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I, 
ABSTRACT 

I Buckling and postbuckling behavior under axial compression is analyzed for 
a long circular cylinder containing an axisymmetric imperfection. Bifurcation 

I 
stresses are investigated for all possible modes, both periodic and aperiodic, 
and postbuckling analysis reveals that bifurcation is not always associated 
with a loss of load-carrying capacity. The results provide some theoretical 
foundation for empirical knockdown factors. 

t 

INTRODUCTION 

The notion of a 'knockdown factor' was introduced long ago in the field of 
shell buckling to come to grips in a practical way with the highly unpredic
table behavior of shell structures. This notion is still in use and as recently as 
1968 the u.s. National Aeronautics and Space Administration released a 
special report on design criteria based on this conceptjt], The knockdown 
factor is chosen so that the product of it and the classical buckling load leads 
to a lower bound to all the existing experimental data for that configuration. 
An enormous amount of data for this purpose has been collected for the 
monocoque cylindrical shell under axial compression (see. for example. 
Weingarten. Morgan and Seide[2D and knockdown factors of 1/4 or 1/3 are 
typical for all but extremely thin shells. 

Is there any real physical basis to such factors; or are they simply empir
icallower bounds which will become even lower as more data is accumulated? 
Considerable effort has been expended in attempts to answer this question. 
and the current view ofthe buckling of axially compressed cylinders seems to 
favor the second interpretation. 

• This work was supported in part by the National Aeronautics and Space Administration 
under Grant NGL 22-007--012. and by the Division of Engineering and Applied Physics. 
Harvard University. 
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Two kinds of theoretical results bolster this conclusion. The idea that the 

BUCKLING AND POSTBUCKLING BEHAVIOR:minimum postbuckling load of the perfect cylindrical shell is closely related 
RESULTS AND DISCUSSIONIto the maximum support load of a highly imperfect cylinder was popular for 

a number of years. However, as more and more accurate calculations were 
Bifurcationbehavior carried out, the predicted minimum of the postbuckling load turned out to be 

well below the accepted empirical knockdown loads. The last calculation of I 
this type, by Hoff, Madsen and Mayers [3], suggests that the minimum 
postbuckling load may even vanish as the thickness to radius ratio approach
es zero. 

More recently the emphasis in shell buckling has been on the analysis of 
the nonlinear buckling behavior of imperfect shells. However, very few 
accurate results, either analytical or numerical, are available for assessing 
behavior in the range where the imperfection level is such that the buckling 
load is reduced below, say, 25 percent of the classical. One notable exception 
is Koiter's[4] work on cylindrical shells with axisymmetric sinusoidal imper
fections. Koiter obtained a relatively simple formula for an upper bound to 
the load at which nonaxisymmetric bifurcation from the axisymmetric state 
occurs. Imperfection amplitudes of just one shell thickness reduce the 
bifurcation load to a fifth of the classical load. Further, Koiter found that 
as the imperfections get still larger, the bifurcation stress approaches one 
tenth of the classical value. Thus, while a cylindrical shell with an axisym
metric sinusoidal imperfection is admittedly an idealized model, there is, 
nevertheless, nothing about Keiter's upper bound which attaches any 
theoretical significance to any knockdown factor except possibly the limit 
value of lIto for large imperfections. 

The above discussion, however, embodies the tacit assumption that the 
collapse load of the imperfect shell coincides with the bifurcation load. This 
need not be the case. Certainly if the imperfection is sufficiently small 
bifurcation is unstable and is equivalent to collapse, but the central conclu
sion of the present paper is that for sufficiently large imperfections the 
bifurcation from the axisymmetric state is initially stable, so that loads above 
the bifurcation load can be sustained. The combined picture involving 
bifurcation and postbuckling results to be presented suggests a qualitative 
theoretical rationale for the empirical knockdown factors. 

We follow Koiter[4] and consider the infinitely long cylindrical shell under 
axial compression with axisymmetric sinusoidal imperfections. The bifurca
tion problem is formulated exactly and a complete family of buckling modes 
is identified. Keiter's upper bound pertains to the critical stress associated 
with one restricted set of modes, and the critical stress for a set of long 
wavelength modes reproduces some numerical results obtained by Almroth 
[5]. The initial postbuckling analysis is also formulated exactly. An exact 
analytical solution is obtained for the limiting case of modes with infinitely 
long wavelengths, and numerical analysis is used to solve the equations 
for the other cases. The body of the paper includes only a summary of the re
sults and their interpretation. Details of the analysis are given in the Appendix. 

