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and the 6 equations of equilibrium for a typical joint: 

(N1-N 4)cos ~+[QI(O) +Q4(L)] sin ~+~(N z- N s) cos ~+~[Qz(O) + Qs(L)] sin ~ 

.,)3 ~ ~ 1 (X 1 . (X 

+T[Qs(L) - Qz(O)] +'2(N6- N 3)cos '2+ '2[Q3(L)+ Q6(0)] sm '2 

.,)3 ~ Ii . (X

+T[Q6(0) ~3(L)]-6P.Pm...sm'2 = 0
 

~ 1i.,)3 .,)3 . (X
(X

[Ql(0)-~4(L)]+T(N z-Ns) cos '2+T[Qz(O) + Qs(L)] sm '2
 

1 Ii ~.,)3 (X .,)3 . . (X


+'2[~z(0)-Qs(L)]+T(N3 -N6)cos '2-T[Q6(0) + Q3(LJ] sin '2 

+~[Q6(0)-Q3(L)]+6Paz,.;...sin~ = 0 

(N 1+N4 ) sin ~+[Q4(L) Ql(O)] COS~+(Nz +Ns) sin ~ 

+[Qs(L)-Qz(O)] cOS~+(N6+N3)sin~+[Q3(L)-Q6(0)] cos ~ 0 

.,)3 (X 1 .,)3."'"}- ~ . (X

[M 1(0)-M4(L)] +T(Ts - Tz) cos'2+'2[M2(0)-Ms(L)]-T[MZ(O)+Ms(L)] sin 2 

+ ~3 (16 - T3)cos ~ 1 [M6(0)- M 3(L)]+ ~3 [Af6(0)+ Af3(L)]sin ~ = 0 

(T4 - TI ) cos ~-[AfiL)+Af 1(0)] sin~+~(Ts - Tz)cos ~+ ~3[Ms(L)-Mz(0)] 

1 . 1 .,)3(X (X 

-'2[Afz(O)+Afs(L)] SIn'2+ '2(T3- T6) cos '2+T[M6(0)-M3(L)]
 

-~[Af6(0)+Af 3(L)]sin ~ = 0
 

-(TI + T4)sin ~+[~ 1(0)-~4(L)] cos ~-(Tz + Ts) sin ~
 

~ ~ (X • (X."'"}- ."'"}- (X
+[ z{O)-Ms(L)] cos'2-(T3+T6) SIn'2+[M6(0)-M3(L)] cos '2 = o. (30) 

The above set of equations is completed with the addition of the stress-strain relations 

N; = - ABa; 11 = GJy;,s 
(31) 

M; = ElK; ~i = ElK; 
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where, as pr eviously sta ted, the bending stiffness £ 1 is taken to be cons ta nt a bo ut all bending 
a xes . The slope defl ecti on equations are the same as those given by equations (14) together 
with th e add itio na l rel ations : 

(32) 

These quantities are co ns iste nt with the sign convention of Fig. 6. 
I t rem ains to express th e joint equilib rium equations in terms of the j oint di spl acements 

and rot ations, and this is accomp lishe d with th e a id of th e slope-de flec tion equat io ns . This 
step in the ana lysis is len gthy, but s traigh tforward, and th e algebraic effo rt is reduced with 
th e use of finite difference ope ra to rs. The results o f thi s computation are six finite dif­
fer en ce equations in terms of th e displacements and rotations of th e (m, n}th j oint and the 
six joints adjacen t to it. By expressing five of the di spl acement a nd r ot ation quantities in 
terms of th e radial disp laceme n ts h'm. n , th ese six eq ua tions can be reduced to one finit e 
differ ence equation in terms of n ormal joint di spl acements a lo ne. Symbolicall y, 

(33 ) 

where Sf is a 12th orde r finit e differ en ce operator and is omitted here in the interest o f 
brevity. 

