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Stress—strain behaviour of polyerystals and composites is oxplored with self-consistent
models based on the elastic-plastic properties of the single erystal constituents. Based on Hill's
{1965¢) model, tensile stress—strain curves and the associated yield surfaces are calculatad
for polyorystals and composites comprised of face-centred cubic crystals. Single crystal
elastie anisotropy and strain hardening are taken into account. Stress—strain behaviour ab 8
corner of the yisld surface is determined with the model proposed by Kroner (xg61) and
Budiansky & Wu (1962).

1. INTRODUCTION

Many models have been proposed to predict both quantitative and qualitative
features of the elastic-plastic behaviour of polycrystalline metals. Of principal
concern here will be those based on the slip mechanism of the single erystal. One
of the first of such theories was due to Taylor (1938) and extended by Bishop & Hill
(1951} for the yielding of a polycrystal comprised of rigid-plastic single crystals.
Another approach was pursued by Batdorf & Budiansky (1949). Their slip theory
was an atitempt to gain insight into elastic-plastic behaviour in the régime in which
plastic strains are comparable in magnitude to elastic strains. Koiter {1953) and
Sanders (1954) considered a very general class of plasticity theories, of which slip
theory was a special case, based on the concept of many simultaneous yield surfaces,

More mechanistic models followed which specified ways to caleulabe stresses and
strains in the individual erystals and to relate these to the overall stresses and strains
of the polycrystal. Lin (1957) extended Taylor’s model to include elastic strains,
Budiansky, Hashin & Sanders (1960) made calculations based on a model which was
valid for very small plastic strains relative to elastic strains; and Kréner (1961) and
Budiansky & Wu (1962) proposed a model which accounted for grain interaction in a

“particular way and was not limited to very small plastic strains. This latter model

specified a self-consistent method for calculating the overall stress—strain behaviour
of the polycrystal. Caleulations based on this model were made by Budiansky & Wu
(1962) and Hutchinson (1964). A review of the efforts in this general problem area,
with a strong emphasis on the underlying single erystal behaviour, has been given
by Kocks (1970).
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The latest development in this subject is an attractive self-consistent model
suggested by Hill (1965 a). This new model is similar in a number of respects to the
Kréner-Budiansky-Wu (K.B.W.) model but differs in the method proposed for
calculating the stresses and strains in the individual grains. In two subsequent;
papers Hill (1966, 1967) elaborated on the description of single crystal behaviour
and followed up with a very general qualitative discussion of the structure of the
stress—stress relations expected from such a model.

One of the attractive features of Hill’s model is that it embraces essentially all
the accepted self-consistent results for the overall properties of elastic systems:
see, for example, Hershey (1954) and Kroner’s (1958) equations for the elastic
- moduli of cubic polyerystals, Kneer’s (1963) results for hexagonal polycrystals,
Budiansky (1963) and Hill's (19655) formulas for the overall moduli of com-
posites and Wu (1966) and Walpole’s (1969) results for composites with shaped
- constituents,

In this paper a quantitative study of certain aspects of the elastic-plastic de-
formation of polycrystalline metals and composites is made using the two sel-
consistent models mentioned above. Primarily, however, attention is directed to
Hill’s model. Our study is restricted to small strain behaviour which takes place
statically and isothermally in the range of deformation in which the plastic strains
are comparable in magnitude to the elastic strains. Section 2 contains a summary

presentation of the model as if applies here including & description of the properties

of single crystals and their relationship to the overall properties of the polyerystal,
Tensile stress-strain curves for face-centred cubic (f.¢.c.) polyerystals are presented
in §3 showing effects of elastic anisotropy and hardening of the crystals. A compari-
son of the various modelsis given in §4, and caleulations which focus on the character
of the yield surface and the stress-strain behaviour at a corner of the yield surface
are given in §5. The last section includes an extension of the model to a class of
inclusion-bearing composites and results in the form of tensile stress-strain curves
are given. Major features of the numerical method are discussed in the appendix
along with the presentation of an auxiliary elasticity solution required for implemen-
tation of the model.

2. HILL'S SELY-CONSISTENT MODEL OF
POLYCRYSTALLINE BEHAVIOUR

For the most part we shall use the same abbreviated notation as Hill hag used in
each of his papers (1965¢, b, 1966, 1967), which Walpole (1969) has also employed.
Boldface lower case letters, Greek or Latin, are reserved as symbols for second-
order Cartesian tensors and fourth-order Cartesian tensors are represented by
boldface upper case symbols. The contracted product of two second-order tensors,
@b, is written simply as ab while the second-order tensor formed by Ay is
denoted by Aa. Inner products between two fourth-order tensors, A tira Bramn
become AB in this notation and a scalar quantity @5 Agaabyy s denoted by aAb.
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In this paper all second-order tensors are symmetric; and except for the § tensor
introduced in the Appendix, the symmetry A = Ay = Ay, = Ay, is shared by
all fourth-order tensors. The inverse A~! of A satisfies A—14A — AA-L = I where I
is the “unity tensor’ whose components are given in terms of the Kronecker delta by

Lijig = 38y, 85+ 85 i) (1)

Conversion of second-order tensors to column vectors and fourth-order tensors to
symmetric matrices can be accomplished in several ways; and, if one prefers, the
notation can be viewed as representing the usual vector-matrix operations.

(@) Stress-strain behaviour for single crystals

Idealizations of single crystal behaviour are based on the early work of Taylor &
Elam (1g923) together with the considerable experimental and theoretical work
which has followed. Here plastic deformation is assumed to arise solely from slip
in certain directions on specific erystallographie planes, and this process occurs

‘when the resolved shear stress on one or more of these slip systems reaches a critical
value. As plastic deformation proceeds the critical yield stresses associated with the
slip systems can change, usually to raise the yield stresses so that the crystal
‘hardens’. Budiansky & Wu (1962) emphasized that single crystal plasticity fits
Koiter’s (1960) continuum theory of plasticity involving multiple yield functions.

‘Recently, Hill (1966) and Mandel (1965) have further pursued the constitutive
relations for single crystals.

- Let 6 denote the stress in the erystal. If #} is the normal to the plane of the éth slip

- system and if m} is its slip direction, then the resolved shear stress on this system is

O 3% OT Goa® in the present notation where

aly = Hmini+ming) (no sum on i). (2)

The plastic strain rate €2 is the sum of the contributions of the shear rates 9t
(engineering definition) from all the active slip systems, i.e.

€= T Yrag or & = Nymam. (3)
m m

We will adopt the convention that the yield stress and shear rate associated with
each slip system is never negative and thereby, in effect, double the number of
slip systems.

