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Introduction

A division of elastic stability theory and its applications
into separate categories of buckling and postbuckling is
not entirely rational, but the creation of such an artifi-
cial distinction is almost essential to bring either into
manageable proportions. This point is brought home by
more than 1600 references on cylindrical shell buckling
alone in the surveyby Grigol'uk and Kabanov [Ref. 1].

Postbuckling aspects of stability theory for flat plates
received prominence in the early 1930, after Wagner
[Ref. 2] had established a sound theoretical foundation
for the load-carrying capacity of deeply wrinkled flat
shear panels. The approximate discussion by Cox for
plates in uniaxial compression [Ref. 3] was followed by
a rigorous analysis by Marguerre and Trefftz |Ref. 4].
This work was continued first in Germany [Refs. 5, 6],
and somewhat later in the United States [Refs. 7-15],
Britain [Refs. 16-18] and The Netherlands [Refs.
19-28]. Reviews of this work and subsequent develop-
ments are to be found in [Ref. 29]. The entirely
different postbuckling behavior of thin shell struc-
tures came to light in the early 1940’s when Karman
and Tsien [Refs. 30-33] showed that the large dis-
crepancies between test and theory for the buckling
of certain types of thin shell structures was due to
the highly unstable postbuckling behavior of these
structures. At roughly the same time in war-time
Holland, Koiter |Ref. 34| developed a general theory of
stability for elastic systems subject to conservative load-
ing which was published as his doctoral thesis in 1945.

Karman’s and Tsien’s papers spawned many more in
the following 30 years, and most of them have been
directed to obtaining more accurate results for the
cylindrical shell under axial compression or to studying
this structure under other loadings. Koiter’s work, on the
other hand, attracted relatively little attention until the
early 1960’s when interest in the general theory sprang
up almost simultaneously in England and in the United
States.

Our review will be centered mainly on the theory and
applications that have emerged from these two ap-
proaches to postbuckling theory. A major stimulus to
development in this subject continues to be generated
by the quest for predictive methods for the buckling of
shell structures, and a sizable portion of this review will
concern applications of the theory to this area. A
state-of-the-art discussion of shell buckling as of 1958
is given in the excellent survey by Fung and Sechler
[Ref. 35], and that article provides a background for
assessing the progress which has taken place in this sub-
ject in just over a decade. Our lack of command of the
Russian language prevents us from doing justice to the
contributions of Soviet scientists in this field. Reference
may be made, however, to Volmir’s outstanding treatise
on the stability of deformable systems [Ref. 36], and
to the survey on cylindrical shell buckling [Ref. 1].

Our discussion will not touch on research into stabil-
ity of elastic systems subject to nonconservative loadings,
but fortunately we can cite a recent survey in Applied
Mechanics Reviews by Herrmann [Ref. 37] on this
aspect of stability theory, as well as a similar survey by
Nemat-Nasser [Ref, 38] on thermoelastic stability under
general loads. We also would call attention to another
recent review article by Thompson [Ref. 39] which
does cover some of the same ground as the present
survey, but the emphasis there is on elastic systems
characterized by a finite number of degrees of freedom,
whereas most of the applications we will discuss will be
within the realm of continuum theory. We also omit a
detailed discussion of secondary branching [Refs, 29,
40, 41] of the initially stable postbuckling behavior of
flat plates, even if this phenomenon is of some im-
portance for these and similar “completely symmetric”
structures [Ref. 42].

Theory and Applications

The energy criterion of stability for elastic systems
subject to conservative loading is almost universally
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adopted by workers in the field of structural stability
[Refs. 43-45|. A positive definite second variation of
the potential energy about a static equilibrium state is
accepted as a sufficient condition for the stability of
that state. Numerous attempts to undermine these two
pillars of structural stability theory have been made, but
confidence in them remains undiminished. With a proper
shoring-up of certain aspects of these criteria, they will
undoubtedly continue to serve as the foundation of
elastic stability theory. An account of the present status
of the fundamentals of stability theory is given in
[Ref. 46].