The above finit e differ en ce equation admits pe r iodic eigensolut ions in the form 

)fin." = sin jim sin vn (34) 

wh ere p and v are the wave number s associa ted with the cha ra c terist ic bu ckling wa velengths. 
In functional not ation th e e igenva lue eq uation ass oc ia te d wi th thi s choice is of th e form 

_I P0'L2 L . CI. cr. _ 
QlO) = Qj(L} = - ~; lC3 0[<Pi( O}+ <P i(L}] + .L.~40 [li j(L }- vj(O)]J 

These quantities are co ns isten t with the sign convention of F ig. 6. 
It rem ains to express th e joint eq uilib rium equa tio ns in terms of the j oi nt di spl acem ents 

and rotations, and this is acco mp lishe d with th e a id of the slope-de flec tion equat io ns. This 
step in the ana lysis is len gthy, but s traigh tforward, and the alge bra ic effor t is reduced with 
the use of finit e differen ce opera to rs . The results o f thi s computation are six fini te dif­
fer en ce equa tions in terms of th e displac ements and rotations of the (m, n}th joint and the 
six join ts adja cen t to it. By expressing five of th e di spl acem ent a nd r ot ation quantities in 
terms of th e ra dia l disp lacemen ts h'm. n, th ese six equations can be reduced to one finit e 
differ ence eq ua tion in terms of normal joint di spl acements a lo ne. Symbolicall y, 

(33 ) 

wher e Sf is a 12th orde r finit e differ en ce ope ra to r and is omitted her e in the inter est of 
brevity. 

The above finit e differ en ce equation admits periodic eigenso lu tio ns in the form 

)fin." = sin ji m sm vn (34) 
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In Fig. 7 the curves shown are constructed by normalizing th e value of th e critical 
buckling load predicted by the discrete ana lysis with respect to the prediction of the 
equi valent shell analysis (23) and plotting this ratio for given va lues of GJIEl, sin 7./2. and 
Llre The value of GJ IEl has been selec ted as 0·769 to co rres po nd to beam s of solid o r 
hollow circula r cros s section such that J /l = 2 and the P oisson 's ratio of the beam mat erial 
is take n to be 0·3. The insert of Fig. 7 depicts the relation ship of the angle o: to the len gth 
parameters, L and R, such that sin al2 = L/2R a nd hence the critical parameter of co n­
tinuum theor y can be restat ed as L2/rgR = 2(L/rg) sin a/2. Several curves for con stant 
values of LI)(r~R ) are cross-pl ott ed in Fi g. 7. 
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FIG. 7. Buckling of a sha llow ret iculat ed spher ica l sec tion under externa l pressure (rigid joints). 

A rough indi cation of the validity of the eq uivalent shell analysis ca n be obtained from 
the following discussion . Wh en L/)( r~ R) is abo ut 2. the predi cti ons of equiva lent shell 
theory are 3-6 per cent higher than the a ctual buckling load predi cted by the discrete 
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F IG . 7. Buckling of a sha llow ret iculat ed spher ica l sectio n und er externa l pressure (rigid joints).
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It sho uld be expla ine d tha t a nother important so urce of degradat ion of bu ckling st rength 
is from geo me tric imp erfections, th a t is, departu res from the geo me try o f th e perfect 
st ructure. In the ra nge in which a n eq uiva lent shell ana lysis is approxima tely applica b le 
for the rigidl y jointed st ruc tu re th ese effects ca n be tr eated jus t as they ha ve been for shell 
th eor y [15]. They a re no t cons ide red in thi s s tudy . 

T he discontinuities in slope bet ween th e pai rs of me m bers described above are defined 
as follows 

(36) 

The previo us eq ua tion s (24) relating the rota tio ns at the member ends to th e join t ro tation s 
mu st now be m od ified to include the effects of the rela tive rot a tion s o f the memb er pair s. 
fn matri x form these modifications ar e 

e = B*r:'.n' (37) 

Wh ere e is a (6 x I ) ma t r ix co n taining th e valu es o f the slopes a t the ends o f the members, 
r :'.n is a (5 x I) rna trix co nrai nin g the a verage val ues of the slopes a t a joint [defined in the 
sa me way as in eq ua tion (8)J a nd the discontinuity factor s. a nd B* is a (6 x 5) ma tri x dep en­
dent on th e geometric pr op erties o f the grid. T hey a re given by 

e = [81(0), 82(0), 86(0), 84(0), 85(0), 83(0)] 

r~ , n = lim.n, em." , 8i, 8L ()~ J 

0 1/2 0 0 

- .) 3/2 1/ 2 0 1/2 0 

B* = 
, / 3/2 1/2 0 0 I ' J 

I ~ 

0 -1 /2 0 0 

- ,./3/ 2 1/ 2 0 - 1;2 0 

,/3/2 1/2 0 0 - 1;'2 

If the effects of the rotation al sp rings on the int ernal virt ua l wo rk of th e syste m a re 
taken into account, it ca n be show n by pr oceeding exact ly as in the ana lysis of the sp herica l 
segment with rigid joi nts, th at the member eq uations remain the same bu t now there are 
th ree mor e joint eq uilib rium eq ua tio ns in a dd ition to (30). Again, buckli ng is assoc iated 