The current yield stress of the sth slip system is denoted by 7%. At any stage of the
deformation process the rates of change of the yield stresses are assumed to be
related to the shear rates by (Hill 1966)

7 = ShUY, (4)
)

where the instantaneous hardening coefficients k¥ will depend, in general, on the
previous deformation history.
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A slip system is potentially active if .o = 7¢ and loads or unloads, respectively,
-depending on whether Goo =7t with 9> 0 }

(5)

or Geal <7 with ¢ =0.
A system is inactive if ocal < 7¢ and then y¢ = 0.

Tensors of elastic moduli and compliance for the single crystal, £, and #7%;,,
are denoted by & and J#; where M, = L 1, The total strain rate & is the sum of
the elastic and plastic parts so that

ée = Mo+ Ei'}"iui, (6)

or &c = gc(éc-‘ég). (7)
For a given state of stress o, & is uniquely related to & if A% is positive semi-
definite (Hill 1966), while only for certain hardening laws are the shear rates
always unique. At least one set of shear rates exists which satisfies the constitutive
. relations (3) to (7) for a prescribed strain rate €. (or prescribed 6.). If there are IV
non-zero ’s, they satisfy N equations associated with the loading systems:

%ﬁ’jxﬁ = &P ¢, {(8)

where X = b + o’ Pt (9)
together with the constraints 7 > 0.

Only for certain hardening laws will the N xN matrix X% be necessarily non-
singular. But for perfect plasticity (A% = 0), for example, it is always possible to
choose at least one set of linearly independent slip systems among the potentially -
active such that this matrix is non-singular and the auxiliary equations (5) are
satisfied. Thus, for perfect plasticity X% is never greater than a 5x 5 matrix. Its
inverse is denoted by ¥% and the N non-zero strain rates for this choice of active

gystems are given by ¥ =fié, where fi= RYEL ok (10)
: k

The instantaneous moduli and compliances for the single crystal depend on the
particular branch (i.e. set of active slip systems) which in turn depends on the
prescribed €, (or 6¢). They relate &; and €. by

6c= Lo &, and é&.= M6, (11) .
When the inverse of L, exists M, = L%, but in many instances it does not, such as
for perfectly plastic erystals. When the inverse fails to exist, i.e. when L. viewed as
a matrix is singular, the stress rate & is restricted to certain regions in stress rate
space. We will want to eonsider polycrystals of perfectly plastic single crystals and
thus our treatment will emphasize the use of L. rather than M, since there is no
restriction on the strain rate €.. Using (7), (10) and (11), we find

Lc = ge(I"“ Eu‘mfm’)’ . (12)T
- .
+ The prirrie on f™ is used to indicate that the terms a™f in (12) are fourth-order tensora

.formed by the uncontracted products e fii. It is a simnple matter to show that L, as given by
(12) satisfies Ly, = L, if AY = A%,
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where the sum extends over all the loading slip systems. In summary L. as given by
(12} is unique for & given strain rate é. even if the shear rates y* are not. Of course,
if all systems are inactive or unload the response is purely elastic and (12) reduces to
" L=
(b) Overall stress—strain behaviowr for the polycrystal
Macroseopic stress and strain rates associated with the polycrystal are denoted by
& and € and their Cartesian components are taken to be the volume averages of the
Cartesian components of the corresponding stress and strain rates in the single
crystals. Hill (1967) has shown that this definition is rigorously consistent for a
finite collection of single crystals under either a prescribed uniform surface traction
over the boundary or a preseribed ‘uniform straining’ of the boundary surface. If
the polycrystal comprises a sufficiently large number of crystals the distinetion
between these two ways of prescribing the loading is negligible. For conceptual
simplicity we shall view the polycrystal as an infinite collection of single erystals
subject to macroscopically homogeneous states of stress and strain.
Overall elastic moduli and compliances are denoted by % and A with # = &1,
The instantaneous moduli and compliances in the plastic range relate the stress and

strain rates by 6=Lé and &= MSs, {13)

where M = L7 except when the inverse fails to exist. Just as for the single crystal,
L and M will depend on the prescribed value of € (or &); but, unlike the corre-
sponding single erystal moduli and compliances, they will not have only a finite
number of branches. Instead, L and M will, in general, vary continuously as the
direction of the prescribed strain (stress) rate varies in strain (stress) rate space;
that is, I and M are homogeneous functions of degree zero of € (or &). Of course, if
the stress rate—strain rate behaviour is thoroughly nonlinear (which the present
model indicates as will be seen later), equations (13) do not define the instantaneous
moduli and compliance tensors uniquely. For example, any L%&) for which L% = 0
for all € can be added to L and still yield the same relation between & and & However,
the nature of the Hill model is such that it does select a particular characterization
for L and M among all the possibilities.

(¢} Self-consistent calculation of the overall instantaneous moduli

Imagine that the polycrystal has undergone some definite history of straining
and that the stress and potentially active slip systems in each single crystal are
known. In this state the polyerystal is subject to an additional prescribed strain rate
& Qur objective is to caleulate the stress and strain rates, &, and &, as well as the
instantaneous moduli L, for each grain and to determine the polyerystalline quanti-
ties, & and L, as the appropriate averages over the grains. The model is most readily
understood if, at this stage in the exposition, it is assumed that the active slip
systems in each grain are known and thus that L. is known for each grain.

Hill (1965 a) proposed that the stress and strain rates in any individual erystalline
grain be calculated in the following way. The shape and orientation of a particular
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grain is approximated by a similarly alined ellipsoidal single crystal which is taken
to be embedded in an infinite homogeneous matrix whose moduli L are the overall
instantaneous moduli of the polycrystal to be determined. In this approximate way
the interaction between the grain under consideration and its plastically deforming
neighbours is taken into account. The stress and strain rates ‘at infinity’ in the
matrix are identified with the macroscopic quantities & and & Thus, the stress and
strain rates in each grain are estimated by the solution to a problem in linear
anisotropic elasticity. As Eshelby (1957) observed, the stress and strain rates in the
ellipsoidal inclusion, &, and &, will be uniform and can be related to the stress and
strain rates at infinity by fourth order tensors A, and B, according to

éc = Aeé a.nd &c = Beé (14:)
and, where consistent with (13),
LCAC = BCL aand .MQBQ = Ac M. (15)

Still following Hill, the calculation of A, and B, is facilitated by the introduction
of a ‘constraint’ tensor L* with inverse M*, These are defined by considering a
matrix containing an ellipsoidal void with the same orientation and shape as the
grain and subject to a traction rate, 63;n;, over the surface of the void where n is the
inward unit normal to the void surface and 6* is constant. The associated uniform
straining of the void é* is given by

6% = —L*&* or é&*=—M*g*% (16)

Defined in this manner, L* and M* depend only on L and the shape and orientation
of the ellipsoid, and if the void is spherical, only on L. Formulas for L* for spherical
voids are given in the appendix.

