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BUCKLING OF RETICULATED SHELL STRUCTURESY
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Abstract—Buckling analyses of several reticulated shell structures are carried oul using both an approximate
equivalent shell analysis and a discrete analysis which is essentially exacl. The structures considcred are: an
infinite reticulaled beam under axial compression and resting at equally spaced inlervals on elastic springs:
a shallow seclion of a reticulaled sphere with an equilateral triangle grid subject to normal leadmg; and an infinile
reliculated cylindrical shell with an equilateral triangle grid subjecl lo axial compression. The discrete analysis is
used to evaluate the accuracy of the predictions of the equivalent shell analysis. The buckling load compuled on
the basis of the equivalent shell analysis is nouconservative wheu a characteristic wavelenglh of the buckling
deformalion is on the order of the member length or the axial load in a member al buckling is on the order of
the Euler buckling load of a simply supported column. The effecl on the buckling load of reducing the rigidity
of the joiuts is investigated for both the beam-spring model and the reticulaled spherical shell. Finally. the im-
portance of the discrete analysis is illustrated by the determination of the optimum properties of 4 shallow section
of a reticulated sphere subject Lo a prescribed normal loading and designed against buckliug.

INTRODUCTION

A coMMON method of analyzing the buckling of a reticulated plate or shell structure 15 to
approximate it by an equivalent continuous plate or shell and to make use of the large
number of results which have already accumulated for such struciures. The history and
development of this approximate type of analysis are discussed extensively in a paper by
Wright [1], where effective stretching and bending properties for a number of reticulated
shell surface patterns are derived and used to introduce equivalent shell structures. The
validity of the equivalent plate approach to reticulated plates can be assessed from discrete
calculations of Renton [2-4] and Wah [5] for bending of reticulated plates under normal
load and by Wah [6] for buckling under inplane loads. In general, the equivalent plate
predictions for buckling are accurate so long as there is a sufficiently large number of
members included in a distance comparable to the charactenstic buckling wavelength,
which for plates is, in turn, usually comparable to the shortest inplane dimension.

Applicability ol an equivalent shell theory of buckling to reticulated shells is more diffi-
cult to assess. For shells, the charactenstic buckle wavelength can be on the order of
J{Rt), where R is a radius of curvature and ¢ is an effective thickness. Certainly this length
must exceed the member length if an equivalent shell theory is to be used. The validity of
the continuous approximation is also limited by the reduction in stiffness of the members
in a reticulated shell when the axial loads in the members are close to the Euler buckling
load of the individual beams.

In this paper the buckling of reticulated structures will be analvzed using an exact
discrete formulation which accounts for the behavior of the individual beams. The simple,

+ This work was supporled in part by lhe National Aeronaulics and Space Administrabion under Grant
NGL 22-007-012, and by the Division of Enginceriug and Applied Physics. Harvard University.
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910 STEVEN E. ForMaN and Joun W. HUTCHINSON

yet fundamental, reticulated shell structures considered here consist of a plane or curved
surface composed of a single layer of straight beams arranged in some repeating pattern,
Figure | illustrates four such reticulated shell structures which utilize the equilateral
triangle as a surface element. Several problems of varying complexity will be investigated
and the predictions based on the discrete analysis will be compared with those obtained
from the equivalent shell analysis with the aim of determining the range of validity of this
latter approximate theory.

la) DOME

(c) TOROID (d) HYPAR
F1G. 1. Examples ol reticulated shells.

The first and simplest buckling problem which will be used to illustrate the method of
analysis is a variatton of a problem which is often used to model shell buckling. It is the
buckling of an axially compressed infinite reticulated beam which rests at equally spaced
intervals on linear elastic springs. Predictions for both rigid and non-rigid joints connecting
the member beams are obtained. The second problem examined is the buckling of a shallow
section of a reticulated sphere with an equilateral triangle grid which is subject to equal
inward loads at each joint. Again the separate cases of rigid and non-rigid joints will be
considered. The final problem treated is the buckling of an infinite reticulated cylindrical
shell, with an equilateral triangle grid with rigid joints, subject to an axially compressive
leading.

To further illustrate the importance of a discrete analysis, optimum properties (1.¢.
membher length, stiffness and weight) are found for a shallow section of a reticulated sphere
of a given radius, subject to a prescribed effective external pressure and possessing an
equilateral triangle grid with rigid joints.
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BUCKLING ANALYSIS OF A MODEL RETICULATED STRUCTURE

Consider an infinite reticulated beam under axial compression P,, resting at equally
spaced intervals on elastic springs as depicted in Fig. 2(a). Each spring exerts a restoring
force Cw on the beam, where C is the elastic spring constant and w is the normal deflection
of the beam at the spring. Adjoining beams are pinned at the springs and relative rotation
is restrained by a rotational spring which is introduced to model the effects of non-rigid
joints. The moment exerted by one beam on its adjacent neighbor (transmitted by the
torsional spring) is k8* where k is the spring constant and 6* is the relative rotation of the
adjoining beam ends. Of special interest will be the case in which the rotational spring
constant is infinite and the beams are rigidly connected to form an infinite beam.

o
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FiG. 2(a). Infinite reticulated beam under axial compression resting on equally spaced springs.
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Fi16. 2(b). Sign conventions for forces, moments, deflections and rotations of the ith member.

The equivalent beam analysis of the model reticulated structure with rigid joints

If the characteristic wavelength of the buckling mode is long compared to the distance
between springs the effect of the individual springs can be approximated by smearing them
out and replacing them by an elastic foundation. This beam-spring system is characterized
by the well-known differential equation for a beam on a continuous elastic foundation
subject to axial load P, [7],

d*w d*w C

—t+P,—+-w=0 1
& e Y @
where x is the axial coordinate, E is Young’s Modulus, I is the moment of inertia of the

beam cross-section, and C/L is the effective spring constant per unit length of the elastic
foundation.
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912 STEvEN E. FORMAN and JOHN W. HUTCHINSON
Buckling of the beam is associated with bifurcation {rom the initially straight configura-
tion. The eigenfunctions and eigenvalues of this problem are respectively
X
w = sin g~ 2)
BT (
and
PLYEI = 2 +(CL3/EN/ L2 (3
[t is now convenient to introduce the dimensionless parameters P = (P,L?/E* and C* =

(CL*/EI. The buckling Joad P_, ie. the minimum eigenvalue, and the associated wave
number y, are

c3

Po=(ACH,  po= (CH* (4)

These predictions will be checked against the exact results obtained next. Tentatively, we
expect these formulas to be valid as long as the axial {oad in the members is sufficiently
less than the Euler buckling lead for a simply supported celumn (ie. C* < z*/4) and
the wavelength of the buckling mode is large compared to the member length.