The classical analysis of the buckling of an infinitely long cylindrical shell 
of radius R and thickness t subject to a compressive stress 0' yields the 
critical bifurcation stress 

0' E t 
c1 J3(1-,,2) R (1) 

where E is Young's modulus and v is Poisson's ratio. A multiplicity of 
buckling modes is associated with O'cl' The normal component of deflection 
W for these modes has the form 

w- 00 1 - tcos(~)cose;y) (2) 

where x and yare dimensionless axial and circumferential coordinates, 
respectively, defined in terms of longitudinal and circumferential distances 
Xand Yby x=XqolR andy= YqolR where 

q~ = J12(1-v2
) ~ 

t (3) 

The wave numbers in (2) must satisfy 

(k-1)2+S~ -1 
(4) 

where, for circumferential periodicity, (qoso/2) must be an integer. For future 
reference we note that the axisymmetric mode is given by k = 2 and So =0, 
and the mode with a square wave pattern corresponds to k = I and So = l. 
For any other value of So in the range O<so<l, equation (4) has two 
positive roots, k 1 and k 2 , that satisfy k 

1
+k

2 
= 2.
 

Equations (1)-(4) as well as our subsequent analysis are based on the
 
Karman-Donnell shell equations and consequently, as is well known, these
 
results are restricted to modes with more than, say, four wavelengths around
 
the circumference.
 

An axisymmetric imperfection in the shape of the classical axisymmetric
 
mode is considered, i.e.,
 

W=: -8cosx 
(5) 

The eigenvalue problem governing nonaxisymmetric bifurcation from the 
axisymmetric prebuckling state is formulated in the Appendix, as are the 
equations for the initial postbuckling behavior. For a given magnitude (j of 
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the axisymmetric imperfection, a mode can be written as 

2wu(x)] cos.HWI = Real [etb
/ (6) 

2 

where Wu is a complex function which is periodic in x with period 2n. 
Values of k in the range 0::;;k s; I generate all possible bifurcation modes, 
both periodic and aperiodic in x. Note that the classical modes (2) of the 
perfect cylinder can be recovered from (6) by setting Wu = 1. Note further 
that letting Wll = A + Be -1% in (6) with s = So yields the form 

WI ={ACOS[~J+BCOSe2~k)X]cosS;y (7) 

Thus, (6) can also represent any linear combination of the two modes of the 
perfect cylinder associated with a given value of 80' In general, the axial 
variation of such a mode is not periodic. 
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Figure 1. Buckling andpostbuckling ofimperfect cylindrical shells under axial 
compression 

Calculations for the imperfect cylinder are described in the Appendix. 
Curves giving the bifurcation stress ac (normalized by the classical buckling 
stress acI) associated with values of k of 0, t and I are plotted in the top 
half of figure I as a function of ~blt. In each case, for a given value 
of k and ~1Jlt, the value of ac shown represents the minimum eigen
value found by treating the circumferential wavelength parameter s as a 
continuous variable. The curves marked k = I and k = 1/2 are the result of 
numerical calculations, whereas the curve for k = 0 in figure 1 is an exact 

limiting result. With A.o = aclac1 and )I = ,J12(l-v2)1Jlt, the formula for 
this curve is 

')'4(1-6A.o-4A.~)+4'}'2(1-A.o)2(2-6A.o-H~)+ 16(1-1.0)7 (1 +A.o) = 0 

(8) 

Strictly speaking, this Iimit for k - 0 has no physical meaning since it 
implies infinitely long wavelengths in both the axial and circumferential 
direction. Its usefulness, however, lies in the fact that it does provide a very 
good approximation for modes associated with small values of k and 8 

which are in the range of physical validity. Furthermore, for values of 
~ bIt less than about unity this limit provides the lowest eigenvalue a, 
among all possible k. This is illustrated in the upper half of figure 2 where 
some selected calculated results are plotted to display the variation in ac 

as a function of k for fixed values of bIt. 

For values of ~bIt greater than about unity the case for k = 1 
yields the lowest bifurcation stress a.: Thus over essentially the entire range 
of ..jl-v21Jl t the critical (lowest) bifurcation stress is given either by the 
case for k = 0 or for k = 1. The companion curve for k = t has also been 
included in figure 1 even though it is only slightly displaced from that for 
k = I. Postbuckling considerations divulge a special role for this case. 