With the use of L* and M* the discrepancies between the stress and strain rates in
a given single orystal inclusion and the rates in the matrix at infinity arve related by

G—Go=—L¥&—é&) or &€—é.=—M*E-6,). (17)
Now, using (11), (13) and (17) we ind
(L*¥4+ Lo)éo = (L*+ L) and  (M* + M6 = (M* + M)§, (18)
or by the defining equations (14),
Ac= (L*+Lo)™M(L*+ L) and B, = (M*+ MY (M*+M). (19)

The final step in the formulation equates the overall stress and strain rates of the
polycrystal with the weighted averages of these same quantities over all the grain
orientations and shapes. For a particular grain 6, = Lo A&; and if the average over
all the grains is denoted by { }, then

{6} = 6= L = {L. A} (20)
Similarly, _ {€c} =€=>M={M;B.}. _ (21)
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The derivation of (21), but not (20}, requires the inverse of L. for each grain to
exist. When this requirement is satisfied, (20) and (21) are on an equal footing and
Hill (1965) has emphasized that they lead to identical results as can be seen directly
with the aid of (15). As already mentioned, we will make use of L together with (20)
and avoid the difficulties associated with (21) when any of the L are singular,

In the foregoing discussion it was assumed that the branch of L. for each grain for
a prescribed overall strain rate & was known, whereas the actual branch depends on
the strain rate & in each grain. Thus, (20) governing the overall instantaneous
moduli is supplemented by the requirement that the branch of L. for each grain
be that associated with the predicted value of & from (14).

(d) Spherical grain model applied to a polycrystal of
randomly orientaied f.c.c. single crystals

In this paper stresses and strains in individual grains will be calculated by approxi-
mating each grain by a sphere. Furthermore, all grain orientations will be assumed
equally represented and thus an average over all grains is equivalent to an average
over all orientations,

The tensor of overall elastic moduli, &, for such a polyerystal is a fourth-order
isotropic tensor specified by its bulk modulus « and its shear modulus y. Hershey
(1954) and Krdner’s (1958) equations for these quantities for a cubic polyerystal are

K = 30, +201,) (22)
83+ (5C ¢ 1 402 — Cyy (70, — 4018 — Oy (Chy — Cy) (Cyg + 20,) =0, (23)

where Cyy, Oy, and €y, are the three independent elastic constants defined in the
usual way for a cubic crystal. These equations can be derived from either (20)or (21)
as discussed in the appendix.

Af.c.c. erystal has 12 crystallographically similar slip systems (24 systems with
our convention, 7 > 0) whose normals are the four (1,1, 1)-type directions, relative to
the crystal axes, and whose slip directions are the (1,1, 0)-type directions. I the
single crystals are elastically isotropic with an initial yield stress 79 associated with
each slip system, the stress will be uniform throughout the polyerystal prior to yield.
Since all slip system orientations are available, initial yield will be governed by the
maximum shear stress, or Tresca, criterion, assuming no residual stresses are
present. The Tresca criterion still holds for a polyerystal of anisotropic cubic
crystals according to a self-consistent caloulation based on spherical grains.

If &; and @y are the maximum and minimum principal overall stresses, re-
spectively, the macroscopic initial yield condition is given in terms of the initial
yield stress of the crystals 75 by

: 3 \?
Ho —om| = (.2;3'5‘_.05) Ty =7, (24)
Py = C'11—0[12 Pg= ——— 044 .
Zi(1 — B+ B0y — Oy}’ B1— )+ B0y’

where {25)
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and where « and p are given by (22) and (23). If the single erystals are isotropic,
i.e. 20, = C;; —Cyp, then p, = py = land 75 = 73 as mentioned above. The effect of
grain size on initial yield is encompassed by the model only to the extent that 75
must be regarded as the yield stress of the single crystal in situ. Details of the
derivation of this result are given in the appendix and & discussion of some of its
implications and limitations is given in the next section.

Behaviour in the plastic range is complex and predictions require numerical
caleulations. For example, (20) is a bighly implicit equation for the instantancous
moduli L involving L*, which is a function of L, and the instantaneous moduli of
each of the grains L.. Moreover, the particular braneh of L. is related in a very
complicated way to L and the prescribed overall stress or strain rate, Soré. A bare
outline of the numerical procedure follows and is further elaborated on in the
appendix.

. At a given stage in caleulation the stresses and the potentially active slip systerns
in each of the spherical grains are known. We wish to calculate the stress or strain
rates and instantaneous moduli for a prescribed overall stress rate & or a prescribed
overall strain rate & The procedure is an iterative one. A tentative guess is made for
L, and L* is calculated. From L and L* the instantaneous moduli for each grain
orientation are computed in the following way. For an assumed set of active (loading)
slip systems, necessarily a subset of the potentially active systems, the quantities
f of (10) are calculated and so is L, from (12). Next A, is calculated for this grain
with (19). To ensure that the assumed set of active slip systems do constitute the
correct branch of L, for a prescribed & (or &), the auxiliary conditions (5) are checked
with (4), (10), (11) and (14). If conditions (5) are satisfied then L. is correct for this
iteration; if not, then a new set of active slip systems is chosen until the correct
L. and A, are found. This calenlation is carried out for each grain orientation. The
final step in the first iteration is to caloulate an improved estimate for L from
L = {L.A¢}. The whole procedure is then repeated a sufficient number of times
until satisfactory convergence is obtained.

A complete deformation history for a prescribed history of overall stress or
strain is caleulated in a piecewise linear manner with finite bt small increments.
As the deformation proceeds new slip systems are activated while other slip systems
which were active unload.

3. TENSILE STRESS-STRAIN RELATIONS FOR F.C.C. POLYCRYSTALS
Let the virgin polyerystal be subject to a monotonically inereasing uniaxial
tensile stress @,; = 0. The instantaneous moduli for this history display transverse
isotropy with respect to the 3-axis so that with the usual definition

¢, =Lyé and &= M, &, (sumonj;j=1,6), (27)
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where ' &:<5 (E11s Bao Bg Lorgs Ly, 2810),
LA (T11: Tagy T ag, T, Tags O10)-

The non-zero independent moduli are

Ly, Ly Ly O 0 07
Ly Ly Ly 0 0 9
Ly, L, L 0 9 0
L= 18tz Lagg ’ (28)
0 0 ¢ L, 0 0
0 0 0 0 L, 0
| O 0 0 0 0 Ly |
where Ly = $(Ly; — Ly,).
2.0t~
| z
- £
v anisotropic,
1.6} / A0 non-hardening
/ e ingle erystals
/ ————single crys
°§"~ / {C12/Cy = 0.722;
T CuafCy, = 0.447)
isotropic non-hardening
19 single crystals; v = }
! [N | ] { [ |

08 1 2 3 4

Eef2r8

Frauxe 1. Tensile stress—strain curves for f.e.c. polycrystals with rendomiy orientated, non-
hardening single erystals. Upper eurve is for anistropy typical of copper.

