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ABSTRACT - The pure tones of & vitrating mesbrane depend on the shape
of its boundary. A method is presented by which the boundary may be
determined from & set of given frequencies. Some cazes, which wre
given as examples, indicste that the gross features of the ghape are
determined by the First few freguencies. To illustrate the method

a "hermonic" drum is designed, which is cheracterized by the simple
rational ratios 2:3:3:4 betwesn the frequencies corresponding to
its first four natursl modes,

INTRODUCTION

The shape of a vibrating membrane determines the
spectrum of its natural frequencies. That is, the shape of a
plane region determines the eigenvalues associated with non-
trivial solutions to the Helmholtz equation

(1) Aw + 3w =0,

with w = 0 on the boundary of the region. The extent to
which the freguency spectrum determines the shape is not
known. The possibility that the spectrum uniquely deter-
mines the shape does not seem implausible, although it has
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not been proved, Furthermore, there exist examples of one-’
dimensional eigenvalue problems where analogous unigueness
principles do not hold [1].

Most studies of inverse eigenvalue problems have been
motivated by questions that arise in physics and have
focused primarily on the asymptotic properties of the eigen-
values. It is known, for example, that the area, length of
the boundary, and connectivity of a region can be found
from the asymptotic representation of the spectrum of the
Helmholtz equation. Results such as these are contained in
Ref. [2]-[12]. A very readable account of this work has
been given by KAC [i2].

In mechanics and especially in engineering applications
of mechanics, it is generally true that the low end of the
spectrum of eigenvalues is more relevant than the asymptotic
range. In the present context, one expects that the gross
features of the shape of a vibrating membrane will be tied
to the values of the first few natural frequencies. it is
this aspect of the invexrse eigenvalue problem on which we
hope to shed a little light by way of a few examples. Our
study is similar in spirit to previous work by Niordson on
onedimensional eigenvalue problems |13 and the inverse
problem for vibrating plates [14].

In vhe following section an equation is derived for
the rates of change of the eigenvalues of the Helmholtz
equation with respect to variations in the shape of the
region. This leads to an algorithm for determining shapes
for which the first N eigenvalues (counted in proportion
to the multiplicity of their eigenfunctions) coincide with
N prescribed values. Of course, there is no guarantee that
any shape exists for which the first N frequencies take on
arbitrarily selected values. For example, we conjecture
that for any region the ratio of the second eigenvalue to
the first does not exceed the corresponding ratio associated
with the circular region, which is approximately 2.5307.

While we have not been able to prove this, we will show
that for all near-circular shapes this ratio is less than
the value associated with the éircle. '

The third and fourth sections contain ;.description
of the numerical methed, which'makes use of é polynomial
function of a complex variable to map a given region, assumed
to be simply connected, intq the unit circle. Eigenvalues
are obtained from a modallaﬁhlysis of the transformed
Helmholtz equation. Exampleés which illustrate how the first
few eigenvalues determine detail of shape are presented in
the final section. Included there is a shape of a "harmonic"
drum which is designed for consonance with its second and
third distinct frequencies, having the ratios 3:2 and 4:2,

. respectively, to the first,

EIGENVALUE VARIATION WITH SHAPE CHANGE AND AN
ALGORITHM FOR SOLVING THE INVERSE PROBLEM

Let W be one of the orthonormal eigenfunctions on the
region D bounded by the curve C and let )\ be the
associated eigenvalue. Thus,

(2) AW + AW = 0 in D
(3) W=20 on C
and
| 2
(4) IWdA=1
D
e
where A = —3 + -— denotes the Laplacian operator.
9x 3y

Suppose the boundary C undergoes a slight change
such that the new boundary becomes ¢ + 8C enclosing D + éD
as shown in Figure 1. We wish to calculate the assoclated



Figure 1.

changes in the eigenvalues and, in particular, in A as a
representative value. To this end we consider the following
auxiliary problem.