In this review, we are concerned mainly with the
class of problems most frequently encountered in the
field of structural stability in which the loss of stability
of one set of equilibrium states of an idealized, or
“perfect,” elastic structure is associated with bifurcation
into another set of equilibrium states. The first set is
referred to as the prebuckling state and the bifurcated
state as the buckled configuration. The bifurcation load
of the perfect structure is commonly called the classical
buckling load and is denoted here by P_. This is by no
means the only circumstance under which a structure
can become unstable. For example, a very shallow
clampcd spherical cap subject to a uniform pressure
loading reaches a maximum, or limit, load at which point
it becomes unstable under prescribed pressure with no
occurrence of bifurcation. However, due to the sym-
metry of both the idealized structure and its loading,
bifurcations frequently do occur at load levels below the
limit load.

The classical analysis of the stability of the prebuck-
ling state of the perfect structure takes the form of an
eigenvalue problem for the lowest load level for which
the second variation of the potential energy is semi-
definite, The Euler equations associated with this vari-
ational principle are linear and the eigenmode (or modes)
associated with the critical eigenvalue P, is termed the
buckling mode (or modes). While the classical analysis
yields the load at which a perfect realization of a struc-
ture will at least start to undergo buckling deflections, it
gives no indication of the character of the postbuckling
behavior, nor does it give any insight into the way a non-
perfect realization will behave.

Typical load-deflection curves characterizing static
equilibrium configurations are shown in Fig. 1 for the
case of structures which have a unique buckling mode
associated with the classical buckling load. In each of
the three cases shown the prebuckling state of the perfect
structure is stable for P << P_ and is unstable for P> P,
where it is shown as a dotted curve. Case I illustrates a
structure with a stable postbuckling behavior which can
support loads in excess of P. in the buckled state. The
behavior of a slightly imperfect version of the same
structure (or perhaps for a slightly misaligned application
of the load) is depicted by the dashed curve. Case II is
an example of a structure which goes into a stable or
unstable postbuckling behavior depending on whether
the load increases or decreases following bifurcation. An

initial imperfection is all that is needed to prejudice the
deflection one way or the other. If an imperfection in-
duces a positive buckling deflection, the load-deflection
curve of Case II has a limit load P, the buckling load of
the imperfect structure, which is less than the bifurca-
tion load of the perfect structure P_. Case II is an ex-
ample of asymmetric branching behavior, while Case I1I

illustrates a structure whose buckling behavior is sym-
metric with respect to the buckling deflection and whose
initial postbuckling behavior is always unstable under
prescribed loading conditions.

The classical buckling load is a reasonably good
measure of the load level at which an imperfect realiza-
tion of the structure begins to undergo significant buck-
ling deflections if the structure has a fully stable initial
postbuckling behavior. In the early days, reliance on the
classical buckling load stemmed from the fact that all
confrontations between test and theory were for either
columns or plates, and both of these are stable in the
postbuckling regime. When tests were carried out on thin
shell structures in the early 1900, the classical theory
became suspect because then actual buckling loads were
frequently found to be as little as one-quarter of the
classical load.

Except for a very few structures, such as the column
under axial compression [Ref. 47] and the circular ring
subject to inward pressure [Ref. 48], it is not possible
to obtain closed form solutions governing the entire post-
buckling behavior. Starting with Karman’s and Tsien's
work on spherical and cylindrical shells, a large number
of numerical calculations in the large-deflection range
have been made. Each of these calculations represents
an attempt to obtain the load-deflection behavior of the
perfect structure, and in particular the minimum load
the structure can support in the buckled state (i.e., P,
in Fig. 1), This load was held to be significant as a pos-
sible design load on the grounds that the structure could
always support at least this much load and that even
imperfections would not reduce the buckling load below
this value. This concept could not be useful in any uni-
versal sense since there are well-known examples of strue-
tures with negative minimum postbuckling loads, An-
other difficulty with this proposal is that the buckling
process of such a structure is a dynamic one and the
buckled structure may end up deformed quite differ-
ently from what is predicted on the basis of static
equilibrium considerations alone. In any case, efforts to
validate the minimum load for design purposes for cylin-
drical shell structures have not paid off, as we will dis-
cuss in the next major section of this article; and this
idea perhaps should be abandoned.