The initial yield stress in tension according to this model is 27y where 7% is given
by (24). If the single crystals are isotropic then Ty = 79, the initial yield stress
associated with each slip system. Typieally, for copper, which in crystal form has
moderately high elastic anisotropy: (Cy,/C);) = 0.722 and (CyafCiy) = 0.447; and the
self-consistent predictions from (22), (23) and (24) are

k =0.8150,, p=0.285C,, 7)=1.129:2 (29)
or : B =0.772C,;,, v = 07343,

where E and v are the Young modulus and Poisson ratio, respectively.

Tensile stress-strain curves are presented in figure 1 for polycrystals of non-
hardening single erystals which are (i) isotropic with Young’s modulus Fand v = 1
and (ii) anisotropic with the moduli ratios of copper just listed. The ordinate is the
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ratio o/273 and the abscissa is He/2r) where e is the total tensile strain. Thus, in this
plot the elastic part of each curve has the same slope and the increase in the initial
" yield stress for the copper-like anisotropy above that of the isotropic case is evident.
The initial yield prediction of the self-consistent model must be qualified. A
non-homogeneity in an elastic body usually acts as a stress raiser and tends to
decrease, rather than increase, the stress at which plastic deformation first occurs,
Single crystal anisotropy would be expected to have a similar effect; but according
to the self-consistent model based on the spherical grain, it does not if

20y, > (G —Cy)-

The reason for this stems from the fact that stresses in each grain are calculated by
treating it as a spherical inclusion. Stresses in the matrix surrounding the inelusion
do not enter into the self-consistent estimate of initial yield. No doubt highly

Eef275

FieurEe 2. Several instantaneous moduli as a function of the tensile strain for & polyerysatal
with isotropic non-hardening single erystals (v = 1) and comparisons with predictions of
two phenomenological theories : @, flow theory with smooth yield surface; b, deformation
theory.

Tocalized plastic deformation will oceur in the polycrystal at tensile stresses even
below 272 when the crystals are anisotropic, but the value 273 should serve as an
effective measure of the tensile stress at which plastic strain starts to increase
rapidly. An even clearer illustration of this imitation of the self-consistent model is
discussed in a later section on composite materials.

Figure 2 contains plots of three of the components of the instantaneous moduliasa
function of the tensile strain for a polyerystal with non-hardening isotropic erystals.
The so-called tangent modulus, £, = do/de, where

1 212,

B By = It Ly
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isnormalized by the Young modulus B, while L,  and L areeach normalized by their
elastic value, the modulus . The moduli L, and Ly can be compared with pre-
dictions from two popular phenomenological theories. According to any flow
(incremental) theory of plasticity with a smooth yield surface L,, = Lgg = p for any
tensile history and this prediction is included in figure 2. Also shown, as a dashed
curve, is the prediction obtained from any deformation theory where Ly, and Ly are
derived from the tensile stress—strain curve using the deformation theory formula

L44 = Lss = ___‘u_l_i_’ {30}
1+ 3}0‘; (*E*',"s' — E)
where E; = ofe.

~ No entirely adequate hardening law for single crystals is available. Taylor’s
(1938} isotropic hardening law is the simplest and the most widely used. This law
states that the yield stresses of all slip systems remain equal and increase in pro-
portion to the total shear. So that in (4), k¥ = & for all § and j, and

# = S, (31)
2 |

This rule cannot include both the very low hardening rate characteristic of eagy
glide with one slip system active and the much higher hardening rate which usually
accompanies multiple slip, as discussed by Kocks (1970). Nor does it reflect the
experimental observation that some of the latent slip systems usually harden faster
than active ones.

Anocther candidate, which is only slightly more complicated than Taylor’s rule
qualitatively, at least, meets these two objections. Tt is

Bl = km + (s —hm) 8%, . (32)

where s is to be identified with the hardening rate for single slip and k., to charac-
terize multiple slip. Hill (1966) has remarked that (32) as well as (31) will lead, in
general, to non-unique shear rates 9 for preseribed stress or strain rates &, or
€.. Neither (31) or (32) includes a single crystal Bauschinger effect but this is of little
concern in deriving macroscopic predictions as long as no reverse loading histories
are considered.

We have steered clear of the inadequacy of single crystal hardening laws and
have only calculated results for the stress-strain behaviour in the fairly early stages
of plastic deformation. The tensile stress-plastic strain curves plotted in figure 3
are representative of the way crystal hardening affects overall hardening of the
polycrystal. In this plot eP is the tensile plastic strain. These curves have been
calculated with Taylor’s rule (31) with a relatively light hardening rate hjn = 0.02
and a somewhat higher value 2fy = 0.04. The non-hardening case {(h/p = 0) is
repeated from figure 1.

17 Vol. 319. A,
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{273

Berf2r?

Froure 3. Effect of single crystal hardening on tensile stress—plastic strain curves. Isotropic
single crystals, v = 3. Taylor hardening: 7, = 194+ 3y

4. COMPARISONS WITH OTHER MODELS

The self-consistent model of Kréner (1961) and Budiansky & Wu (xg62) fits
nicely into the theoretical structure that Hill has constructed. Instead of embedding
the grain in a matrix whose moduli are the overall instantaneous moduli, Kréner
and Budmnsky & Wu a,rgue that the relation

§—Go=—FHE—2,), (39

which holds in the elastic range also holds in the plastic range, and this replaces (17).
Here, #* is the constant tensor, previously defined, for a matrix with overall .
isotropic elastic moduli &. This leads to

Ao = (P*+ L)y YL*+L) and Bo= (M*+ MMM+ M)  (34)

rather than (19), while the remaining equations in §2 still apply.

Figure 4 compares tensile stress—plastic strain curves for the two models for a
polycrystal of randomly orientated, isotropic single crystals with no hardening.
In the early stages of plastic deformation the predigtibns of the Hill model and the
K.B.W. model are essentially identical since then L* in (19) is approximately £*
which appears in (34). However, as plastic deformation increases, the overall
instantaneous moduli L decrease and so do the components of L* Thus, the
matrix surrounding each grain is considerably weakened in the Hill model, compared
to the K.B.W. model, and consequently the plastic strain rate is greater for the Hill
model at a given value of the tensile stress. Plots of instantaneous moduli calculated
from the K. B.W. model are qualitatively very similar to those of figure 2 for the
Hill model.