Discrete analysis of the model reticulated structure
The discrete analysis proceeds from a variational statement of the principle of virtual

work. If it is assumed that buckling occurs only in the x—z plane of Fig. 2(a), then the
principle of virtual work can be stated as follows

N
iy

L
Zj (= Ndeg+Mdi)dx+ Y Cwidw,+ 3 k0F30F = EVIV of applied loads (
i Q i i

where N, 1s the axial load, ¢, the axial strain, M, the moment, ¥, the curvature and x the
axial measure of distance, all for the ith member, and w, is the normal deflection of the /th
jomnti. The joints and members are numbered in Fig. 2(a) such that the ith joint precedes
the ith member. Since it 15 anticipated that the solution found will possess 4 certain periodt-
city along the beam, the variational statement above 1s written for a representative length
of the structure.

The strain measures of small-rotation beam theory are entirely adequate lor the present
buckling analysis. For buckling in the x—z plane, they are

i _%le dw)? ©

Y dx 2l dx )
d?w,

=gt )

¥ The bars underlining the joint displacements and rotations (e g u,) are used to distinguish them [rom the
displacements and rotations of points on the neulral axis of the members (e g w)
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where u; and w; are the axial and normal displacements respectively of the ith member.
The slope of the deflormed ith member at any point along its neutral axis 8,, the change in
slope across the ith joint 8F, and the average slope at the ith joint @, are given by

0, = dwt
dx

F=00-6 (L), 8 =[00)+0,_,(L))2 (8)

and the transverse shear force in the ith member is

dM,

;= o {9

All the beam forces, moments, displacements and rotations are shown in Fig. 2(b) along
with their respective sign conventions.

A restatement of the principle of virtual work, using the strain measures and definitions
given above, following appropriate integration by parts leads to the member equilibrium
equations

Ni.x = O‘ Mi,xx_(NiM,i.x), =0 (10)

where (), = [d()/dx] and the joint equilibrium equations
Ni (L) = N{0) = 0
[NAOBLO) = N, (L)8:— (D)) + Q- (L) = Q{0)]+ Cw; = 0
M, (L)— M{0) = 0
L M)+ M, (D)) +6F = 0.

2k

To investigate bifurcation from the initially straight configuration, perturbation serics
are developed ahout the pre-buckling state in the usual way te. N{0) = P, + ENUO+ .,
w; = &wll 4 ete. where & is the perturbation parameter. These expansions lead to the
following linear algebraic problem which consists of the member equations

N§1x) =0, MU poin {12)

ixx atixx

and the joint equiliboum equations

PO+ 00 (L)~ Q0+ €t = 0

M2, (L) = M{M(0) = 0 (13)
L (L (D] L g*n
il—(‘[Mi, 1(L)+1’\/[I- (0)J+{J, - 0_

Equations {12) vield slope-deflection equations which relate the forces and moinents
at the ends of the ith member to the rotations and deflections at the ends. They are defined
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consistent with the sign convention of Fig. 2(b) and are given by
EA
NP = NIL) = —=—[uf(L)— u{*(0)]

3Csp

M) = 2E’[2cme<”(0>+czoo“’(L) 230 i) - w‘“(wﬂ

(14

MPW = =22 26,000+ Coot 0~ 2S00 -0

6EI

010 = QL) = ——[Cao(e‘“m)w‘”(L» 2w

——(w{"(L)— W‘”(O))]

where A is the member cross-sectional area and Cyq, C14, C30 and C, are the well known
stability functions [8-10] which are defined as follows

C. — P(sin P—P cos P) Con o P%(1—cos P)
107 42—-2cos P—Psin P) 30 ™ 6(2—2cos P—Psin P)
P(P—sin P) P3sinP
C20 = C40 =

2(2—2cos P—Psin P)

where P is the dimensionless load parameter used in the equivalent beam analysis,
(P,L*/ED).

The joint equilibrium equations are now converted into three finite difference equations
in terms of slope quantities and deflections at the ith joint and the two joints adjacent to it.
A considerable notational simplification of these equations is achieved by introducing
the shifting operators of the calculus of finite differences [11, 12]—defined by E;f; = fi+,
and E; 'f; = f;_,. With these operators, the joint equilibrium equations are:

12(2—2cos P— P sin P)

(1)
[4C10+ CaolE+ Ey N —3Cs0(E,— 7 12— 22— B )t = 0

C* (1) P2 1
Cio(E;—E7 HeM + ?—2C40(E +E; ! 2)) (?+1—§(E,~+E,-_l))0;"(” =0 (15

wib) C
CoolE;i—E7 W0V —3C3(E+ E; ! 2) (B+2C10_TZO(E:'+EFI))07(”=0

where B = kL/EI.

The case of rigid joints (k = o) is investigated first. With 6} = 0, equations (15) can be
reduced to a single fourth order finite difference equation in terms of the joint displacements
wit:

E E—12 C*
[4C +0(C (E; +11" Nt +2C40(2— E,— Ef 1)]w<11—0 (16)
10 20

The eigensolutions associated with (16) are

wil) = sin pi (17
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where y is the wave number, and the associated eigenvalue equation is
C* 6C3, sin’

-1 el Y — =
G 2C10+C20cosp+ Cap{ll—cospu) =0 {18}

or in the functional notation
F(P,p, C*) = 0.

A straightforward numerical procedure has been applied to {18) to find the critical eigen-
values associated with buckling for fixed values of C*.