Wh ere e is a (6 x I) m atr ix co ntaining the valu es o f the slopes at the ends of the members, 
r :'.n is a (5 x 1) matrix co n ta in ing the average values of the slopes a t a joint [defined in th e 
sa me way as in eq ua tion (8)J a nd the disco nt inuity factor s. a nd B* is a (6 x 5) matrix dep en­
den t on th e geo me tric pr op erties o f the grid. T hey a re given by 

G = [81(0),82(0) ,86(0),84(0),85(0),83(0)] 

r~ , n = lim.n,em.", 8i, 8~, ()~ J 

0 1/2 0 0 

- , / 3/2 1/ 2 0 1/2 0 

B* = 
, /3 /2 1/2 0 0 I ' 

f J 
~ 

0 -1 /2 0 0 

- './3/2 1/ 2 0 - 1;2 0 

,/3/2 1/2 0 0 - 1/2 

If the effects of the rotation al sp rings on the inte rnal virt ua l wo rk of th e syste m a re 
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A typical curve showing the effectsof non-rigid joints is given in Fig. 8 along with a curve 
for the same structure with rigid joints. In both instances the buckling loads have been 
normalized by the prediction (23) of the equivalent shell theory for the rigidly jointed 
structure. 
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FIG. 8. Buckling of a shallow reticulated spherical section under external pressure (non-rigid joints). 

It is recalled that the simple formula, equation (201 showing the effects of non-rigid 
joints on the beam-spring model, was derived for the range where the wavelengths of 
buckling were "long" compared to the member lengths and the axial member loads were 
"small" compared to the Euler load. It should be interesting to see if this formula is 
approximately correct when applied to the spherical section with non-rigid joints in the 
same range. A number of calculations have been made, and it has been found that the simple 
model gives an excellent approximation to the effect of non-rigid joints on the buckling 
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FIG. 9. Effects of non-rigid joints on buckling: comparison of the predictions for the beam-spring 
model with the predictions for the spherical section. 
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behavior of the spherica l section. Some results are pr esented in F ig. 9 for the case ofsin 11./ 2 = 
0·005 a nd Llr ; = 40. A limi ted nu mer ical investi gation shows simi lar agreeme nt for o ther 
co mbina tions of Llr , and sin 11./2 so lon g as L/ ,/ (rgR) is less than abo ut unit y. 

BUCKLING OF AN INFINITE RETICULATED CYLINDER
 
UNDER AXIAL COMPRESSION
 

In this section results are rep or ted for an eq uivalent shell ana lysis and a d iscr ete ana lysis 
for an infinite re ticul at ed cylinde r. with an equila teral tri angle grid and rigid jo ints. subjec t 
to axia l compress ion. Each beam in th e cyl inder is of len gth L and each join t is a distan ce R 
from the lon gitudinal cylinder ax is. T he gridwork is load ed by a tot al ax ial force, as depi ct ed 
in Fig. 10, which co rres ponds to an axia l pr e-buckling load F in ea ch of the lon gitud inal 
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FtG. 10 . Bucklin g of a reticul at ed cylinde r und er axial co mpressio n. 
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In the equ ivalen t shell analysis, the loading a pplied to the cylinder as described ab ove is 
replaced by a uniform force per unit circumference N where N = 2FIJ(3)L, and the stiff­
ness properties of the equilat era l trian gle grid a re the sa me as tho se used in the ana lysis 
of the sp herica l section and given by equ ation (21). The classical buckling load ofa n isotropi c 
cylindrical shell is given by the well-known formula 

(40) 

The non-dimensional para meter for the ax ial load in the lon gitud inal memb ers is 
given by 

(P
2 

--ae ) -_-L [3( -3 + -GJ)] t (41) 
EI r ~R 2 - EI 

where P; =:: F ;and in this problem a lso, the buckle waveleng ths a re on the order of J (rg R). 
The discre te analysis of the cylinder is ca rr ied out alon g the same lines as has a lready 

been outlined in the spherica l sect ion. Th e bucklin g deformation of the structure can be 
characterized by specifying three displacements and three rotati ons a t eac h joint. Th e 
length param eters of the grid Land R are related to the angle (X defined in F ig. 10 by sin CI./2 = 
."j(3)L/4R. Buckling is associa ted with bifurca tion from the pre-bu cklin g state and resulting 
eigenva lue equation is of the form 

PaLl L . Ct. GJ)
F B ( , I1, v,~,s m2' EI = 0 

where 11 a nd v are the wave nu mbers associated with the eigen rnode s '1'm,n = sin 11 /11 sin \'11. 