Koiter's[4] upper bound calculation took into account modes in the k = 1 
class and his results are exceedingly close to those shown in figure 1 for this 
case. In fact, the absolute discrepancy is never greater than that associated 
with the limit for b _ 00, where Keiter's upper bound predicts aclac1 = 1/10 
and the numerical result is aclac1= 0.0958. 

Almroth[5] extended Keiter's analysis to include certain long wavelength 
modes and he found buckling modes which fit the description given by (6) 

with low k values. For values of .J1-v2 bIt less than about 0.8 Almroth's 
results fall on the curve labeled k = 0 in the upper half of figure 1.. 

As mentioned above, the circumferential wavelength parameter s is 
treated as a continuous variable in all our numerical calculations in the 
search for the minimum eigenvalue. For completeness we include in figure 3 

• For values of lJ/t between about .8 and I Almroth shows values of Uc/UcI lower than 
those shown by the curve for k 0; however, we have not discovered any bifurcation 
stresses in this range lower than those found for k =O. 
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curves of the minimizing value of s as a function of the imperfection ampli
tude. If, as shown on the ordinate, s is normalized by so, the value associated 
with the perfect cylinder (4), then all curves lie between those shown for 
k = 0 and k - 1. In the limiting case k -+ 0 both s and So approach zero; 
however, the limit of the ratio slso is well defined. 
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Figure 2. Variation of bifurcation stress and postbucklinq parameter as a 
function ofk for fixed values of imperfection (v = t) 

Postbuckling behavior 

As a measure of the postbuckling behavior we consider the change in overall 
stiffness following bifurcation. The average compressive axial stress is 
denoted by 0' and the average axial shortening per unit length is denoted by A. 
At bifurcation the nondimensional prebuckling stiffness So is given in terms 
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of the axisymmetric prebuckling quantities by 

5 (9)0_.!.(dO'o)
E dAo "~"" 

where the zero subscript refers to the prebuckling configuration. The initial 
postbuckling stiffness is denoted in terms of the corresponding postbuckling 
variables by 

5_.!. (dO') (10) 
E dA "="" 

1.2, Iii I I I 1 I I I 

S~+(k-l)2 ... 1 

.8 

°0 .2 .4 .6 .8 1.0 .8 .6 .4 .2 o 
JI-V2! -1 [Jl-y 2 fr1 

t 

Figure 3. Critical circumferential wavelength parameter as a function 0/ 
imperfection amplitude 

A convenient measure of the relative magnitudes of the postbuckling stiffness 
and the prebuckling stiffness is the nondimensional parameter IX where 

IX = ~ arc tan (~) (11) 
n 50-5 

As depicted in the insert in the bottom half of figure 1, IX ranges from +1, 
corresponding to unchanged overall stiffness, to the most highly unstable 
situation at IX = -1. 

Curves of IX as a function of ~olt are presented in the lower half 
of figure 1. The curve for k = 0 is the plot of the exact solution for this 
limiting case and the other cases, for k = t and 1, were obtained by numerical 
analysis. Both the analytical and numerical analyses are given in the 
Appendix. 
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Of the three cases shown, that for k = 1 is most readily interpreted. For 
~b/t less than about 0.35 (and u,,/uc1 greater than about 0.33), 
bifurcation into the k = 1 mode is unstable under dead load since the average 
stress falls as buckling proceeds, i.e., ex<O. However, for values of u,,/ue1 

less than about 0.33, bifurcation is stable (a > 0) and an average stress above 
u" can be supported. Furthermore, for ~b/t greater than about unity 
the lowest value of u" is associated with k = 1 and thus in this range the 
initial postbuckling behavior is stable. 

For .Jl-VZ b/t less than about unity both the limit for k = 0 and the case 
for k = t yield values of u" which are lower than for k = l. In addition, 
as measured by a, they generally have a more unstable postbuckling behavior. 
As the imperfection amplitude becomes larger both of these cases first enter 
a range of stable bifurcation under dead load (ex>O) and then, for suffi
ciently large imperfection levels, become unstable (ex<O) again. But at the 
same time, the values of u" associated with these two cases become larger 
than those for k = I and are therefore no longer critical. 

Additional calculations were made to obtain the crossplots of ex vs, kin 
figure 2, which reveal that the most unstable postbuckling behavior is 
associated with either the k 0 limit or the case for k = t, depending on the 
value of ~bIt. The parameter a is a smooth function ofk except at the 
isolated points k =t and I, where a has discontinous values. (This singular 
behavior is discussed in the Appendix.) It appears evident from figures I 
and 2 that an assessment of the cylinder behavior can rest on study of just 
the results for k = 0, t and 1. 