Aslongasonlya small fraction of the grains have ylelded a ‘dilute’ calculation is
applicable in which each yielded grain is considered to be embedded in a matrix
whose moduli are those of the elastic polycrystal. The K.B.W. and Hill models
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reduce to this limit, and in the very early stages of plastic deformation predictions
based on them are essentially the same as those of Budiansky et al. (1960). The range
of validity of a dilute calculation is very small, however. For example, slip is
under way in over half of the grains at an overall plastic tensile strain of only 5 9/, of
the initial tensile yield strain.

Predictions from Lin’s (1957) extension to Taylor’s model are also included in
figure 4. Lin assumed that the strain is uniform throughout the polycrystal even
when the elastic strains are not negligible. Thus, Ac = I and L = {L}. This sugges-

. tion was not intended to be self-consistent. Furthermore, as discussed by Hutchin-

son. (1964), the plastic strain according to Lin’s model is exactly S ths the plastic
strain predicted by the K. B.W. model at a given value of the tensile stress for v = 1,

Lin model
1.4

Ul
¥

/2

1.2

1.0 ! 1 1
0 1 2 3 4

Eeyf2r3

Fraure 4. Comparison of theoretical tensile stress—plastic strain curves for f.e.c. polycrystals.
Isotropie, non-hardening single crystals, v = }.

The limit yield surface for polycrystals of non-hardening crystals according to
both the K. B.W. and the Lin models is precisely that calculated by Bishop & Hill
{1951) for f.c.c. metals and by Hutchinson (1964) for b.c.c. metals. No such simple
relation is evident for Hill’s model; but, as discussed by Hill (1967), the previously
mentioned limit yield surfaces serve as upper bounds. Figure 1 suggests that the limit
vield stress in tension according to Hill’s model may be somewhat lower than
Taylor’s tensile limit and may depend on the degree of elastic anisotropy of the
single crysfals, although it is possible that at larger strains the discrepancies between
the two curves will disappear.

5. THE POLYCRYSTALLINE YIELD SURFACE AND
STRESS-STRAIN BEHAVIOUR AT A CORNER
An immediate consequence of the results for the instantaneous moduli plotted
in figure 2 is that the polycrystalline yield surface develops a corner after only a
very small amount of plastic deformation. For, if the yield surface remained smooth,
' 172




260 J. W. Hutchinson

then necessarily L,, = Ly = . Previous studies based on slip theory, as well as
Hill’s (1967) general discussion of the present and related models, suggested corners
should indeed be expected.

Corners are brought out clearly in the plots in figure 5 of the initial and subsequent
yield surfaces as predicted by Hill’s model. Shown are traces of the yield surface on
two planes in stress-space, L.e. Ty, against &, and 7y, against 7y, at several values of
the tensile stress. As discussed in §2, the Tresca condition specifies the initial yield
surface. The subsequent yield surfaces are for the polycrystal of isotropic non-
hardening crystals whose tensile stress—strain curve is given in figures 1 and 3. No
single crystal Bauschinger effect was incorporated into the calculations and thus

. the Bauschinger effect which is evident in figure 5 is due entirely to grain interaction

effects. Yield surfaces predicted by the K.B.W. model are very similar to those
shown in figure 5 and tensile stress—strain curves under fully reversed loadirig
histories have been given for the K.B.W. model by Hutchinson (1964).

initial yield surface initial yield surface

T 3af270 {Tresca} Traf 275 {Tresca)

A B 06t /

0.4

-1.2

L] L P | Jp—1 ] I £
-04 16 -12 -08 -D4 0 04 08 12
Gy 270 g/ 270

FrourE 5. Initial and subsequent yield surfaces for the tfensile deformation of an f.e.c
polyerystal comprised of isotropie (¥ = %), non-hardening crystals.

~0.3

Crystal hardening behaviour will influence the shape of the subsequent yield
surfaces. If the tendency for latent slip systems to harden more rapidly than active
systems is accounted for as well as the crystal Bauschinger effect, the yield surface
will contract less in directions in stress space which are normal to the direction of
loading and it will contract more in the direction opposite to the loading direction.

To explore the stress—strain behaviour at the corner, we consider the application
of a non-uniaxial stress rate in the form of a combination of &3 and &, following a
uniaxial history to the stress level #@,,. The instantaneous moduli for this applied
stress rate no longer possess transverse isotropy. With the same definition as in
(27), two of the strain rates, &, and &, are related to the non-zero applied stress
Tates Gy and &, by . . .

€y3 = Myy0gg+ My 0y,

215 = My Ty + My Ty,

o
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where My, = My, The effective shear modulus associated with this programme of
loading is the quantity usually measured in experiments. It is defined by

[ 1

iy Myy+ My (G f7y5)

He =

Instantaneous moduli and compliances along with g, have been calculated for the
full range of combinations of &, and 7'y, and also for combinations of &, and Ty, for
a polycrystal of isotropic non-hardening f.c.c. erystals initially stressed to a value
(T35/275) = 1.30 with the associated tensile strain (Be/ 273) = 2.13. These calculations
were carried oub using the K.B.W. model rather than the Hill model because the

flow theor
10 — , LY
' 053 . =
(." =‘?'13) .
T=2¢€, a
0.8 13 33 |
—
0'6 < — —_— P %E O'—_iz —
2 , o
3 deformation (7=2&,)
theory
04 B
| 7'-?/
0.2 Jo= z ?_.'_9_ ]
Y ' 7
———————_ e e -~ 33
|_ f?'.'o‘_—l 30
270~
] 1 ¥ !
0 T T 3 T
4 2 i

8 = tan1 (#/Gs;)
Freunr 6. Effective shear modulus for combinations of (5.7;3, Taa) OF (?13, ?33) following a

uniaxial stress &,,. Caleulations are based on the K.B.W. model for polycrystals of
isetropic (v = %), non-hardening single crystals.

L* calculation necessary for the Hill model becomes considerably more difficult in
the absence of transverse isotropy. Some of the details of the calculation are spelled
out in the appendix. Qualitatively, at least, the results can be expected to be very
similar to analogous predictions based on the Hill model. _

Figure 6 displays a plot of 1,/u as a function of § = tan—47 /7). A corresponding
plot for the combination of stress rates (G5, Tyy) is also given with g, = 7,26 ,.
Three compliances associated with the applied stress rates (7,4, 773,) are plotted as a
function of & in figure 7. Here M, and M,, have been nondimensionalized by the

elastic shear modulus u, and B, is used to nondimensionalize M;; where as previously
defined £, = (1/3,,),_,.
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According to these self-consistent results the effective shear modulus is appre-
ciably reduced below the elastic value and only for 6 greater than about v will the
response be purely elastic. For 0 < 4, say, the prediction of deformation theory does
reflect a reduction of the effective shear modulus, while flow theory with a smooth
yield surface does not. It is this distinction between these two phenomenological
theories which often leads to rather critical discrepancies in the application of these
theories to the analysis of bifurcation phenomena such as buckling.