A direct calculation, which will not be given here, demonstrates that when the axial
load in 2 member is small compared to the Euler buckling load and the characteristic
wavelength of the buckling mode is large compared to the member length the eigenvalue
equation of discrete analysis reduces asymptatically to that of the equivalent beam analysis
—equation (3).

In Fig. 3, the curve denoted by rigid joints is constructed by normalizing the buckling
load predicted by discrete analysis by the prediction of equivalent-beam analysis—equation
(4—and plotting this ratio for given values of C* At C* = 10, the critical axial load in a
member predicted by equivaltent-beam theory is 1 per cent higher than the exact value
predicted by discrete analysis. Furthermore, at this value of C* the exact load is 63 per cent
of the Euler load and the buckle half-wavelength is 177 times the member length. However
at C* = 25, when the actual member load is 92 per cent of the Euler load and the buckle
half-wavelength is 1-37 times the member length, the prediction of equivalent beamt theory
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F1G. 3. Buckling of the beam-spring model (rigid and non-rigid joints).
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15 10 per cent too high. For even larger values of C* the predictions of the equivalent beam
analysis grow increasingly more inaccurate, At C* = 4x? it can be shown using the discrete
analysis that the half-wavelength of buckling is exactly equal to the member length, ie.
i, = m, and the axial member load is equal to the Euler load, ie. P, = n. Thus the beam-
spring model buckles only between the springs. This problem was previously solved by
Budiansky, Weinberger and Seide [13] using a somewhat different procedure than used
here.

The equations for the case in which the joints are non-rigid can also be reduced to the
form

Lwi) =0

where now & is a sixth order difference operator. The eigensolutions are again of the form
of (17y and the eigenvalue equation is

6C40(cos 1— D[P? +6(1 —cos u)]
2C, o+ B—Cypcos

Cap[ PP+ 6{1 —cos 4]
C.‘!O_
2C, g +B—Cypcos

C*—24C olcos u— D+

C,plcos u—1)
2Cq+B—-C,pcosu

—12C,gsin? w1+

C3,sin?
2C  +B—Cypcos

2[2C10+C30 COS j1—

or in functional notation
F(P, i, C* By = 0.

The significance of the parameter B can be explained by considering a cantilever beam
of bending stiffness EJ and length £. which is loaded at its free end by a transverse load S
and supported at its other ¢nd by a rotational spring k. The deflection at the frez end of this
cantilever beam is

_SEA1 1
YT E (3+BJ‘
When B is infinite, the beam 1s rigidly clamped and the deflection is due entirely to the bend-
ing of the beam. When, for example, B = 3, the deflection at the free end due to bending
is the same as the contribution due to the rotation of the spring.

The critical eigenvalues predicted by the discrete analysis have again been normalized
with respect to the predictions of equivalent beam theory with rigid joints [equation (4)],
and this ratio has been plotted m Fig. 3 as a function of C* for different values of B. When
B 1s greater than about 25, the joints are effectively rigid. For smaller values of B, there is a
marked departure from the discrete analysis with rigid joints and the non-rigid effect of
the joints must be taken into account.

Equation (19) can be solved asymptotically when C* 1s sufficiently small, that is, in the
region where the wavelength of the buckling mode 15 large compared to the member lengths
and the axial load in 2 member is small compared to the Euler load. A very simple formula
results which clearly shows the effects of the non-rigid joints. This formula is

lim (P} discrete - 1B+
0 (P) equivalent-beam 1+ 1/B+1)

(20}
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While this is an asymptotic equation, Fig. 3 shows that the normalized buckling load ratio
does not change appreciably unti] C* becomes larger than about 10. Therefore. (20) gives
a reasonable estimate of the effects of non-rigid joints in the range where the equivalent
theory is valid for the analysis of the beam-spring model with rigid joints.

BUCKLING ANALYSIS OF A SHALLOW SECTION OF A
RETICULATED SPHERE UNDER NORMAL LOADING

In this section we consider a shallow section of a reticulated spherical shell with a
repeating equilateral triangle grid which is loaded at each joint by an inward radial force F.
The member length L is assumed to be very short compared to the characteristic dimension
of the shallow section. Of course, such an equilateral triangular pattern must be distorted
in certain regions to cover an entire sphere. Here, our focus 1s on a shallow section in which
there is no distortion of the grid to first approximation. A classical buckling analysis of
this shallow section is carried out using both an equivalent shell theory and a discrete
theory. Consideration is restricted to member properties such that the reticulated shell is
effectively very thin and therefore the buckle pattern is duplicated many times over the
surface of the shallow section. This feature is exploited and only periodic shallow buckling
modes are investigated. The constraining effects at the edge of the section or of the adjeining
shell, il the section is regarded as part of a complete sphere. are not treated in detail. Qur
main concern is the discrete buckling behavior peculiar to the grid.

Equivalent shell analysis of the shallow spherical section with rigid joints

If the characteristic wavelengths of the buckling mode are long compared to the member
lengths then the deformation of the segment can be modeled by replacing it by a continuous
shell. The equivalent shell associated with the equilateral triangle grid shown in Fig 4 i3
isotropic and its effective bending and stretching properties are [1, 14]

_OEH 6T - 22
Pe="4r (3 EI] 0= VOIL (21)
vh = (1= GJ/ED(3+ GJ/ED)] = d

JAVAVAVAVAVA
JAVAVAVAVAN

NN/ AN

F1G. 4(a). Equilateral triangle grid.
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(m-1,n+1} {m=+1,n+1)

2

{n,n})

[m-2,n} T

{m-2,n]

{m-1,n-1} (mi+1,n-1)

Fia. 4(b). Grid and member numbering systems—spherical seclion.

where EI 1s the flexural rigidity of @ member (which in this study 1s taken to be the same
about all bending axes), GJ is its torsional rigidity, EA is its axial stiffness, D, and (E¢),
are the bending and stretching stiffnesses, respectively, of the equivalent shell and v§ and
vi are the eflective Poisson’s ratios of the shell for bending and stretching,

The loading applied to the reticulated shell in the form of equal inward radial forces
at each joint is replaced by a uniform pressure p over the equivalent shell where
p = 2F//(3)L% The critical buckling pressure for a complete spherical shell with the
properties listed above 1s well known and is given by the equation

o= ralDENT? @
Precisely this same value 1s obtained by a shallow shell analysis, in the spiril of that described
above, which ignores the boundary conditions at the edge of the section. Shallow buckling
modes of the form w = (sin ux)(sin vy} are considered where w is the norma! deflection and
4t and v are wave numbers associated with coordinates x and y in the surface {153 The
wavelengths characterizing such a buckle pattern are “short” and of the order of \/(Rr,),
where r, = /(I/A) is the radius of gyration of the member cross-section.