Emphasis in the analysis of imperfection-sensitive
structures has shifted to the maximum load P, which
can be supported before buckling is triggered and to re-
lating P, to the magnitude and forms imperfections
actually take. This was the point of view adopted in the
general nonlinear theory of stability [Ref. 34] and in
subsequent investigations based on the general theory
[Refs. 49-55].
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The initial postbuckling analysis in its simplest form
yields an asymptotically exact relation between the load
parameter P and the buckling deflection &, valid in the
neighborhood of the bifurcation point of the perfect
structure. This expansion is in the form

P=P.(1+ab+bd>+...) (1)
where the coefficients a, b, ... determine the initial post-
buckling behavior. A number of important problems
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are characterized by multiple buckling modes associated
with the classical buckling load. Two of these problems
will be discussed in the next section. For such problems,
the initial postbuckling analysis may be considerably
more complicated.

Asymptotically exact estimates of the buckling load
of the imperfect structure are obtained by including the
first-order effects of small initial deflections. Only the
component of the initial deflection in the shape of the
classical buckling mode enters into the resultant formula.
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FIG. 1. LOAD-DEFLECTION CURVES FOR SINGLE MODE BIFURCATION BEHAVIOR
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If the amplitude of this imperfection component is de-
noted by &, then for Case 11 with § > 0, the general
theory yields

Br B
A o
P, P,
or
e P (a5) 12
P

where @ is a constant which depends on properties of the
structure. For the symmetric branching point of Case I11
(a= 0, b <0), the analogous formula is

o R _ P
[ = 5] = alf| =< (3)
P, P,
or
P
1-—5 ~ (|5 28
P, (alol)

In both instances, very small values of abd have a sizable
effect on P /P_, and it is this feature which accounts for
the extreme imperfection-sensitivity of many structures
which have an unstable postbuckling behavior.

Interest in the initial postbuckling approach mush-
roomed in England in the early 1960’s [Refs. 56-93].
Some fine experimentation is included in this work, and
an extensive series of theoretical investigations have
centered around conservative systems characterized by a
finite number of degrees of freedom. A great deal of this
work has been carried out at University College, London,
by Chilver, Thompson, Walker and their students.
Sewell, at the University of Reading, also has concen-
trated on the postbuckling behavior of discrete systems.
He has particularly emphasized the systematics of the
perturbation procedure and has used the terminology
“the static perturbation method™ in referring to this
method of analysis. Both Thompson and Sewell have
explored a variety of bifurcation possibilities for such
systems. Recent studies have been made with an eye to
providing a framework for postbuck]ing calculations via
finite element methods. Some of this work is summarized
in [Ref. 39].

Perhaps the best direct experimental validation of
the initial postbuckling approach was obtained in a
series of tests by Roorda [Refs. 67, 68]. The simple
two-bar frame shown in Fig. 2 was loaded in a testing
machine which, in effect, prcscribcd displacement rather
than dead load and in this way the postbuckling equili-
brium states were recorded. Experimental points and
theoretical predictions [Refs. 53, 85] shown as a solid
line for the load, P, versus buckling rotation, @, for the
“perfect” structure are displayed in the upper half of
the figure. The agreement between theory and experi-

ment for the effect of an impcrfcction — a slightly offset
load — on the buckling load is remarkably good.

The first application of initial postbuckling theory
was to the monocoque cylindrical shell under axial com-
pression [Refs. 34, 50| which will be discussed in the
next section. The second was a study of a narrow cylin-
drical panel under axial compression [Ref. 49] which
displays a transition, depending on its width, from a
stable postbuckling behavior typical of a flat plate to the
unstable behavior which characterizes the cylindrical
shell. Beaty [Ref. 94] and Thompson [Ref. 63] applied
the general theory to the axisymmetric buckling of a
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FIG. 2. COMPARISON OF THEORY AND EXPERIMENTS
ON A SIMPLE TWO-BAR FRAME
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complete spherical shell. Their analysis yielded the ex-
pected result that the sphere has an unstable postbuck-
ling behavior. However, it has been shown recently
[Ref. 55| that the initial postbuckling analysis in its
simplest form leads to results that are of little practical
consequence for the complete sphere problem. We defer
a discussion of this matter also to the next section.