As expec ted, the eigenva lues predicted by the discrete theor y for given pai rs of axial a nd 
circumferentia l wavelengths are essen tially identica l to the co rres ponding eigenva lues 
from the equiva len t shell theory as long as the wavelengths are sufficiently lon g compared 
to the member lengths. When the pa rame ter L/J(rgR) is less th an a bout unity the critical 
eigenvalues from the two analyses are in subs tantial agreem ent and equa tion (41) is valid. 
However, when L/J (rgR) is grea ter than unit y the crit ical eigenva lue of the di screte an alysis 

. L __ "'- ,,0\ ' _ I ' '-L '_ I -r~~~-r -~ ~;t~l 3 ~-~~ !r - ~- --'" ' ' - , · L. - " '-(4'1) 

where P, =:: F ;and in this pr obl em a lso, the buckle waveleng ths a re on the order of J (rg R). 
T he discrete a nalysis of the cylinder is ca rr ied out alon g the same lines as has a lready 

been outlined in the spherica l sect ion. Th e bucklin g deforma tion of the struc ture can be 
cha racterized by specifying three displacements and three rotati ons at eac h joint. The 
length parameters of the grid L and R are rela ted to the angle (X defined in F ig. 10 by sin CI./2 = 
."j(3)L/4R. Buckling is associa ted with bifurca tion from the p re-buckli ng state and resulting 
eigenvalu e equation is o f the form 

PaLl L . Ct. GJ)
F(B,I1, v,~,s m2' EI = 0 

where 11 a nd v are the wave numbers associated with the eigenmodes '1'm, n = sin 11 /11 sin 1'11 . 

As expected, the eigenva lues predicted by the discrete theor y for given pair s of axial a nd 
circumferentia l wavelength s ar e essen tially identi cal to the co rres ponding eigenva lues 
from the equiva len t shell theory as lon g as the wavelengths are sufficiently lon g compared 

• ~ I , ~ • 
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OPTIMIZATION OF A RETICULATED STRUCTURE 

A light weight design of a reticulat ed struc ture will favor long slender members and a 
pr oper optimizat ion ana lysis will necessarily have to be d iscre te. To illu strat e thi s we 
have choseu to optimize the equilateral trian gular grid of a sha llow reticulat ed spher ica l 
she ll with rigid joints. Each memb er of the grid is tak en to have a solid circular cross ­
sect ion: and in ad dition, the radi us of the spher ical segment R and the effective bucklin g 
pressure per unit area Pc are rega rded as being specified. The struct ure is to be des igned 
aga ins t bu ckling by selecting the memb er length L and the rad ius of gyration of the member 
cros s-section rg such tha t the weight is optimized. 

T he weight per unit area W is 

W = 8n-J(3)porUL 

where Po is the mat erial densit y. The following convenient non-dimension al param eter 
W* will be minimized subjec t to the bu ckling cons tra in t: 

W* = W L/2R (42) 
- 16n.J(3)R po - (L/rg)2' 

Separa te ca lculat ions for the optim um val ues of Llrg and L/2R = sin 0:/2 which pr odu ce 
the o ptimum weight are carried out, first using an equivalent shell analysis and then usin g 
the discre te analysis. 

T he critica l value of the pr e-buckling loads in every memb er is given by 

(43) 

T he critical bucklin g pressure of the equiva lent shell model of the reti culated shell, 
ob tained from equa tion (22), is given b y the expression 

~ = 8n(rg/R )212(3+2G)l t 

E u. I. E 
(44) 

Vy = ~nv p !por'i/L 

where Po is the mat erial densit y. The following con venient non-d imension al parameter 
W* will be minimized subjec t to the bu ckling cons tra in t: 

W* = W L/2R (42) 
- 16n.J(3)R po - (L/rg)2' 

Separa te ca lculat ions for the optim um va lues of Llrg and L/2R = sin 0:/2 which produce 
the o ptimu m weight are carried out, first using an equivalent shell analysis and then usin g 
the discrete analysis. 