- s M= p My

0.4

1
s 3n g
2 4

g = tan~1 (?13/333)

TN

Freure 7. Instantaneous compliances for combinations of (T4, Tg3) following a uniaxial stress
Tg- Caleulations are based on the K.B.W. model for polyerystals of isotropic (v = §},

non-hardening single orystals. &, = M330'33+M340'13, 2, = M430'33+ M, 045

Note that the effective shear modulus for a nearly proportional application of the
stress rates (Gy5, Tgs), i.6. 0 & 0, is not given simply by g, = 1/M,, since the term
M, (5435 1,) in the foregoing formula contributes in the limit as 8-> 0; and 1, 15 less
than 1{M,,. It is also interesting to note that the effective shear modulus associated
with the combination of stress rabes (%, Ts), Which is much more convenient to

measure experimentally than g, associated with (Gy,, Ty,), is rednced less below the
elastic value.

Experimental evidence on the existence of corners and the associated effective

moduli is not conclusive and to a certain extent is actually contradictory. Hill
(1967) has briefly reviewed the status of the test results relating to this equation. It

seems reasonable to say that more tests will be required to improve the present

unclear state of affairs. No doubt the precise properties of the orystals will play an
important role in determining the quantitive values of the moduli at a corner. It is
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clear from the self-consistent model, for example, that single crystal hardening will
tend to bring the effective shear modulus closer to the elastic value. Nevertheless,
self-consistent models based on single crystal slip, Iike their predecessor, slip theory,
unequivocally indicate that a distinet corner develops as the polycrystal is deformed
plastically.

The elastic-plastic behaviour displayed in ﬁgures 6and 7 is thoroughly nonlinear
in Hill’s (1967) terminology. Slip theory results (Batdorf & Budiansky 1949;
Sanders 1954) have suggested that for nearly proportional loading the stress—strain
behaviour should be ‘total’, that is, independent of . While these self-consistent
results do not corroborate the total loading concept exactly, the effective shear and
tensile moduli do vary rather slowly for 8 ~ 0.

6. APPLICATION OF THE SPHERICAL GRAIN SELF-CONSISTENT
MODEL TO TWO-PHASE F.C.C. COMPOSITES

Our objective as far as composites are concerned will be a short preliminary study
to display the type of results that can be expected from an application of the self-
consistent approach to elastic—plastic composite systems. This approach has been
discussed extensively in the purely elastic context by Budiansky (1965), Hill
(1965b) and Walpole (1969). Hill’s (1967) general discussion of the essential struc-
ture of elastic—plastic behaviour pertains to composites as well as polyerystals.

The formulas for a two-phase composite are straightforward generalizations of
those given in §2. Stresses and strains in every grain of each constituent are calcu-
lated ‘individually’ by replacing the grain under consideration by an equivalently
alined ellipsoid which is embedded in a homogeneous matrix whose instantaneous
moduli L are the desired overall moduli of the composite (for a prescribed overall
stress orstrainrate). The macroscopicmoduli are given as the appropriate averagesof
the instantaneous properties of the grains in an obvious generalization of (20) and

CUF L IOAD G LPAPY, M= oMOBO) 1o (MPBD),  (35)
where ¢, is the volume fraction of ?h&se 1 whose moduliare L{*and simﬂa.rly forc,and
L. For the ith phase: @ = ADE, 6P = BO& (36)
and AP = (L*+ LYY L*+ L), BY = (M*+M$’)—1(M*+M). {37)

As in the previous sections, calculations will be baséd on the assumption that the
grains of each phase can be represented by spherical inclusions and that neither
phase has a preferred orientation. In the elastic range such a composite will be
macroscopically isotropic. The following coupled equations govern ity bulk and
shear moduli, x and g:

1= 0,0+ 0o, 5= 20000 +e,p®) + 3o +eop®).  (38)

Here,  , _7i(4p+3x) o 757 i 7

oy Gy _ . :
Pi K(4‘Llr+37](i)) Ps _}l;(l ﬁ)_l_ﬂ??(z)! p3} ﬂw(l ——ﬁ)-]—ﬂ’)ig'} (39)
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and 79 = HOR +208), 7P = HCW-C), % =R, (40)

where £ is given by (26). The derivation of these formulas is given in the appendix.
They simplify to comparable formulas given by Budiansky (1965) and Hill (1965 b)
when each phase is isotropic (i.e. 9 = 7§ = 4®) and to the Hershey-Kroner
equations (22) and (23) for a single phase cubic polycrystal.

A self-consistent calculation of the initial yield surface leads to the maximum
shear stress criterion just as in the case of the polycrystal. Equations (24) to (26) are
still valid if p, and p, in (24) are associated with the values in (39) for the phase which
yields first, that is, for the set p{?, p{? and 3% which gives the smallest value 7% in
(24}. Details of this derivation are also discussed in the appendix.

Two special cases reveal the sort of effects which can be expected. Consider first a
composite for which the firat phase is isotropic with shear modulus #, and an infinite
bulk modulus and the second phase is made up of rigid spheres with volume con-
centration ¢,. The macroscopic shear modulus from (38) is

M

= (41)
A= —3¢c
and the initial yield criterion (24) becomes
— I—¢
Ho -l = 1 %:2 v (42)

where 713 is the critical yield stress for the crystals making up phase 1.

A second simple illustration occurs when phase 1 is isotropic with v, = & and

2 is rigid. In thi
phase 2 is rigid. In this case, % oy

= = 4
T—20, #T1 2, (43)
= — I—¢
and 31— T} = 1_2;73- (44)

The obvious limitations of the elastic results (41) and (43) at rigid inclusion
concentrations approaching 40 and 50 %, respectively, have been discussed by
Budiansky (1965) and Hill (xg655). Similar limitations are apparent in the initial
yield predictions. The remarks in §2 on the effect of anisotropy in causing highly
localized plastic strain at a stress level below that indicated by the self-consistent
model apply here as well. In fact, it is even more transparent that a rigid inelusion
in an isotropic matrix acts as a stress concentrater. Plastic yielding will occur in the
immediate vicinity of certain regions on the surface of the inclusion at applied
stresses below the level required if no inclusion were present and certainly below
(42} or (44). However, here again it seems likely that the initial yield stress of the
self-consistent model will play the role of a rather ill-defined effective yield stress
demarking the onset of rapidly increasing plastic strain. In the early stages of the
plastic deformation, anyway, the self-consistent calculation will underestimate the
plastic strain.