The general theory [Ref. 34| has been applied to a
variety of shell structures by Budiansky and Hutchinson
and their students at Harvard University [Refs. 95-110].
Included among them are toroidal shell segments under
various loadings, cylindrical shells subject to torsion and
spheroidal shells loaded by external pressure.

Results shown in Fig. 3 due to Budiansky and
Amazigo [Ref, 103] very nicely illustrate the outcome
of such an analysis and its interpretation. In the upper
half of the figure the classical buckling pressure p. in
nondimensional form is plotted as a function of the
length parameter Z appropriate for either a simply-
supported cylinder of length L or a segment of length L
of an infinite cylinder reinforced by rings which permit
no lateral deflection but allow rotation. The initial post-
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FIG. 3. COMPARISON BETWEEN TEST AND CLASSICAL
THEORY WITH INITIAL POSTBUCKLING PREDICTIONS
FOR A CYLINDRICAL SHELL UNDER EXTERNAL PRES-
SURE

buckling behavior is symmetric with respect to the
buckling amplitude &, and therefore the pressure-
deflection relation takes the form

P LAY (4)
s = l+b(—) 5 o
P, t

where b is plotted in the lower half of Fig. 3. In the
figure, D is the bending stiffness, v is the Poisson ratio
and ¢ is the shell thickness, In this case, the asymptotic
relationship between the buckling pressure and the im-
pcrfcction is

5

t

L PR
p(.' ()

P,

2

where § is the amplitude of the component of the im-
perfection in the shape of the classical buckling mode.
A wide range of test data, collected by Dow [Ref. 111],
is also included in the figure. Measurements of initial de-
flections were not made in any of these tests, so it is not
possible to make a direct comparison of test and theory.
On the other hand, the coincidence of the large dis-
crepancy between test and classical predictions within
the Z-range in which b is most negative bears out the im-
perfection-sensitivity predicted.

The complcmentary character of an initial postbuck—
ling analysis and a large deflection analysis is brought out
by studies of long oval cylindrical shells under axial com-
pression. Kempner’s and Chen’s [Refs. 112-114] numer-
ical results for the advanced postbuckling behavior of
shells with sufficiently eccentric oval cross section
showed that loads above the classical buckling load
could be supported. Complete collapse occurs only when
the buckling deflections engulf the high curvature ends
of the shell. According to an initial postbuckling analysis
[Ref. 105], initial buckling will be just about as sensitive
to imperfections as for the circular cylindrical shell as
would indeed be expected because of the shallow buck-
ling behavior in each case. The composite picture is that
initial buckling will be imperfection-sensitive but not
catastrophic, and loads above the classical values should
be possible. Recent tests [Ref. 115] have confirmed
both these features.

One aspect of shell buckling which has attracted a
great deal of theoretical and experimental attention in
the last few years is the role which stiffening plays in
strengthening shell structures. Some rather unexpected
effects have turned up. One of the most interesting was
the observation by van der Neut [Ref. 116] over 20 years
ago that the axial buckling load of a longitudinally
stiffened cylindrical shell can be increased significantly
by attaching the stiffeners to the outer surface of the
shell rather than the inner surface. This advantage has
been clearly demonstrated by tests [Ref. 117].

Initial postbuckling results [Refs. 102, 109, 118] in-
dicate that stiffened cylindrical shells tend to be less
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imperfection-sensitive than their unstiffened counter-
parts, but the level of sensitivity can vary widely. For
example, while the classical buckling load of an outside-
stiffened cylinder may be much higher (a factor of two
is not untypical) than an inside-stiffened one, the im-
perfection-sensitivity of the outside-stiffened shell may
be much higher as well. Only a few experiments are
available to put these predictions to a test but those
which have been reported [Refs. 119, 120] show pre-
cisely this trend.

An extensive series of buckling tests on stiffened
shell structures has been underway for a number of
years under the direction of Singer at the Technion in
Isracl [Refs. 121, 122]. This program has produced
ample evidence that the classical buckling load is a more
reliable measure of actual buckling loads for stiffened
shells than it is for unstiffened shells. Nevertheless, the
experimental scatter and the discrepancies from the
classical predictions in these tests are indicative of the
fact that stiffening does not eliminate the problem of
imperfection-sensitivity. An up-to-date discussion of this
matter is given in [Ref. 123].