T he critica l valu e of the pre-buckling loads in every memb er is given by 

(43) 

T he critical buckling pressure of the equiva lent shell model of the ret iculated she ll, 
nht " in " r1 fr nm "nll" t;nn (')') ) i " o i ven h v r h » "Ynr"""inn 
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The minimum value of w* is found subject to the constraint (45).The optimum member 
properties are given by 

(46) 

L 
(47) 

and 

sin (X = ~(~) (~). (48)
2 2 r. R 

Use is now made of the eigenvalue equation of the discrete analysis which was derived 
in the third section and, in functional notation, is given by 

This equation is used with the previous expression for W* and (43~ in which (PaL2/EI)e is 
related to the prescribed pressure, to locate the optimum values of Llrg and sin oc/2 associated 
with the minimum weight (GJ/EI is again chosen to be 0'769). A straightforward search 
procedure was used to determine the optimum properties. 

A selection of optimum properties determined by the two different analyses have been 
tabulated in Table 1 for the following values ofthe parameter Pe/E, 6·67 X 10- 7, lOx 10- 7 

and 13·3 x 10 7 which typify loads encountered by steel roof structures under snow loading. 

TABLE 1. OPTIMUM PROPERTIES FOR A SHALLOW SECTION OF A RETICULATED
 
SPHERICAL SHELL SUBJECT TO PRESCRIBED NORMAL LOADING
 

Equivalent shell analysis 
L• ct 

petiJE sm - w* fJ (PL2 

) 

2 ~1 exact 
X 10- 7 " X 10- 7 

6·67 0·0130 191 3'56 0-8 0-74 
6-67 0-0139 200 3-48 0-9 0-82 
6-67 0-0148 208 3-43 1-0 0-90 

10 0-0140 176 4-52 0·8 0-74 
10 0-0150 184 4-46 0·9 0·82 
10 0-0162 193 4-34 1-0 0-91 
1303 0-01485 166 5'39 0'8 0,73 
1303 0-01595 174 5·26 0-9 0-82 
13-3 0-0170 181 5-16 1·0 0-91 

Discrete analysis
 
6-67 0·0182 231 3-42 1-22
 

10 0-0210 217 4-47 1·23
 
1303 0-0216 202 5-23 1-22
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With regard to the equivalen t shell predictions, it can be noted at once that the mor e 
conservative the choice of f3 (we have arbitra rily chosen f3 = 0·8, 0·9 an d 1·0), the hea vier 
the structure will be. To assess the reliabili ty of thi s very crude ana lysis the actua l bucklin g 
loads have been calculated using the predicted optimum value of Llr g and sin a/2 . Typica lly 
the actual axial memb er load at buckling is found to be as much as 10 per cent lower th an 
what was designed for using the equivalent shell ana lysis. The optimum values of L /r g a nd 
sin 7./2 predicted by the discrete ana lysis are about 20-30 per cent higher than those 
predicted by the equivalent she ll ana lysis for the pressures considered. M oreover the load s 
in the memb ers of the op timum str ucture at bucklin g are roughly 20 per cent higher than the 
Euler load of a simply supported column. In spite of the discrepancies between the two 
ana lyses, it is inte resting to note tha t both pr edict essent ially the same minimum weight. 

CLOSURE 

Bucklin g result s for reti cula ted shell struc tures in the form of bifurcation from a uniform 
pre-buckling state serve the sa me purpose as th eir counte rpa rt so lutions in continuum 
shell theory . Namely, t hey prov ide upp er est imates for the load ca rrying capacity of the 
str ucture. These esti mates will be lower ed by man y factors such as nonuniforrn ities due to 
edge conditions, nonuniformity of load ing and imp erfection s of var ious sorts. In particular , 
witho ut further studies, both theoretical and experimenta l, it mu st be assumed the im ­
perfections will pla y a t least the same degradin g ro le in th e bucklin g of reticulat ed shell 
struct ures as they have been found to do in regular shell struc tures. 

Based on the result s for the three reticulat ed structures studied here. the following 
genera lizatio ns seem reasonable for shell structures of this type. For a rigid jo inted structure, 
the eq uiva lent shell ana lysis sho uld be substan tially correct as long as the maximum ax ial 
load in any memb er does not exceed a bout 70 per cent of the simple-suppo rt Euler load and 
at this value the equi valent shell predictions sho uld be less than 10 per cent too high. The 
effect of n on-rigid joint s (but perfect geometry), in the ran ge in which the rigid jointed 
str ucture is adequately modeled by the equivalent shell theory is indicated by the formula 

(Pa )e [1-1 /{B+ l )J-l: 

(Pa)equi v 1+1 /(B +l ) 

where (Pa)cf(Pa)cqu;v is the ratio of the bucklin g load of the st ruc ture with non-rigid jo ints 

