shell equations for an initially imperfect
spherical shell admit an exact solution for the prebuckling de- -
formation of the shell, and the deformation is independent of
the y-coordinate, At a certain value of the external pressure,
bifurcation from this y-independent deformation occurs. The
approximate caleulation for determining the relation of the
bifurcation pressure to the imperfection is sketched briefly in
the Appendix. The analogous calculation for the effect of
axisymmetric imperfections on the buckling load of cylindrical
shells has been given a careful treatment by Koiter [2]. The
method of caleulation insures that the estimate of the bifurcation
pressure, although approximate, is an upper bound to the actual
bifurcation pressure. The results of this calculation are shown
in Fig. 5, where the upper-bound results can be compared with
the general-theory predictions for the same imperfection, equa~.
tion {25). The agreement, as in the case for the cylindrical shell,
is surprisingly good even for imperfeetions which reduce the
buckling load to as little as 30 percent of the classical value.
For small imperfections, the upper-bound estimate and the
general-theory prediction approach each other asymptotically.

Application 1o Sphesical Gaps

The eonclusions reached with regard to the effects of imperfec-
tions on shallow sections of complete spherical shells obviously
apply to spherical caps if the buckling wavelengths are small
compared to the base dimension of the cap. The shortest buckle
wavelength is

2a[12(1 — »2)] ~YY(RRY/

To obtain a rough estimate of range in which the results of the
present analysis should be at least partially applicable, we will
demand, quite arbitrarily, that the foregoing wavelength be less
than one third the base diameter of the cap, With this con-
straint, it is easily shown that the shell rise H to the thickness h
must satisfy

1/9
(%) > (3r/2)3(1 — »2)] Vs

In terms of the. frequently defined shallowness parameter A
= 2[3(1 — »)1Y4(H/k)"*, this implies that A > 3.

It is interesting to note that Huang [10] has calculated the
buckling pressure for initially perfect spherical caps which are
clamped on the base edge. For sufficiently large rise to height—
A > 3m, say—the buckling pressure is about 85 percent of the
pressure necessary to buckle a complete perfect sphere with the
same radius of curvature and thickness. Experimental data in
this range show considerzble scatter, with buckling pressures in
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many instances less than 30 percent of the value predicted for
the perfect cap. It seems clear that initial imperfections account
for the discrepancy between the experimental data and the
resulis for the initially perfect cap.
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APPENDIX
Upper-Bound Galculation

We consider a shallow spherical section with an imperfection
in the form
o = Eh cos qo(z/R) (33)

The nonlinear shallow shell equations for an initially imperfect
spherical shell admit a relatively simple, exact prebuckling
solution for an imperfection of the form of equation (33).8 This
solution is

W= {—(1 — v)pR*/Eh2 + Eh B/ €0S qo %} +w (34)

1 - p/pu

— p/p, k&
+ f -(35)

¥ For a y-independent initial imperfection, the shallow-shell equa-
tions are zltered by appending the term — F,,,% z» to the left-hand
side of equation (2) and + W ,;;,%Wsz to the left-hand side of equation
(3}

1 -
F = {— ] (z% + y*)pR — EhRgo—%th T}l‘/‘&_ COS ga i}

140 T -7 T T T T
08 1
#p,

cE GENERAL THEQRY, EQ. 25 i

04— UPPER BOLND
CALCULATION

o2k B
IMPERFECTION: W = fn Cos gy %
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Fig. 5 Comparison between general theory and an independent upper-
bound calculation (v = 1/3}

where w and [ are zero prior to buckling. Bueckling oceurs with
bifureation from this y-independent prebuckling solution. Thus
we look for the value of the pressure p at which the nonlinear
shallow shell equations admit nonzero solutions for w and 7.
Substituting (34) and (35) into the full nonlinear equations for
an injtially imperfect spherical shell and then linearizing with
respect to w and f, we obtain two homogeneous, nonconstant
coefficient equations in w and f for determining the eigenvalue
p*. In the interests of brevity, these equations will not be listed
here. The approximate method of solution of this eigenvalue
problem, only described subsequently, is the subject of a paper
by Koiter [2] for the analogous problem of a cylinder with
axisymmetric imperfections,

One of the two linear eigenvalue equations is a compatibility
equation whieh is solved exactly for f in terms of an assumed w

'w—sin-]l ic—sin ¥
= 2 * R TR

where * is a free parameter. Then, f and w are used in conjunc-
tion with the Rayleigh-Ritz method fo solve the second equation,
an equilibrinm equation, approximately and to obtain an equa-~
tion for the eigenvalue. The eigenvalue equation relating p*
and £ is

(1 — p*/p)%@* + 1 — 2Qp*/p,)
— CYEQ — p*/p.)p*/p. + 2/Q)
+ (CYEQ™2 + (9/4 - ¥9)™) = 0 (36)
where '
Q=1/4+ 7

This approximate method of solution insures that the estimate
of the buckling pressure p* for & given imperfection £ is an upper
bound to the exact bifurcation pressure. In caleulating p*
for a given value of £ the free parameter + is chosen so that the
prediction of p* based on (36) is a minimum. The results of
these caleulations are plotted in Fig. 5, where they can be com-
pared with the predictions of the general theory.
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