Other recent work in the area of postbuckling theory
includes an investigation of the interaction of local
buckling and column failure for thin-walled compression
members [Refs. 124, 125]. This work may help to
eradicate the naive approach to optimal design of struc-
tures liable to buckling by an attempt to equalize the
local and overall buckling stresses.

There have been important advances in both theo-
retical and calculational aspects of shell buckling in the
last decade. Buckling equations have been proposcd
[Refs. 52, 126] which are exact within the context of
first-order shell theory. Computer programs are now
available for accurate computation of classical buckling
loads for a wide class of shells of revolution subject to
axially symmetric loads [Refs. 127, 128]. These pro-
grams incorporate effects of nonlinear prebuckling be-
havior and discrete rings. When the prebuckling deforma-
tion of the perfect shell is a purely membrane one with
no bending, the initial postbuckling analysis is generally
simpler than when bending, and nonlinear prebuckling
effects must be taken into account. Most applications of
postbuckling theory to date have been in cases in which
the prebuckling response is exactly a purely membrane
state or could be reasonably approximated by one.
Within the last three years there have been several ap-
plications of the general theory to problems in which it
is essential to include nonlinear prebuckling effects
[Refs. 104, 109, 110, 129], and a general purpose com-
puter program for shells of revolution subject to axisym-
metric loads has been put together [Ref. 130].

Status of the Postbuckling Theory of the Cylindrical
Shell under Axial Compression and the Spherical Shell
under Uniform Pressure

The cylindrical shell under axial compression has
served as the prototype in studies of shell buckling

[Refs. 131-161], but its geometric simplicity is decep-
tive, and in many respects this structure, together with
the sphere subject to pressure, has the most compli-
cated postbuckling behavior of all. In large part, this
stems from the fact that a large number of buckling
modes are associated with the classical buckling load in
each of these problems, and consequently these shells
are susceptible to a wide spectrum of imperfection
shapes.

It is quite possible that a paper by Hoff, Madsen and
Mayers [Ref. 152] has put an end to the quest for the
minimum load which the buckled shell can support. A
sequence of large deflection calculations of the minimum
postbuckling load have been reported, each calculation
more accurate than those which preceded it. Hoff, et al.,
give a convincing argument that a completely accurate
calculation, based on the procedure which had been em-
ployed in all the previous investigations, would lead to a
value for the minimum postbuckling load which would
tend to zero for a vanishing thickness to radius ratio. Of
course, a shell with a finite thickness to radius ratio
would actually have a nonzero minimum load, but there
now appears to be general agreement that this minimum
is not nearly as relevant as had been thought.

The role of boundary conditions was extensively ex-
plored in the 1960’s and is now fairly well settled. Ac-
curate numerical calculations of classical buckling loads
which account for nonlinear prebuckling effects and var-
ious boundary conditions have been made [Ref. 162].
The classical load for cylindrical shell of moderate
length which is clamped at both ends is about 93 per
cent of the load predicted by the well-known “classical”
formula based on a calculation which ignores end con-
ditions altogether. So-called weak boundary conditions
for which no tangential shear stressis exerted on the ends
of the shell reduce the buckling load by a factor of about
two [Refs, 163, 164|. More recently it has been shown
that relaxed tangential restraint along a small fraction of
the edge has an almost equally detrimental effect
|Ref. 165].

Near perfect cylindrical shell specimens have been
produced by Tennyson |Ref. 166] and Babcock and
Sechler [Ref. 144, and these shells buckle very close to
the classical buckling load. High-speed photography has
resolved the apparent discrepancy between observed
buckling patterns and the classical mode shapes [Refs.
167-171]. Buckle wavelengths associated with the col-
lapsed shell are much longer than the classical buckling
mode wavelengths, but the wavelengths associated with
deformation patterns photographed just after buckling
has been triggered are in good agreement with the pre-
dictions of initial postbuckling theory.