Let U satisfy

(5) AU + AU = 0 in D

with the boundary condition

(6) U = -¢b(s) %% on €

and the normalization condition
2an o
(7) Utda = 1
Here, ¢ is a small number and b(s) 1is a given continuous

function of the arc length s along the boundary curve C .
Let us assume that if b(s) and C are sufficiently

smooth, A and U will depend analytically on ¢ s0o
that we may write

Ao + eAl + e

>
]

(8) .
U= U0 + sUl'+ eos

for small € . For € = 0 , the problem for U coincides
with that for W and we take A A . The eigenfunction
UO for & = 0 will be some linear combination of the L
p eigenfunctions associated with A . If p=1, then
U, = W without ambiguity. If p> 1, the‘iinear combination
of eigenfunctions will depend on b(s) , but without loss
of generality this combination can again be identified
as W ..

Now,

o

(9) A= ~jUAUdA = f (vu)2an + efb(s)(gg)z s
c

D

where the second equality follows from an application of
Green's formula and the boundary condition {(6)}. If the
expansion for A and U are introduced into (9}, the
first order change in A 1is obtained as

Ib(s)(gﬁ)zds

(10) eA = 2efvw-vuldA + €
3]
Application ¢f Green's formula to the first term on the
right hand side of (10), together with (2), yields
(11) Twevu.dA = U, Has + Afwu daa
71 1 3n 1
D
As both U and W = UG
orthogonal to U0 and hence the last term in (11) vanishes.
This can be seen directly from the following equality: -

are normalized Ul has to be



2 2., .
1= JU da = J‘UO +.cul + ...)’dA 1+ Zejuoulda + ...
D -

D D
' \ W
On the boundary C , Ul = ~b T and thus
awW, 2
{12) eAl = sfb(s)(sg) ds

C

At this point, the solution to the auxiliary problem
for U is applied to the problem for the slight change in
the boundary from C to € + 3C . In general, U will not
vanish on C -since Uo igs zero on C and U satisfies
(5) . If at a typical point on C , b{s) < 0 , then U will
vanish, at a distance eb (to first order in ¢) . inward-
along the normal to € . If b > 0 , then an analytical
continuation of U across C will vanish at a distance
€b outward along the normal to C . In other words, U is

a solution to
AU + AU = 0

in D+ 8D with U =0 on C + §C . The boundary C is
displayed by B{(s) = eb(s) (to first order in €) along
the outward normal to C , as shown in Figure 1. Therefore,
if Ai is any eigenvalue and ,wi is a corresponding
normalized eigenfunction, then a displacement of the
boundary B(s) = eb(s) to C + §C will lead to the fol-
lowing first order change in this eigenvalue

(13) §r, = -(B(s)(gfi)zds
i J on ]

c

It does not hurt to emphasize again that if there is a
multiplicity of eigenfuncﬁions associated with. Ai then the
combination of these represented by wi in {(13) must be
the limit for ¢ = 0 for a given choice of b{s}) .

suppose it is desired to determine a shape change
that will bring about prescribed changes {axi} in the
set of the first N eigenvalues. It is understood that
eigenvalues are counted in pfoportion to the multiplicity

S

of the associated eigenfunctions. No restriction is placed
on changes ih the eigenvalues not in this set. For each
eigenfunction wi , an influence function fi is defined
according to’

W q
14 = (=2
(14) - fi(s) ‘an,’,_q
If the N influence functions associated with this set
are linearly independent then it is easily verified that a

shape change that will give the desired increments in the

eigenvalues is

( N N 1
15) B(s) = - C,. “8Af
121 j£1 ij i j(s)
The symmetric matrix Cij + whose inverse is Cij_l" is
given by ’ )
(16) Cij = in(s)fj(s)ds
by . .

It is not possible to prescribe aibitrary increments
in the eigenvalues when the influénce functions under
consideration are linearly dependent. An example of such an
exceptional shape is the circle. To see this we reed consider
only the three eigenfunctions associated with the ldwestvtwo
eigenvalues of the rggion enclosed by unit circle, i.e.,

(Y
'y

W cos(e-eo)

2| /3 Jl(r?zr)
- 2
T I sin(6-8,)

W 1

3
where the first two eigenvalues for the unit circle are '
y, = 5.78319 and v, = 14.68197 . The angle 8, will,
depend on theApa;t;cular shape change b{8) . Here, Jn is
the Bessel function of the first kind of degree n and the
prime denotés"differentiatioﬁ with respect to its argument.