The pre-buckling load in each member is the same, P,, and is related to the normal load
at the joint F by P, = RF/3L where R is the radius of the sphere. Hence the value of the
axial load in each member at buckling is

:| . 23

P2 L2, GJ
[ El ] B rgR|:3[ TEr
As long as the parameter L/\f(rgR) is sufficiently smal}, so that the member length is short
compared to the buckle wavelength and so that the axial member load at buckling
(P,L*/ED,,, is well below the Euler buckling load of a simply supported column (ie. %),
it can be expected that (23) gives a good approximation to the critical axial member loads.

When the axial member load at buckling is of the order of or larger than the Euler load a
discrete analysis is necessary to accurately predict the critical eigenvalues.

t At this stage of the discussion it is not obvious that the simple support Euler load, rather than the Euler ioad
for a clamped—clamped column say. is the relevant culoff for the equivalent theory. 1L turns cul, however, Lhat
it s
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Discrete analysis of the shallow spherical section with rigid joints

In principle, the discrete analysis of a shallow reticulated spherical shell is similar to that
carried out for the model reticulated structure: but it is considerably more' lengthy and
involved and it will be necessary to omit most of the algebraic details. Only the important
details of the analysis and the results obtained wili be given in this section,

The joint numbering system that is emploved is shown in Fig. 4. The six members
emanating from a joint are numbered 1-6 in the counierclockwise fashion shown, and a
typical member of the group of six will be referred to as the ith member.

Deformation of the structure as a whole is characterized by specifying six quantities—
three displacements and three rotations—at each joint. As shown in Fig. 5, these quantities
are specified with respect to a tangent plane which passes through the undeflected joint
and makes equal angles (l.e. o/2) with all the undeflected members originating from the
Joint. Typically, at the {m, n)th joint u,, and v, , are the two orthogonal displacements
tangent to the plane, w,, , is the displacement norinal to the plane (positive inward), v, , and
8,,» are the rotations about the two axes in the plane and ¢, , is the rotation about the axis
normal to the plane.

TANGENT
PLANE

{1, 1)

l "'\ﬁ Sinla/2y= L/2R

F1G. 5. Sign conventions for joint displacements and rotations——spherical section.

The displacements and rotations at the ends of the members, as defined with respect to
a coordinate system along the length of the beam, are shown in Fig. 6 and are related to the
joint displacements and rotations by

U= AU o= AT,

m.n

V=8U,, ©=8l,, (24)
W=cCU,, ©=CT

m.n
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si=|0 sj=L
/Q;(O) - qi{L) v
NHO)—’T 1 Ni(L) éui
Qi(0) Qi(L) wi
sj — 8
/Mi(o) / Mi(L) ¥i
i
Ti(O)« “—b Ti(L)
jlKh-(m (L) i
[} I

FiG. 6. Sign conventions for forces, moments, displacements and rotations of the ith member—
spherical section.

where U, V, W, y, ® and ® are (6 x 1) matrices containing the values of the member displace-
ments and rotations at their ends t¢rminating in the (m, n)th joint; U,, ,and T, ,are 3 x 1)
matrices containing the values of the deflections and rotations of the (m, n)th joint; and A,
Band C are (6 x 3) matrices dependent on the geometric properties of the grid. The member
displacement and rotation matrices are

U = [4(0), u5(0), u6(0), ua(L), us(L), u5(L)]
V = [2:(0), v5(0), v6(0), v4(L), vs(L), v3(L)), etc.

and the joint displacement and rotation matrices are given as follows

Unin = Wonns Umms Wl Tomon = [Zmns Omns @omonl
and
[ a 0 b] C 0 1 0]
a2 J3a2) b -J32 12 0
. a2 —J3@2) b 5o J32 12 0
a 0 —b 0 1 0
a2 J3a2) —b -J32 12 0
a/2 —\/3(a/2) -b \/3/2 12 0
i [ —b i 0 —a ] i
—b2 -3 a
oo —b2  J3(b/2) a
b 0 a
b2 J3(b/2) a
b2 —/3(b/2) a

wherea = cos a/2and b = sin a/2.
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The variational statement of virtual work for a representative section of the shallow
spherical shell is
L

> {(— Nidg, + Mok, + MR+ Tidy, ) ds = 33 Fow,, (25)

members v 0 m n

where N; and ¢ are the compressive axial load and the axial strain; (M, k;) and (M, &)
are the bending moments and curvatures about the two orthogonal bending axes; 7; and
¥:s are the twisting moment and twist per unit length; and s is the axial measure of distance,
all for the ith member. As stated previously F is the inward radial load applied to a joint
and w, , is the inward radial deflection of the joint.

The strain measures of small rotation theory, which are again adequate for the shallow
modes anticipated, are given in terms of the deflections related to the coordinate system
along the ith beam:

£ =t %(W.',s)z + %(Ui,s)z

-

K. =

a.
i,55 i LL,SS

(26)

K; = — W

where u;, v; and w; are the axial, lateral and radial displacements respectively of the ith
member. The slopes of the deformed ith member are given by

g, = Wis ¢ = —Uis (27)

Q= Mi,s g = Mi,s‘ (28)

The sign conventions for all these quantitics are shown in Fig, 6.