The long cylindrical shell subject to axial compres-
sion is one of the examples used in [ Ref. 34| to illustrate
the general theory of elastic stability. Boundary condi-
tions are neglected, and consideration is restricted to
mode shapes which are periodic in both the axial and
circumferential coordinates. Due to the large number of
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simultaneous buckling modes, there are many possible
static equilibrium branches which emanate from the bi-
furcation point of a perfect cylinder, and all of them are
unstable. Remarkably, the initial curvature of the curve
of load versus end shortening (P versus €) is the same for
all of them and just after bifurcation

€ P 2re

E( P{’ 3 P(:
Effects of certain imperfections were also studied.
Among the shape possibilities represented by all the
classical buckling modes, a geometric impcrfcction in
the shape of the axisymmetric buckling mode results in
the largest relative reduction in the buckling load [Ref.
51]. The ratio of the buckling load to the classical load
is related to_the amplitude of such an axisymmetric
imperfection & by

I: £ :| ¢ 3¢
P, 2

where ¢ = /3(1-»") and p is Poisson ratio. When the
maximum load P, is attained, the shell has undergone
lateral deflections which are only a fraction of the shell
thickness, and an imperfection amplitude of only one-
fifth a shell thickness causes almost a 50 per cent reduc-
tion in the buckling load.

Eq. (7) is an asymptotic formula; and like all initial
postbuckling predictions of this type, it is accurate only
for sufficiently small imperfection amplitudes. In general,
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FIG. 4. EFFECT OF AXISYMMETRIC IMPERFECTIONS IN
THE SHAPE OF THE AXISYMMETRIC BUCKLING MODE
OF A PERFECT CYLINDRICAL SHELL UNDER AXIAL
COMPRESSION

it is difficult to assess the range of validity of asymptotic
results, For this particular imperfection shape, it is
possible to obtain an independent and more accurate
estimate of the P versus § relation which is based on a
finite deflection calculation [Ref. 51]. The asymptotic
predictions (eq. 7) are plotted with the more accurate
results in Fig. 4, and two predictions compare well over
a substantial part of the range of interest. The calcula-
tion of [Ref. 51] was repeated by Almroth [Ref, 172)
with the aim of getting better accuracy. He found that
the buckling load prediction may be somewhat lower
than those shown in Fig. 4 if the parameter Z (Fig. 3)
is very large.

Some experimental verification of these buckling
load calculations has been obtained by Tennyson and
Muggeridge [Ref. 173| with tests of cylindrical shell
specimens with axisymmetric sinusoidal imperfections
which were carefully machined into them. Points repre-
senting the experimental loads for five shells are plotted
with two theoretical curves in Fig. 5. The solid curve is
the result of the finite deflection prediction of [Ref. 51]
for the imperfection wavelength coincident with those
of the specimens. The dashed curve is a plot of the re-
sults of a numerical calculation which takes into account
nonlinear prebuckling deformations associated with the
clamped end conditions and the thickness variations
present in the test cylinders [Ref. 173]. At extremely
small imperfection levels, end conditions dominate.
Once the impcrrection amp]itudc is just a few per cent
of the shell thickness, the end effect is negligible and the
two predictions are virtually identical.

There have been some efforts to translate and adapt
the initial postbuckling predictions into a form directly
useful for engineering design [Refs. 129, 130, 161].
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FIG. 5. COMPARISON BETWEEN TEST AND THEORY FOR
BUCKLING OF CYLINDRICAL SHELLS WITH AXISYM-
METRIC IMPERFECTIONS LOADED IN AXIAL COMPRES-
SION
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Reinforcing this trend is recent work by Arbocz and
Babcock [Refs. 174, 175] in which imperfections
present in a number of test specimens were carefully
measured and mapped. Special techniques have been
used to calculate buckling loads for certain imperfection
shapes which are quite different from the classical buck-
ling modes or for imperfection shapes which are only
characterized statistically. Some of these will be touched
on in the next section,

Since Karman's and Tsien’s [Ref. 30] first large de-
flection calculation for the axisymmetric postbuckling
behavior of a complete spherical shell under uniform
pressure, a fairly large number of papers on the buckling
of caps and spheres have been published. Many of these
are referenced in a recent paper on the subject |Ref. 55].
Here, we will only mention some of the salient features
peculiar to the sphere problem which have recently
come to light.