According to this self-consistent caléulation, initial yield depends only on the
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concentration of the non-yielding inclusions, c,, and in no way on the mean spacing
between the inclusions. The present model has no bearing on particle hardened
composites, such as those studied by Ashby (1966), for example, whose inclusions
are microscopic in the sense that their size and/or spacing is on the order of the dis-
location spacing within the erystal. Here the limitations of a continuum theory of
crystal plasticity are inherently involved. For reasons similar to those discussed in
conjunction with the polycrystal application, the yield stress of the erystal 75 must

be regarded as ifs yield stress in sifu.
’ 209, inclusions
(B = 1.89E,, v = 0.306)

L

20r
conjectured behaviour
accounting for loecalized
- (/’/_ plastic strains
- 10 % inclusions
16+ (F = 1.26E,, v = 0.322)
) inclusion free polyerystal
E=E,v=1
12k
single crysta.l} Eovy=1%17
i / properties {non-hardening)
0.8 e WSS WSt NN S NS TN T I T N W T S VU N |
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Figure 8. Tensile stress—strain curves for composites of rigid spherical inclusions and non-
hardening, isotropic f.c.e. single erystals with random orientation,

If phase 2 is rigid, then LPA® = L* L and (35) reduces to
L = (cafo,)L* +{LP AP}, (45)

Thus, an elastic-plastic calculation for a composite of rigid inclusions interspersed
with randomly orientated single crystals requires only a very minor modification of
the previous polycrystal calculation.

Tensile stress-strain curves for such composites with isotropic f.c.c. single
crystals are plotted in figure 8 for rigid inclusion concentrations of 0.1 and 0.2. For
comparison the curve for an inclusion-free polycrystal is repeated from figure 1. The
overall elastic properties from (38) are also recorded in this figure. Rigid inclusions
harden the composite in the manner shown. Yet, consistent with our earlier dis-
cussion, the dashed curve should be typical of the actual behaviour for a concen-
tration c, = 0.2 accounting for plastic straining which occurs prior to the yield
value, 273, predicted by the self-consistent model.
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APPENDIX

(a)- Self-consistent calculation of the overall elastic moduli and initial
yield surface of f.c.c. polycrystals and composites

The general procedure for calculating the overall elastic moduli, which we now
apply specifically to composites whose constituents have cubic symmetry, has been
discussed in detail by Budiansky (1965), Hill (1965 ¢, b) and Walpole (1969). Here
only the major steps pertinent to arriving at (22), (23) and (38), which have already
been introduced, will be recorded (following, as before, the notation used by Hill).

Let 4.5 be the components of a fourth-order tensor A = A = Ajoa = Augy)
with ‘cubic symmetry’ with respect to some set of axes. In the cubic axes, the
components of A are completely specified if we write symbolically

A = (39, 295, 215), (46)

where 39, = A,y + 24,55, 295 = Ay — Aygap 20d 25 = 24,55, thermore with
" .the definition (46) the inverse of A is given by

1 1 1
-1 .
A” (371'1 27?2 2773) 1)

IfAis 1sotrop10, then 5, = %, and we write (3y,, 29,5, 29,) = (31, 29,).
Consider an N-phasge composite with volume concentration ¢, for the ith phase
A self-consistent equation for the overall elastic moduli is

N
- L =3c¢f{LPAD), (48)
i=1 s .

If each phase is randomly orientated, L is an isotropic tensor and is completely
specified by the overall bulk modulus x and shear modulus g and L = (3«, 2u). The
associated constraint tensor for spherical voids is also isotropic and is given by (see,
for example, the next section of the appendix)

L*m2,w( lﬁﬁ) W

where f is defined in (26). With respect'to the cubic axes of the grain, LY for theith
phase can be written in terms of the three independent elastic moduli {e.g. in the
usual notation iy = OF, Lisy = Off and Lif), = Cf) as

(?.) — (3,7%) 27?(1’) 2?7(")) A (50

where consistent with the deﬁmtmn (46) the 7’s are given in (40). Next, A% and B@
are readily calculated in the grain axes using (37) with the results

B = (ofY, pff, pff) and AL = (PP, wpdIn®, poing?),  (51)
where the p’s were previously defined in. (39).
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The equally weighted average of the components of a tensor A over all orientations
yields the components of an isotropic tensor so that

{A} = (3£,2{) where 9¢ = Ay and 108 = Ay — %A, (52)

If A has cubic symmetry and is denoted by {46) then £ = #, and { = (295 + 39,).

Using (52) with (48) to (51) we obtain simultaneous equations for x and g:t =~ -

it

SopP=1 and 3oePrsf =5 (o
i= G

- To calculate the initial yield surface for a polycrystal or composite using the self-
consistent model, we determine the minimum value of A such that the applied
overall stress AG® results in a resolved shear stress equal to, but not exceeding, 75 on
at least one slip system for one grain orientation. The caleulation will be carried out
for a polycrystal, so as to avoid an encumbered notation, but the generalization of
the resulting formulae to a multi-phase composite will be obvious.

Fix attention on an anisotropic f.c.c. grain with a given orientation and choose
one of the 24 crystallographically identical slip systems whose normal m, and slip
direction #; are defined relative to the grain axes by

my = gL, 11, m = A[-1,1,0] (54)
The resolved shear stress 7 on this system is ' '
T = Qo = O-Qijm.inj, (55)

where by (14) 6. = AB.6% Now use {51) to calculate 7 for an orientation of the grain
specified by the direction cosines I; relating the grain axes (7) to the axes () of the
components of the overall applied stress, Ag7;. The result is

T = Jolpal—halyy+louoy) + pal — Ll + 1y 1:)16%- {56)
The critical grain orientation for a given A8° is associated with the set of direction
cosines l; which minimizes 7.
To see that this calculation yields a modified maximum shear stress (Tresca)
oriterion, we consider the following trivial comparison ealculation. Consider a slip
system whose unit normal 7, and unit slip direction #, are defined by

Eal

A~ 1
= J5[—1,1,0], m;= JERT) (P2, P2: P51, (87}

with these components being defined with respect to axes orientated identically to
the axes of the grain considered just above. The value # of A8° resolved on this slip

system is # = Mty fiylyy iy Opgs ' (58)
and when this expression is expanded out using (57) it becomes exactly (56) except
for a relative factor 3 \}
(ﬁ—é) . (59)
2p3+p3 |