Now, as in the case of the model problem, a set of member equations and joint
equilibrium equations can be found from the principle of virtual work. The pre-buckling
state of the sphere under the loading prescribed is a simple one in which the axial load 1s the
same in all members and is related to the applied loads by the relation P, = RF/3L. Since
buckling of the structure is associated with a bifurcation from the pre-buckling state, all
force and displacement quantities will be expanded in perturbation series about it just as in
the beam model analysis. In order to avoid a cumbersome notation, the superscripts
indicating the first order buckling quantities of the perturbation series have been deleted,
and all quantities except the pre-buckling term P, should be thought of as perturbed
quantities. The resulting linear ¢igenvalue problem consists of the member equations

Ni,s = 0 Tl.s = 0
M[,ss_Pawr',ss =0 (29)
Mﬁ,ss‘i- Pavi,ss = 0



922 Steven E. ForMAN and JOHUN W, HUTCHINSON
and the 6 equations of equilibrium for a typical joint:
N,—N) cos =+[0,(0 Ly]sin 2+ (N, = N.) cos 2 +210,(0) + 0(L)] sin
(Ni—Ny) cos§+[Q;( ) +Q4(L)] sin 5 +5(N;—N;) cos §+‘2'[Q2( )+Qs(L)] sin >
Y3100~ 0,0 + 1N — N3) cos 2+ 104 (1)+ Q0] sin
2Qs AUI+5 e 3022Q3 Qs m2
3 .
+—‘é—tQ6(0)—Qs(L)J-6Paem,a sinz = 0
[0.(0) -QAL)H%(N: —Ny)cos §+%%[Qz(0)+Qs(L)] sin 3
1 ~
+5(0:(0)- 0(L)] +§(N3 —Ng)cos g—%g(,«n +Qs(Lilsin 5
+31040)~ G5+ 6P, sin s = 0
(N +N.)sin 5 +{04(L) — Q:(0) cos 5-+(N; +Ny)sin 5
+105(L)~ Q3(0) cos 5-+(Ne+N3) sin 5 +[Q5(L)~ @g(0)] cos 5 = 0
(M 0)~ ML+ 2T~ T s 4+ LM, - ML)~ L2 091,00)+ M1 sin S
+>/2—3(?% —T,) cos g% [M5(0)~ M5(L]] +lé3m6(0) +M(L)] sin% =0
(Ta— Ty cos S—[RL(L)+ F1, (0] sin &+ (T ~ T cos T+ 2 [M()— M(0]
A0, 0) + ML) sin 2+ (T — T cos -°—‘+£[M (0)— Ms(L)]
2 2 ] 2 2 3 6 2 2 3 3
-%[&(0)4—193(1,)] sin% =0

(T, + T sin 5+ (M,(0) - M y(L)] cos 5 —(T,+ Ty) sin >

+[M,(0)— M (L)] cos ;—(’I} +T,)sin §+[M6(0) — M,(L)] cos ; =0.

The above set of equations is completed with the addition of the stress—strain relations

Ni= _AEgg ’I;=Gjyi‘s
ME=EIKI' 1\?,-=EII'€‘

(30)

(E3))
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where, as previously stated, the bending stiffness EI is taken to be constant about all bending
axes. The slope deflection equations are the same as those given by equations (14} together
with the additional relations:

GJ
T0) = T{L) = —[ydL) ~7(0)]

«n—ﬁ[zcmm )+ CaoddD)+ 2 L) - v.-(O)]}

32
2EI &

N 3C
ML) = *"[7C10¢( )+ C100i{(0)+ 22

[o(L)—v (0)]}

2C4o

~ ~ 6
0.0) = O(L) = E’[cmw) S L)+ L) v,-(on].

These quantities are consistent with the sign convention of Fig. 6.

It remains to express the joint equilibrium equations in terms of the joint displacements
and rotations, and this is accomplished with the aid of the slope—deflection equations. This
step in the analysis is lengthy, but straightforward, and the algebraic effort is reduced with
the use of finite difference operators. The results of this computation are six finite dif-
ference equations in terms of the displacements and rotations of the (m, n)th joint and the
six joints adjacent to it. By expressing five of the displacement and rotation quantities in
terms of the radial displacements w,, ,, these six equations can be reduced 1o one finite
difference equation in terms of normal joint displacements alone. Symbolically,

"pﬂm n = 0 (33]

where % 1s a 12th order finite difference operator and is omitted here in the intercst of
brevity.
The above finite difference equation admits periodic eigensolutions in the form

W, . = sin gmsin vn (34)

m,
where y and v are the wave numbers associated with the characteristic buckling wavelengths.
In functional notation the eigenvalue equation associated with this choice is of the form

) R legf L —aGh
Qi0) = Q(L) = Lcso[(b() o{L)}+ LO[lff(L)—vf(O)]J.

These quantities are consistent with the sign convention of Fig. 6.

It remains to express the joint equilibrium equations in terms of the joint displacements
and rotations, and this is accomplished with the aid of the slope—deflection equations. This
step in the analysis is lengthy, but straightforward, and the algebraic effort is reduced with
the use of finite difference operators. The results of this computation are six finite dif-
ference equations in terms of the displacements and rotations of the (im, n)th joint and the
six joints adjacent to it. By expressing five of the displacement and rotation quantities in
terms of the radial displacements w,, ,, these six equations can be reduced 1o one finite
difference equation in terms of normal joint displacements alone. Symbolically,

y Wom = 0 (33}

where % 1s a 12th order finite difference operator and is omitted here in the intercst of
brevity.
The above finite difference equation admits periodic eigensolutions in the form

W, ., = sin wmsin vn (34)

m.n
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In Fig. 7 the curves shown are constructed by normalizing the value of the critical
buckling load predicted by the discrete analysis with respect to the prediction of the
equivalent shell analysis {23) and plotting this ratio for given values of GJ/ET, sin %/2. and
Lfr,. The value of GJ/EI has been selected as 0-769 to correspond to beams of solid or
hollow circular cross section such that J/I = 2 and the Poisson’s ratio of the beam material
is taken to be 0-3. The insert of Fig. 7 depicts the relationship of the angle « to the length
parameters, L. and R, such that sin «/2 = L/2R and hence the critical parameter of con-
tinuum theory can be restated as L*/r,R = 2(L/r,)sin «/2. Several curves for constant
values of L/,/(r,R) are cross-plotted in Fig. 7.