Cylindrical coordinates, r and 0 , are employed in the
usual manner. The three influence functions are given by

e o h 15 ¥y
f sy B e Sl 9 cos82(6-8,)) , £y =20 - cuaZ(SHBOJ)

These are clearly linearly dependent,

An interesting conseguence of this linear dependence
is that any small shape change away from the cirele will
diminish (or at least not increase) the ratio of the second
lowest eigenvalue to the lowest. To show this, we nots that
any shape change can be expressed as

w
B(8) = eb(8) = (] b cos nd + | 4, sin nd)
N n=0 n=1
Only the Fourier terms bo 7 bz cos 26 and d2 sin 28 will
infiuence the three lowest eigenvalues to first order, and

thesa terms can be combined in the form

b0 + b2 cas 2(e-#)

where from symmetry considerations € may be identified
with 60 in the expression for W, and Wa . Ratios of
the new sacond and third eigenvalues to the new lowest

value are found to he

T, +EX ¥ =
2 2 2
(17) = = .51 - ¢h,) + ole”)
Yl+6kl 0] 2
and
YA Y %
2 3 2 2
{18} ——— = —={1 + b ) + of{c”)
114-0‘\1 Yy 2

pepending on the sign of b2 , either (17) or (18) ylelds a
lower ratio than yzfyl and hence no variation of the
circular shape can increase the ratio between the second and
the first eigenvalue,

We conjecture that the ratio of the second eigenvalue
to the first for any shape is less or equal to the corres-
ponding ratio (2,5387) attained by the circle.

e

Our conjecture is reinforced by the fact that we
were not able to find any counterexample among a fairly wide
range of shapes, some of which are given below. We may rot
be top far out on a limb since quite a few lscperimetric
properties are possessed by the circular shaps [15!.

EIGENVALUE ANALYSIS

Let D be a simply connected region in the complex z-plans
(z= x + iy) . Let z = w(¢) be a function of the complex
variable ¢ = £ 4 in that conformally maps D into the
region bounded by the unit circle in the z-plane. With

£t and n as new independent variables, the Helmholhkz
equation (1) is transformed to

(19) AW + ApW = D
whare
o = lag]®
\ar |
2 a®
with W =0 on |zl =13 and now, & = S g
3t an

Thus the problem for finding the natural frequencies and
vibration modes of a uniform membrane with a non=circular
shape 1s formally equivalent to a prcblem for the freguen-
cies and modes of a circular membrane with a non-unifoem
mass distribucion @ .

In this paper the numerical anulysls has heen restricted
to regicns which can be mapped ints the umit circle by 2
polynomial mapping function of tha Fform

M

20 g =7 2"
(20) nél s
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where an = an + Bn . The origin of the =z-plane is .
contained in D and is mapped onto the origin of the

L-plane . Pure rotations are suppressed by setting B8, =0 ,

1
With this representation p 1is given by
ey M-1
dz dz ike
(21) p® o= o= = I P (x)e
LI A S
where ¢ = reia and Pk(r) is a polynimial in r defined
by
. M+1l-k .
= - 2j+k
P (r) = -Eo (kt3+1) (3+1)ay g 135, T r k20
(22) )
P (r) =P (r) ;, k<o

k

In the standard notation, () denotes the complex conjugate.

Eigenvalues and eigenfunctions associated with a
region D are obtained by a Rayleigh-Ritz analysis of the
trangformed Helmholtz equation (19). Any eigenfunction can
be expressed quite generally as

(23) W= J Zl C 3 (T 1)t
= b1:23

where ¢ = ¢ .
¢ Cim T S-mm

Now, {ynm} is used to denote the set of eigenvalues
associated with a uniform circular membrane with unit radius,
that is, /7;; is the m th zero of the Bessel function of
the first kind of degree n .

) A set of coupled algebraic equations for the'eigen~
value problem is obtained if (23) is gsubstituted in (19) and
if use is made of the orthogonality properties of the ’
Bessel functions. Alternatively, a similar procedure based
on the variational principle associated with (19) may be
used. The following equations result:

Fr—

11
. w© o M-1
I 1R - =
(24) vy AT ey - ng_m L k=-M+lcannmijk 0
where
1

(25)  Foppgy = fgan(/v;m DI A D B ar

Lo A e

if 1 +vk +n=0 or ~i+ kA+ n = 0»
= 0 otherwlse .