1 Other forms of these equations can be obtained just as for the case of isotropic phases as
discussed by Budiansky (1965) and Hill {1g65d) and in the general case by Hill (1965a).
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Minimization of # with respect to all I; for a given A@}; obviously leads to a
maximum shear stress criterion and if A is picked so that # = 73 then

A7 - = 75 (60)
Thus it follows that a maximaum shear stress condition holds for the polycrystal, as

well, but instead with the factor (59) multiplying 72 in (60) or as given previously in
the form (24).7

(&) L* for general anisotropy and transverse isotropy for spherical voids

Here we record without derivation formulas for the constraint tensor L* for
spherical voids which was infroduced in §2. Eshelby’s (1961) tensor § arises
naturally in the solution to this boundary-value problem in anisotropic elasticity.
Let a spherical inclusion, whose elastic moduli L are identical to those of the un-
bounded matrix undergo a uniform stress-free transformation strain €Z. The total
resulfing strain e° in the inclusion consfrained by the matrix is uniform and is
related to the transformation strain by e° = Se?. Hill’'s (1965a) tensor L* is

related to § by L*S = L(I—8). (61)

Kneer (1965} has derived formulas for § but in checking his results we have
- uncovered several errors or misprints in his specialized formulas for transverse
isotropy. For this reason, and because of certain ambiguities in the way Kneer’s
formulas have been presented, it seems well worth while to relist these formulas and
to note the discrepancies. For details of the method of solution the reader is referred
to Kneer’s paper.
In Cartesian components, S8y = Aynn Lingiss (62)
where

1 T 27 . .
Apimn = Ton fo sin Gdﬁfo Ag(U b by + U e e+ ﬁinkmkj+ U, nkmks). (63)
In the above equation ﬁij( =0 ;;) satisfies
Lijia byl = 8y (64)
with k; = sinf cos @, k, = sin@sin ¢ and k; = cos§. Note that
Aij’mn = Ajz‘m'n = Aijﬂ,m = Amni:f 3
but for general anisotropy the first and last pairs of indices of 8y, will not
necessarily be interchangeable. ' '
A numerical evaluation of the double integration in (63) is a practical possibility.
However, Kneer (1965) has shown that this double integration can be reduced to
formulas involving only well-behaved ordinary integrals for the case of fransverse

+ The observation that a self-consistent caleulation yields a modified Tresca condition was
cominunicated to the author by R. Hill in late 1967, Subsequently, a derivation of (24) alter-
native to the one given above was set as & question on a part IIT conrse of the Cambridge
Tripos.

-} The general procedure in arriving at (63) is also given in an unpublished manuseript by
J. R, Willis,
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isotropy. With the 3 axis identified as the axis of symmetry so that the 6 x 6 matrix
(28) of moduli Z;; is appropriate, (63) reduces to

3
Ay = X KA, (85)
m={
zPmdz
{m) = — =
where K Bfo R {m = 0,3), : (66)

and where the a’s and the nonzero A®’s are given in table 1. T Each of the A®’s has
the same symmefry in its indices as /4 as noted in the able,
For complete isotropy,

S = (1=58) 858+ 15 (8, 8381~ 8516,
and L = $080u+ (01— BYB)(8;,8, + 88— §0:61),
where £ is given by (26).
(¢} Numerical method

A broad outline of the numerical procedure is given in §2 and some further details
are filled in here. As described in §2, the iterative procedure for calculating L
{associated with a prescribed stress or strain rate) involved calculating L, and
then A for each grain and improving the estimate of L by using (20) or (45). This
tteration is repeated until adequate convergence is achieved. The efficiency of this
procedure is greatly improved if there are several sub-iterations within each itera-
tion in which the L.’s are not recalculated but only the A.’s and the improved
estimates of L. Convergence is quite rapid even when there is an abrupt change in
the “direction’ of prescribed stress or strain rate as in the case of the caleulations
associated with figures 6 and 7. In that calculation three iterations, with four sub-
iterations within each iteration, was more than adequate to ensure convergence.

Since no preferred orientation of the grains of either the polyerystal or the com-
posite was assumed, averages over all the grains could be replaced by an equally

weighted average over all the orientations. Numerical results were obtained by

‘considering s finite set of orientations corresponding to discrete values of the Eunler
angles relating the axes of the grain to those of the specimen. Because of the sym-
metry it was only necessary to allow each Euler angle to cover the interval from 0 to
7. In all the tensile calculations each of the three intervals was divided into six
equally spaced stations resulting in a total of 216 orientations. Advantage was taken
of the invariance of the properties of the grain with respect to rotations about the
tensile direction and thus L, was calculated independently only for 36 orientations.
For the corner calculations on figures 6 and 7, it was necessary to obtain L. and A,
for all the orientations and for these caleulations a total of only 64 orientations was

T Kneer’s {1965) equivalent expression for @, has an incorrect sign on the firat term. This is
clearly a misprint since our numerical results for the integrals (66) check his. There is also &
difference in one of the terms of A%,; and in three of the terms of A, Kneer's expressions as
printed do not check for the case of complete isotropy.
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used. Accordingly, these are the least accurate of results given. Moduli were calcu-
lated at ten values of & to obtain the plots of figures 6 and 7. .

Between 15 and 30 incremental steps were taken in the calculation of the tensile
stress—strain curves. By far the hest check on the accuracy of the procedure was
obtained by recalculating the tensile curve for the K.B.W. model; as described in
§4, and comparing it with the highly accurate calewations of Budiansky & Wu
(1962) or Hutchinson (1964). With 216 orientations the agreement was excellent
and the curves of stress against plastic strain were virtually indistinguishable in a plot
such as figure 4. Further, a, caleulation, based on this procedure with 216 orientations,
of the elastic shear modulus of a polycrystal whose crystals have the anisotropy of
copper (29) leads to a result which is accurate to three significant figures compared to
the prediction of (23).

The subsequent yield surfaces of figure 5 were calculated in a straightforward way.
At any value of the tensile stress it is a simple matter to determine if the stress state
(Cs: Tag) OF (G, Tap) lies within the elastic region or not and the bounding surface of
the elastic region is readily obtained.

Finally, we mention in passing that Hill’s model, like the Lin and K.B.W. models,
predicts that after a tensile strain of about (Ee[275) = 5 the response of an f.c.c.
polycrystal is not purely elastic when the tensile load is decressed. In fact, a few of
the slip systems in some of the grains continue to remain active and confribute a very

- small amount of plastic deformation in much the same manner as has been discussed
by Hutchinson (x964) for the K.B.W. model. This effect is quite small but, strictly
speaking, the models predict that the elastic region actually ceases to exist if the
Plastic strains are large enough and single crystal hardening is not overly high.
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