GJ TANGENT
= - PLANE
EI 4
Il o
al2~=A a/e
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T ' Sin a/2 = L/2R

| ] J | |
0 20 40 60 80 100
L/eg

FiG. 7. Buckling of a shallow reticulated spherical section under external pressure (rigid joints).

A rough indication of the validity of the equivalent shell analysis can be obtained from
the following discussion. When L/\/(r,R) is about 2. the predictions of equivalent shell
theory are 3-6 per cent higher than the actual buckling load predicted by the discrete
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FiG. 7. Buckling of a shallow reticulated spherical section under external pressure (rigid joints).

A ronoh indicatinn of the validity of the eanivalent chell analvecic canm he alhtained from
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[t should be explained that another important source of degradation of buckling strength
1s from geometric imperfections, that is, departures from the geometry of the perfect
structure. In the range in which an equivalent shell analysis is approximately applicable
for the rigidly jointed structure these effects can be treated just as they have been for shell
theory [15]. They are not considered in this study.

The discontinuities in slope between the pairs of members described above are defined
as follows

T=00)-0,4L). 87 =0,(00-85(L) 3 = 0(0)—85(L). (36)
The previous equations (24) relating the rotations at the member ends to the joint rotations

must now be modified to include the effects of the relative rotations of the member pairs.
fn matrix form rhese modifications are

® = B*[% . (37)
Where ® is a (6 x 1) matrix containing the values of the slopes at the ends of the members,

I'% . 1sa (5x 1) matrix containing the average values of the slopes at a joint [defined in the

mn

same way as in equation (8)] and the discontinuity factors. and B* is a (6 x 5) matrix depen-
dent on the geometric properties of the grid. They are given by

@ == [9](0)> 82(0]’ 66(0): 84(0)5 95(0)5 SJ(OJ}
D = s Oy 0%, 8%, 0%]

0 112 0 0
~J32 12 0 12 0
b V3212 0 0 1/2
0 1 =12 0 0
~J32 12 0 —12 0
J32 12 0 0 —1/2

If the effects of the rotational springs on the internal virtual work of the system are
ltaken into account, it can be shown by proceeding exactly as in the analysis of the spherical
segment with rigid joints, that the member equations remain the same but now there are
three more joint equilibrium equations in addition to (30). Again, buckling is associated

Where © 1s a (6 x 1) matrix containing the values of the slopes at the ends of the members,
I'% . 1s a (5 x 1) matrix containing the average values of the slopes at a joint [defined in the

same way as in equation (8)] and the discontinuity factors. and B* is a (6 x 5) matrix depen-
dent on the geometric properties of the grid. They are given by

@ = [91(0)> 82(0)’ 66(0)> 84(0): 95(0)5 63(0)}
Ion = s O, 03, 6%, 0]

0 112 0 0
-J32 12 0 1/2 0
e — V32 12 0 0 1,2
0 1 =12 0 0
-J3/2 172 0 —12 0
J32 120 0 —1/2

If the effects of the rotational springs on the internal virtual work of the system are

4w Bescen anlw e mcacet b wewss Fee: wlcaosaven Boes e sool s e oo Vs s B @B e R B L PN R F
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A typical curve showing the effects of non-rigid joints is given in Fig. 8 along with a curve
for the same structure with rigid joints. In both instances the buckling loads have been
normalized by the prediction (23} of the equivalent shell theory for the rigidly jointed
structure.

10
RIGID
8}~
(Po)Dls \
(Paieaa_ NON RIGID
. L)
EI
8= 789
b El
2.
SIN 5 =.045
Bl
T | ] i | |
) 20 40 60 80 100

L/rg

F1G. 8. Buckling of a shallow reticulated spherical section under external pressure (non-rigid joints).

It is recalled that the simple formula, equation (20), showing the effects of non-rigid
joints on the beam-spring model, was derived for the range where the wavelengths of
buckling were “long” compared to the member lengths and the axial member loads were
“small” compared to the Euler load. It should be interesting to see if this formula is
approximately correct when applied to the spherical section with non-rigid joints in the
same range. A number of calculations have been made, and it has been found that the simple
model gives an excellent approximation to the effect of non-rigid joints on the buckling

SPHERICAL SECTION WITH
S i\f‘\\}jRIGID JOINTS
—
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8

F1G. 9. Effects of non-rigid joints on buckling: comparison of the predictions for the beam-spring
model with the predictions for the spherical section.
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behavior of the spherical section. Some results are presented in Fig. 9 for the case of sin /2 =
0005 and L/r, = 40. A limited numerical investigation shows similar agreement [or other
combinations of L/r, and sin «/2 so long as L/\/(r,R) is less than about unity.

BUCKLING OF AN INFINITE RETICULATED CYLINDER
UNDER AXIAL COMPRESSION

In this section results are reported for an equivalent shell analysis and a discrete analysis
for an infinite reticulated cylinder, with an equilateral triangle grid and rigid joints. subject
to axial compression. Each beam in the cylinder is of length L and each joint is a distance R
{rom the longitudinal cylinder axis. The gridwork is loaded by a total axial force, as depicted
in Fig. 10, which corresponds to an axial pre-buckling load F in each of the longitudinal
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FiG. 10. Buckling of a reticulated cylinder under axial compression.
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In the equivalent shell analysis, the loading applied to the cylinder as described above is
replaced by a uniform force per unit circumference N where N = 2F/,/(3)L, and the stiff-
ness properties of the equilateral triangle grid are the same as those used in the analysis
ol the spherical section and given by equation {21). The classical buckling load ol an isotropic
cylindrical shell is given by the well-known lormula

2 H
Nc = K[De(Er).?] (40)

The non-dimensional parameter for the axial load in the longitudinal members is

given by
P,L? £213], G6H1*
a = = = kil 4

where P, = F;and in this problem also, the buckle wavelengths are on the order of /(r,R).