Since Pk(r) is a polynomial in r the integrals
(25) can be expressed as sums of integrals of the form

) 1
p S—
{26} {r~Jn(/Ynm r)»Ji(/§1j r) dr
0 . .

A real matrix~eduatidnvéf the fbim-‘,
(27 S  (H-AA)c = 0

can be obtained by splitting (24} into real and imaginary
parts. In_{z?), g is a diagonalvmatrix with positive
elements, A is a positive definite symmetric matrix and
c is a colamn matrix made up of the ordered real and

. A further simple
transformation brings (27) to a similar form but with H

as the identity matrix. In this form, the power method is
ideally suited for numerical evaluation of the N lowest

imaginary parts of the coefficients €om

eigenvalues and eigenvectors as long as the eigenvalues are
distinct. Otherwise, one of the standard methods can be
used to find the eigenvélues and eigenvectors. Equation (27)
is truncated in such a way that sufficiently many equations
are taken into account to provide the accuracy desired for
the first N eilgenvalues.
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NUMERICAL METHODS FOR SOLVING THE INVERSE PROBLEM

Two procedures were tried out to arrive at shapeé whose
first N frequencies coincide with N prescribed values,
The first was a straightforward implementation of the
algorithm described in tﬁe second section for expressing a
small deflection of the boundary curve, méasured by B{s) ,
in terms of the influence functions and desired increments
in the eigenvalues. A starting shape is chosen. A sequence
of iterations is performed which deforms the initial shape
in small increments according to (15) until either a shape
with the desired first N frequencies is obtained or it
becomes clear that such a shape will not be found, at
least not starting from that particular initial shape.

At each iteration step the first N eigenvalues with
the associated eigenfunctions and influence functions of
the current shape are calculated in the manner described
in the previous section. Componenta of the matrix C1j
defined in (16} are obtained by numerical integration. As
long as this matrix is non-singular, the set of influence
functions are linearly independent. The incremental shape
change, B(s) , is determined’ fxom (15). and finally,
incremenis in the mapping coefficients, Gan » in {(20)
are solved for in terms of B(s) . Numerical integrations
are conveniently carried out on the unit circle in the
{-plane . Small numerical errors will be present at each
step, stemming from, for example, numerical integration or
the fact that (1%) takes into account only first order
terms. Neverthelegs, if the method does converge on a shape,
the only error involved in the numerical values of the
eigenvalues of that shape arises from the truncation of
(27). This is alsoc true for the method described next.

The second method bypasses the variational formula
{15) and makes usa instead of derivatives of the eigen-
values with respect to the mapping coefficients. Shape

13

changes are obtained by directly.incrementing these coef~-
ficients. Here again, an initial shape is used to start a
sequence of iterations. At each step derivatives of the
first N eigenvalues are taken with respect to both the
real and imaginary parts of the mapping coefficients, i.e.,

T . E— {i=1,N; n=1M; m= 2,M,

This is done numerically. Desired increments in the eigen-
values are taken to the proportional to the difference
between the prescribed eigenvulues. i , and the eigen-
values asgociated with the current shape, Ai .

That is,

(28) 8y, = t(x‘; - i =1,N

1 Ay
where the multipl}er t is unity if the current eigenvalues
are sufficiently close to the prescribed set but less than
unity otherwise to insure that the shape change in each
iteration is small. ' S

Selected sets of N unknowns from among the a's and
8's are used to form linear equations for the increments

according to
i i
(29) z ] 2 =6 i=1,N
n oa n 8
For each set the N increments {6a_ , 68} are

solved for from (23%). A supplemental criterion must be
applied to choose the set of increments which is actually
used to give the next shape in the aequence of iterations
that is specified by

' - o n
(30) e f,z,[(f’n + San)_ + 108, + sgn)Jc

0f course, sets of increments that yield a nonconformal
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mapping function are eliminated from consideration.