Like the cylindrical shell under axial compression, a
complete spherical shell under external pressure has
many buckling modes associated with the classical buck-
ling pressure, and onc of these is axisymmetric. Many
unstable equilibrium branches emanate from the bifurca-
tion point of the perfect shell. A shallow shell analysis of
multimode buckling of the sphere |Ref, 101] indicates
that this shell is highly sensitive to both axisymmetric
and nonaxisymmetric imperfections, again just as for the
cylinder. While this shallow shell analysis is not rigor-
ously applicable to the complete sphere, its relative
simplicity reveals the mechanics of the buckling phenom-
ena of the sphere very clearly. In particular, the shallow
buckling modes are in striking similarity with experi-
mental modes reported in [Ref. 176]. An alternative
approach to this problem by a straightforward perturba-
tion technique is developed in |Refs. 177, 178].

Initial postbuckling analyses for axisymmetric buck-
ling have been given by Beaty |[Ref. 94], Thompson
[Ref. 63]. Walker [Ref. 80], and most recently by
Koiter [Ref. 55]. A multimode analysis in which
the axisymmetric mode couples with nonaxisymmetric
modes, analogous to cylindrical shell behavior, also was
given in [Ref. 55|, Imperfection-sensitivity was found to
be higher for multimode buckling than for axisymmetric
buck]ing.

A most important discovery of [Ref. 55] was that
the axisymmetric results just mentioned, which were
obtained by a perturbation expansion about the bifurca-
tion point, have an extremely small range of validity
which actually vanishes as the thickness to radius ratio
of the shell goes to zero. The principal reason for this
unusual limitation on the initial postbuckling results is
the occurrence of modes. associated with ecigenvalues
which are only very slightly larger than the critical
cigenvalues, whose amplitudes become comparable in
magnitude to the amplitudes of the classical buckling
modes outside of a very small neighborhood of the bi-
furcation point. For all practical purposes, the initial
postbuckling analysis in its standard form breaks down
under such circumstances. A more powerful form of

asymptotic expansion, also first detailed in [Ref. 34],
with an extended range of validity was applied to the
axisymmetric problem [Ref. 55]. The outcome of this
special analysis is that the spherical shell is highly im-
perfection-sensitive, more or less to the same degree as
the cylindrical shell under axial compression, even when
the deformations are constrained to be axisymmetric.
An approximate analysis |[Ref. 179] and several numer-
ical calculations|Refs. 180-183| back up this conclusion,

New Research Directions

It seems safe to predict that much of the impetus to
postbuckling theory as a developing subject will continue
to come from questions which arise in the analysis of
shell structures. Efforts are being directed to interpreting
postbuckling predictions and rendering them useful for
engineering purposes. If this is to be accomplished,
further calculations will be needed for more rgalistic
impcrﬁ:ctions than those which are readily accomimo-
dated by the initial postbuckling analysis. Approaches
which incorporate statistical descriptions of imperfec-
tions are also likely to receive growing attention in the
coming years.

Very recently, Sewell [Ref. 184] has explored various
ramifications of the more powerful expansion method
of |Ref. 34] (which was employed to get around the
difficulties in the sphere problem referred to above) as
it applies to conservative systems with a finite number of
degrees of freedom. Thompson [Ref. 185] has proposed
a somewhat different variation of the method, also for
discrete rather than continuous systems. The aim in
each case is to develop a uniformly valid asymptotic ex-
pansion which gives an extended range of validity for
those rather exceptional problems in which the standard
expansion breaks down outside the immediate vicinity
of the bifurcation point.