The discrete analysis ol the cylinder is carried out along the same Jines as has already
been outlined in the spherical section. The buckling deformation of the structure can be
characterized by specifying three displacements and three rotations at each joint. The
length parameters of the grid L and R are related to the angle « defined in Fig. 10 by sin ¢/2 =
J(3)L/4R. Buckling is associated with bifurcation [rom the pre-buckling state and resulting
eigenvalue equation is of the form

PL? L . GJ
v,—,sin=, —| =
Er M B

F

where g and v are the wave numbers associated with the eigenmodes w,, , = sin um sin va.

As expected, the eigenvalues predicted by the discrete theory for given pairs of axial and
circumferential wavelengths are essentially identical to the corresponding eigenvalues
from the equivalent shell theory as long as the wavelengths are sufficiently long compared
to the member lengths. When the parameter L/V/(rgR) is less than about unity the critical
eigenvalues from the two analyses are in substantial agreement and equation (41) is valid.
However, when L/\/(r R) is greater than unity the critical eigenvalue of the discrete analysis

| IPCRRE I I S | ‘1,,,,,:41,,1,,11___‘1_ 1:'41 AJI ,,_I.GJ oo ol oy smrmes we m B s e eer Mamn i it o e 8
a PN (o 3 - 4
(o) =l 2

where P, = F;and in this problem also, the buckle wavelengths are on the order of /(r,R).
The discrete analysis ol the cylinder is carried out along the same Jines as has already
been outlined mn the spherical section. The buckling deformation of the structure can be
characterized by specifying three displacements and three rotations at each joint. The
length parameters of the grid L and R arerelated to the angle « defined in Fig. 10 by sin ¢/2 =
J3)L/4R. Buckling is associated with bifurcation [rom the pre-buckling state and resulting
eigenvalue equation is of the form
P2 L

a
LUV, —, sin =
EI"7 7"r) 2

GJ

¥ El

=0

where g and v are the wave numbers associated with the eigenmodes w,, , = sin um sin va.

As expected, the eigenvalues predicted by the discrete theory for given pairs of axial and
circumferential wavelengths are essentially identical to the corresponding eigenvalues
from the equivalent shell theory as long as the wavelengths are sufficiently long compared



Buckling of reticulated shell structures 929

OPTIMIZATION OF A RETICULATED STRUCTURE

A light weight design of a reticulated structure will favor long slender members and a
proper optimization analysis will necessarily have to be discrete. To illustrate this we
have choseu to optimize the equilateral triangular grid of a shallow reticulated spherical
shell with rigid joints. Each member of the grid is taken to have a solid circular cross-
section ; and in addition, the radius of the spherical segment R and the effective buckling
pressure per unit area p, are regarded as being specified. The structure is to be designed
against buckling by selecting the member length L and the radius of gyration of the member
cross-section r, such that the weight is optimized.

The weight per unit area W is

W = 8n./(3)pors/L

where p, Is the material density. The following convenient non-dimensional parameter
W* will be minimized subject to the buckling constraint

W LR -

W* > = y
167 (3)Rpo  (Liry)?

(I

Separate calculations for the optimum values of L/r, and L/2R = sin o/2 which produce
the optimum weight are carried out, first using an equivalent shell analysis and then using
the discrete analysis.

The critical value of the pre-buckling loads in every member is given by

2 -4
[PGL] - (p] )

EI ~ 16/(3)msin o2\ E

The critical buckling pressure of the equivalent shell model of the reticulated shell,
obtained from equation (22), is given by the expression

P _ 8n(ry/R)* {2( 2GY|*

34+— . 44
E /T * E -‘ 49
wo=bny (3)por;/L

where p, Is the material density. The following convenient non-dimensional parameter
W* will be minimized subject to the buckling constraint :

% L)2R
W* = = . 42
167 JORp,  (Liry? 42

Separate calculations for the optimum values of L/r, and L/2R = sin o/2 which produce
the optimum weight are carried out, first using an equivalent shell analysis and then using
the discrete analysis.

The critical value of the pre-buckling Joads in every member is given by

) wry o) )

El |  16J/Q)msina2\E

The critical buckling pressure of the equivalent shell model of the reticulated shell,
ahtained from eanatinn (27 ic oiven by the Ay mrocetinl
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The minimum value of W* is found subject to the constraint (45). The optimum member
properties are given by

e Blp/E)* *
R 2[. 2G\\? (46)
192(5(3+—5))
L 8 2G\ % {r.\?
. @JE)[z(”‘E')] ‘ﬁ) “
and
.o H{L}{r

Use is now made of the eigenvalue equation of the discrete analysis which was derived
in the third section and, in functional notation, is given by

EP TR

2
F(P“L L  « GJ) -0,

This equation is used with the previous expression for W* and (43), in which (P,L2/EI), is
related to the prescribed pressure, to locate the optimum values of L/r, and sin o/2 associated
with the minimum weight (GJ/EI is again chosen to be 0-769). A straightforward search
procedure was used to determine the optimum properties.

A selection of optimum properties determined by the two different analyses have been
tabulated in Table 1 for the following values of the parameter p/E, 667 x 1077, 10x 1077
and 13-3 x 10~7 which typify loads encountered by steel roof structures under snow loading.