One possible criterion is to select the new shape
that has the greatest least value of |dz/dz| on its
boundary. This criterion works well and-has the advantage
that it tends to prevent the iteration sequence from
leading to a nonconformal mapping representation (as
opposed to the first method described, which has no such
provision). '

Nearly all of the examples presented in the next
section were calculated on the basis of the second procedure.
Seven complex mapping coefficients were used in the
calculations {i.e., M = 7) , and (27) was truncated to
30 equations in the most accurate calculations by retaining
only the 30 real and imaginary parts of the Com ’g
associated with the Ynm 's taken in ascending order. Ve
estimate that the lowest frequencies calculated for the
examples in the next section are accurate to within 0.1% ,
while the largest frequencies calculated do not exceed the
actual values by more than about 0.5% .

EXAMPLES

For the first example the five lowest eigenvalues
of the pear~shaped reference shape, shown as a dashed line
curve in Figure 2, were calculated and used as prescribed
values. The reference shape has one line of symmetry and
is specified by equation (20) with a, = 1, a, = 0.2 and
oy = 0.2 and with all other a 's and B8 's equal to zero.

Eigenvalues for the reference shape are given in the
Table.

Figure 2.

‘The shape denoted by N = 3 was derived from the

starting shape, and its first three eigenvalues are identical
to those of the reference. The next shape (N=4) has four

eigenvalues in common with the reference and the last (N=5)
has five. In each plot the reference curve is superimposed

(with the aid of rigid body translation and rotation) to
display the comparison. In this example the search was
restricted to shapes with at least one line of symmetry by
taking all the imaginary parts of the mapping coefficlents
to be identically zero. The N = 3 shape was used as the
starting shape for the N = 4 case and similarly the

N = 4 shape as the first guess for the N = 5 case. This
procedure proved to be more certain to lead to a shape with,
say, five desired frequencies than by starting from an

arbitrary initial shape for the N = 5 case.
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The second example, which is shown in Figure 3, em-
ploys Pascal's limacon (with a; =1 and a, = 0.35) as
the reference shape and the results are presented in the
samé way as in the first example. However, in this case

Figure 3.

no symmetry‘was enforced and the starting shape is asym-
metric, Eigenvalues for the reference are also given in
the Table.

Our final example is a shape whose second and third
distinct frequencies make ratios to the lowest frequency of
3/2 and 2, respectively. This shape is shown in Figure 4.

17 .

J @

Figure 4.

1f a drum with this shape was tuned such that the lowest

frequency corresponded to C on the musical scale then

the next two notes would be G and C an octave higher,

A circular shape has as its corresponding frequency ratios

1.59 and 2.14 , while a squareiregion has 1.58 and 2 .
In searching for this shape we were guite certain

that if it did exist it would necessarily have equal second

and third eigenvalues (i.e., the second lowest eigenvalue

would be agsociated with two eigénmodés). Thus, we started

our search with N = 4 and prescribed the eigenvalues such

tnat /X,7X = /AJ7X = 3/2 and /X /X, = 2 . By starting

from a rather asymmetric initial shape we found a shape very
similar to that of Figure 4 with almost perfect 120 degree
symmetry. To achlieve a more attractive shape with the same



i8

three distinct frequencies, we restricted consideration to
shapes with 120 degree symmetry and thereby automatically
enforced i, = Aa {over the range of ghapes considered).
This led to the shape of Fig. 4, whose non-zero mapping
coefficients are given by 5y = 0.9755 a, = 0.2399 and
@y = 0.0424 corresponding to a value of JTZ equal to
2.4048 .

One might wonder if there exist shapes with 90 degree
symmetry with the same firat four eigenvalues. A brief
search for such a shape convinced us that we would not be
able to find one. Indeed, this is consistent with the
general impression obtained from the other examples that
only four or five eigenvalues suffice to determine tha
gross features of the shape.

TABLE
SHAPE JI; ff; #Y; JT: JI;
Unit circle 2.4048 | 3.8317 | 3.8317 | 5.1356 [ 5.1358
Pear-shaped 2.2288 | 3.411 | 3.662 | 4.539 | 4.867

reglon of Fig,.2

Pascal's limacon| 2.1735 { 3.333 3.57% 4.561 4.577
of Fig.3

Harmonic drum 2.4048 | 3.607 | 3.607 | 4.805 | 5,058

of Fig.4 {double)

[5‘

I6]

L7

f1o]

[1L]
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