CLOSURE 

Bucklin g result s for reti cula ted shell struc tures in the form of bifurcati on from a uniform 
pre-bucklin g state serve the sa me purpose as th eir counterpa rt so lutions in continuum 
shell theory . Namely, th ey provide upp er estima tes for the load ca rrying capacity of the 
str ucture. These est imates will be lower ed by man y fact ors such as nonuniforrn ities due to 
edge conditions, nonuniformit y of load ing and imp erfections of var ious sor ts. In pa rticular , 
witho ut further studies, both theoretical and experimenta l, it mu st be assumed the im­
perfect ions will pla y at least th e same degradin g ro le in th e bucklin g of retic ulated shell 
structures as they have been found to do in regular shell structures . 

Based on the result s for the three reticulated structures studied here. the following 
genera lizatio ns seem rea sona ble for shell structures of this type. For a rigid joint ed structure, 
the eq uivalent shell ana lysis sho uld be substan tially correct as long as the maximum ax ial 
load in any memb er does not exceed a bout 70 per cent of the simple-suppo rt Euler load an d 
at thi s va lue the equiva lent shell predictions sho uld be less than 10 per cent too high. The 
effect of n on-rigid joint s (but per fect geome try), in the ra nge in which the rigid joint ed 
str ucture is adequately modeled by the eq uivalent shell theory is indi cated by the formula 
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A6CTpaKT-)l,aeTcll aaanas YCTollYHBocTH aexoropsrx KOHCTpyKUHA cerxarsrx 060JlO'leK, nyresi 
HCnOJlblOBaHHll TaK npH6JlHlICeHHoro aHaJIH3a otionoxex, KaK H aaanaaa Jl,HCKpeTHblX CHCTeM, KOTOPblA, B 
OCHOBHOM, aanaercs TO'lHblM: PaCCMaTpHBaIOTCll cneJJ;YIOJ.UHe KOHCTpyKUHH: 6ecKoHeYHall cersaras 
6aJIKa, ClICHMaeMall oceBblM JJ;aBJleHHeM H nexauiaa aa lIpyllCHHax, pacnonosceaasrx B paaaoea paccrosuaa, 
nonoras '1aCTb cersaroa Cll>ePbl C PaBHOCTOPOHHOlt rpexyronsaok cerxoa, IIOJJ;BepllCeHHall HOPMaJIbHOlt 
aarpysxe H 6ecKOHe'lHall, UHnHHJJ;pH'IecKall ooonosxa C paeaocropoxaoa rpexyroneaoa cerxoa, lIOJJ;­
aepxeuaaa OceBOMy ClICaTHIO. HCnOJIb3yeecll aHaJIH3 JJ;HCKpeTHblx CHCTeM C uensio cpaaueuaa TO'lHOCTH 
YCJIOBHlt aHaJIH3a3KBHBaJIeHTHblX 060JlO'leK. Harpysxa BbIlIy'lHBaHHll, paC'IHTaHa na OCHOBe 3KBHBaJIeHTHOro 
aHaJIH3a 060JIO'leK, asnaerca nexoacepaarasnon, xorna KaK )J;J1HHa BOJIHbl Aell:>opMaUHH BblIIy'lHBaHHll 
paaaa lIOPllAKY )J;J1HHb! 3JleMeHTa, HJIH sorna ocesaa uarpysxa B anesseare rrpx norepe yCTOlt'lHBOCTH 
pasaa nopanxy BenH'IHHb! aarpysxa BbIlIY'lHBaHHll 3ltnepa)J;J1B CB060AHO oneproa xonoaau. Hccnenyercs 
3l1:>lI:>eKT HarpY3KH BblnY'lHBaHHll, YMeHbwalOJ.UHA lICecTKOCTb COeJJ;HHeHHli TaK )J;J111 MOJJ;enH 6anKa-npYllCHHa, 
KaK H )J;Jlll Cl!:>ePH'IecKOlt CCT'IaToA 060JlO'lKH. Ha KOHeu, anmocrpapyerca BallCHOCTb aaanasa JJ;HCKpeTHblX 
CHCTeM nyress onpeneneuas OlITHMaJIbHblX CBOlIcTB nonoroa '1aCTH CeT'IaTOA Cl!>ePbl, lIOJJ;BepllCeHHOA 
JJ;eACTBHIO HOpMaJIbHoll HarpY3KH H paC'IHTaHHoA C yseross BbIlIy'lHBaHHll. 