TaBLE 1. OPTIMUM PROPERTIES FOR A SHALLOW SECTION OF A RETICULATED
SPHERICAL SHELL SUBJECT TO PRESCRIBED NORMAL LOADING

Equivalent shell analysis

Pi/E  sins L we oo P"Lz)
eri = - - -3
«16-7 2 L x 10_7 n El exact
667 0-0130 191 356 08 074
6-67 00139 200 348 09 0-82
667 00148 208 343 10 0-50
10 0-0140 176 452 08 074
10 0-0150 184 446 09 0-82
10 00162 193 434 1-0 091
133 0-01485 166 539 08 073
133 001595 174 526 09 082
133 60170 181 516 1-0 091
Discrete analysis
667 0-0182 23t 342 — 122
10 00210 217 447 — 123

133 00216 202 523 e 122
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With regard to the equivalent shell predictions, it can be noted at once that the more
conservative the choice of § (we have arbitrarily chosen § = 0.8, 0-9 and [-0), the heavier
the structure will be. To assess the reliability of this very crude analysis the actual buckling
loads have been calculated using the predicted optimum value of L/r, and sin o/2. Typically
the actual axial member load at buckling is found to be as much as 10 per cent lower than
what was designed for using the equivalent shell analysis. The optimum values of L/r, and
sin /2 predicted by the discrete analysis are about 20-30 per cent higher than those
predicted by the equivalent shell analysis for the pressures considered. Moreover the loads
in the members of the optimum structure at buckling are roughly 20 per cent higher than the
Euler load of a simply supported column. In spite of the discrepancies between the two
analyses, it is interesting to note that both predict essentially the same minimum weight.

CLOSURE

Buckling results for reticulated shell structures in the form of bifurcation from a uniform
pre-buckling state serve the same purpose as their counterpart solutions in continuum
shell theory. Namely, they provide upper estimates for the load carrying capacity of the
structure. These estimates will be lowered by many factors such as nonuniformities due to
edge conditions, nonuniformity of loading and imperfections of various sorts. In particular,
without further studies, both theoretical and experimental, it must be assumed the im-
perfections will play at least the same degrading role in the buckling of reticulated shell
structures as they have been found to do in regular shell structures.

Based on the results for the three reticulated structures studied here. the following
generalizations seem reasonable for shell structures of this type. Fora rigid jointed structure,
the equivalent shell analysis should be substantially correct as long as the maximum axial
load in any member does not exceed about 70 per cent of the simple-support Euler load and
at this value the equivalent shell predictions should be less than 10 per cent too high. The
effect of non-rigid joints (but perfect geometry), in the range in which the rigid jointed
structure is adequately modeled by the equivalent shell theory is indicated by the formula

(P). _ [1-1/B+1J
(Pequv  1+1/(B+1)

where (R,)C/(P,,)Cquiv is the ratio of the buckling load of the structure with non-rigid joints
CLOSURE

Buckling results for reticulated shell structures in the form of bifurcation from a uniform
pre-buckling state serve the same purpose as their counterpart solutions in continuum
shell theory. Namely, they provide upper estimates for the load carrying capacity of the
structure, These estimates will be lowered by many factors such as nonuniformities due to
edge conditions, nonuniformity of loading and imperfections of various sorts. In particular,
without further studies, both theoretical and experimental, it must be assumed the im-
perfections will play at least the same degrading role in the buckling of reticulated shell
structures as they have been found to do in regular shell structures.

Based on the results for the three reticulated structures studied here, the following
generalizations seem reasonable for shell structures of this type. Fora rigid jointed structure,
the equivalent shell analysis should be substantially correct as long as the maximum axial
load in any member does not exceed about 70 per cent of the simple-support Euler load and
at this value the equivalent shell predictions should be less than 10 per cent too high. The
effect of non-rigid joints (but perfect geometry), in the range in which the rigid jointed
structure is adequately modeled by the equivalent shell theory is indicated by the formula
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AbGcTpakT—/laeTcs aHanu3 YCTOMYHBOCTH HEKOTOPBIX KOHCIPYKUHH cersatsix oboaovek, nyrem
MCIIONbL3OBAHMA TAK NPUOIMMKEHHOTO aHaNU3a ODONOYEK, KAK M AHAIIM3A JMCKPETHBIX CHCTEM, KOTODbIH, B
OCHOBHOM, SABJISETCS TOMHbIM. PaccMaTpMBAOTCH CIEAYIOIIHE KOHCTPYKUMHK: OeckoHeyHas ceTyaras
Hanka, CKAMAeMas OCeBLIM JABICHHEM K JOKAILAN HA NPYXUHAX, PACITONOKEHHBIX B DABHOM PACCTOSHUH,
nonoras 4acTe ceTvaTol cdeps ¢ PaBHOCTOPOHHON TPEXYronbHOH CeTKOH, HOABEPNKEHHAA HOPMAIBHOU
Harpyske M OeckoHeuHas, UMNMHApHueckast obonoMxa ¢ pPaBHOCTOPOHHOM TpexyrosbHoR cetkoH, moa-
BEPXKEHHAN OCeBOMY Cxatvio. Mcnonsiyeecs aHann3 AMCKPETHBIX CUCTEM C LE/bIO CPABHEHHA TOYHOCTH
YCIOBHH AHAIM3A FKBUBAJIEHTHBIX 06010ueK. Harpy3ka seilty4uBaHUA, PACHHTAHA HA OCHOBE 3KBHBAJIEHTHOTO
aHanu3a oBoaoYeK, ABNACTCA HEKOHCEPBATHBHOM, KOrAa KakK AJIMHA BOJHBL JeGOopMauLMK BbLINyYMBaHMs
paBHA MOPAAKY IUIMHBI 3MIEMEHTA, MM KOIJA OCeBas HArpy3ka B 3/IEMEHTE IIPH IoTepe YCTOHYMBOCTH
paBHA NOPAKKY BEHYMHBI HATPY3KH Bbity YdBaHMA DHnepa as1s ceobomHo oneproit kKoaoHHbl. UccnenyeTcea
3bdexT HACPY3KH BLITYSHBAHMS, YMEHBIUAKOIWIMHA KeCTKOCTD COSAMHEHHH TAK Juid Moneny Basika-npyxuHa,
Kak W juisi cheputeckoil ceryaTolt obonouxu. Ha KoHel, WLTIOCTPUPYETCS BAXHOCTH AHANH3A JUCKPETHDBIX
CHCTEM TIYTEM ONpele/eHHs ONTHMANbHbIX CBOMCTB MoJoro#l yacru cersaroft cdepsl, NOABEPKEHHOMH
AEHCTBHIO HOPMA/ILHOR HATPY3KH H PACUMTAHHOMN C YYETOM BBITYYHBAHMA.