Effects of localized dimple imperfections on the
buckling of a beam on a nonlinear elastic foundation
have been explored using a variety of techniques, and
asymptotic formulas analogous to egs. (2) and (3) have
been uncovered |Ref. 186]. Application of these special
techniques has been made to study the effect of local
nonaxisymmetric imperfections on buckling of cylindri-
cal shells under external pressure [Ref. 187]. In addition,
both theoretical and experimental studies have been
made of cylindrical and conical shells under axial com-
pression in the presence of axisymmetric dimple im-
perfections [Refs. 188, 189]. With a continuing rapid
growth of numerical methods of shell analysis, it should
soon be possible to make reasonably accurate calcula-
tions of the bu ckling load of an arbitrary shell structure
in the presence of almost any form of impcrfcction. The
potential of such methods has already been demonstrated
|Refs. 190-193] for problems in which it is necessary to
convert the governing nonlinear partial differential equa-
tions to an algebraic system by spreading a two-
dimensional finite-difference grid over the shell middle
surface. No doubt calculations of this sort will not be
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inexpensive in terms of computation time for many
years to come; but if they are carefully sclected, such
calculations should be most useful for imperfection-
sensitivity assecssment.

The development of numerical methods for carrying
out the initial postbuckling analysis seems likely to pro-
gress along the lines of both the finite difference pro-
cedure [Ref. 130| and the finite element method
[Refs. 80, 194]. An interesting scheme has been put
forward for approximately accounting for nonlinear pre-
buckling behavior in an initial postbuckling analysis in a
way which exploits the computational advantages of the
finite element procedure |Refs. 195, 196]. The idea be-
hind the scheme is the treatment of the prebuckling
nonlincarity as a generalized imperfection.

Preliminary attempts have been made to come to
grips with some of the statistical aspects of imperfection-
sensitivity [Refs. 197-199]. A rather complete analysis
[Ref. 200] of an infinite beam with random initial de-
flections resting on a nonlinear elastic foundation yields
a relationship between the buckling load of the beam and
the root mean square of the imperfection amplitudes
with an implicit dependence on the correlation func-
tion for the imperfection. Calculations for the buckling
load of an infinite cylindrical shell under axial compres-
sion with random axisymmetric imperfections have been
made [Refs. 201, 202|. Here again, there emerge
asymptotic formulas similar to eqs. (2) and (3) which
now relate the buckling load to a value of the imperfec-
tion power spectral density at a particular frequency
which corresponds to the frequency of the classical
axisymmetric mode [ Ref. 201]. There is still a long way
to go before results such as these will be useful to the
structural engineer, but an encouraging first step in this

direction has been taken [Ref. 203].
Important extensions of postbuckling theory remain

to be made to include buckling under dynamically ap-
plied loads and buckling in the plastic range. Dynamic
buckling calculations are not new, but no unifying
theory is available which is at all as comprehensive as
that for static conservative loadings. The initial post-
buckling analysis has been broadened in an approximate
fashion to include dynamic effects [Refs. 95-97], and
some simple results with general implications have
been found,

Buckling in the plastic range is a phenomenon that is
not yet fully understood. Nonuniqueness of incremental
solutions in plastic branching problems starts at the
lowest bifurcation load, usually without loss of stability,
and a further load increase is required initially in the
postbuckling range [Refs. 204, 205]. A dectailed dis-
cussion of the famous column controversy among
Considere, Engesser, von Karman and Shanley [Refs.
206-211] is given in [Ref. 212]. In the case of plates
and shells the problem is even more complicated because
the physically unacceptable deformation theory of
plasticity yields results in better agreement with exper-
iments than the simplest flow theory. Even if flow theory
is certainly more acceptable from the physical point of

view, it is somewhat doubtful, however, that the simplest
J2 theory would be adequate in buckling problems. To
some extent this discrepancy also has been explained by
Onat and Drucker [Ref. 213], by proper allowance for
initial imperfections in their simple example. Even more
significant, perhaps, are Hutchinson’s recent results on
the postbuckling behavior in the plastic range of struc-
tures which are highly imperfection-sensitive in the
elastic domain [Ref. 214]. It is found in his examples
(a simple structural model and a spherical shell under
external pressure) that the sensitivity to imperfections
is equally marked in the plastic range, in spite of the
initial rise in the load at the lowest bifurcation point of
the perfect structure. A similar phenomenon has been
observed by Leckie [Ref. 215] in the postcollapse be-
havior of a rigid-plastic spherical shell cap. Hutchinson’s
analysis also confirms the earlier findings [Ref. 213]
that the discrepancy between the predictions of deforma-
tion theory and flow theory largely disappears in the
presence of imperfections.
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