Implications of the analysis 

In figure 4 the measure of postbuckling stability ex is plotted directly as 
a function ofU,,/Uc1 for each of the three important cases. By eliminating the 
explicit role of the imperfection in this figure we can hope that the inter
pretation is somewhat freed from the specific imperfection shape assumed. 
Figure 4 reveals a strikingly sharp transition from the highly unstable behav
ior which occurs when Ue/U"1 is greater than roughly 0.3 to the mildly 
unstable, or even stable, behavior for lower bifurcation stresses. The transi
tion is most abrupt for the cases of k =t and the limiting case k =0 and 
both ofthese cases are far more critical in this range than for k = I. Thus the 
values of u,,/Uct of about 1/4 to 1/3 (corresponding to the knockdown 
factors often suggested) do have a special significance. Lower collapse loads 
are clearly possible, however. The solid dots which terminate the curves in 
figure 4 correspond to the limit values for ()- 00. It is interesting to note 
that the lowest possible bifurcation stress for which the initial postbuckling 
behavior is unstable under dead load occurs for k = t with U,,/Uc1 - 0.125; 
this, however, is a limiting result for ()_ 00 (see fig. 2). 
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Figure 4. Postbuckling behavior as a function ofbucklingstress 

Another feature which shows up in figure 4 is that stable initial post
buckling behavior under prescribed axial shortening (i.e., ex> -t) will always 
occur for values of Ue/Uc1' less than 1/3. This result has implications for the 
effect of the formation of a local buckle on a cylindrical shell. Suppose such 
a buckle develops (due to a localized imperfection pattern) at an overall 
stress level below U/Ue1 = 1/3. If it can be assumed that the local buckling 
region 'sees' a surrounding constraint which is approximated by the pre
scribed shortening condition, then local snapping will not immediately 
occur and, therefore, total collapse will not be precipitated. 

No explicit dependence on the ratio of radius to thickness, R/t, appears 
in our analyses. Modes associated with low k and s values have long axial 
and circumferential wavelengths but these modes are physically meaningful 
for all but relatively thick or short shells. More to the point though is the 
fact that the mode associated with k = 1/2 is a short wavelength mode and 
this case does stand out as being the most unstable over nearly the entire 
range of imperfection levels. Thus it would appear unlikely that any deter
ministic analysis of imperfect cylinders (excluding thick or very short shells) 
could bring in an effect of R/t such as is observed in the experimental 
trends[2]. 

Our final conclusions drawn from this analysis with regard to knockdown 
factors are mixed. On the one hand, figure 4 does display a remarkable 
transition in behavior in the range corresponding to the most frequently 
used knockdown factors. On the other hand, one may still have to appeal 
to the presumption of increased likelihood of large imperfections for thinner 
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shells in order to explain observed reductions in knockdown factors with 
increasing values of Rl). 

APPENDIX 

Symbols 

E Young's modulus
 
y Poisson's ratio
 
R cylinder radius
 
t cylinder wall thickness
 
X longitudinal coordinate
 
Y circumferential coordinate
 
qo == [I2(I-y2)]1/4[R/t]l/2
 
e == [3(1- ,,2)]1/2
 
U axial displacement
 
V circumferential displacement
 
W outward radial displacement
 
W initial radial displacement (imperfection)
 
o amplitude of initial imperfection
 
F Airy function for stress-resultants
 
x =XqolR
 
y == YqolR
 
w == WIt
 
flJ == WII
 
f == [q~/Et2 R]F 
" == 2eoll 
(I average axial compression 
(Ie value of (I at bifurcation buckling 
(lel classical buckling stress (== EtleR) 
A == (l1(lel 
Ae == (lel(ld 
, amplitude of buckling displacement 
b postbuckling coefficient (eq, (A4» 
G: postbuckling stiffness indicator (eq. (11» 
k longitudinal wave number (eq. (A7» 
3 circumferential wave number (eq, (A7» 

2P == '13 

't == 2kl32 

4 average shortening per unit length 
S postbuckling axial stiffness 
So prebuckling axial stiffness 
N number of intervals in finite difference scheme 
h == reIN 

h-2+!ipkh- 1A, == 
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Square matrices: 

P,., Q,., H,., M pgBIJIPl, 

Column matrices: 

Z,., Cp . ,. , Tp . ,. 

Operators: 

( Y==~oX 

C) ==~ oy 

L p ( ) equation (A9) 

e, () equation (A38) 

<> denote average on the cylinder 

Theoretical analysis 

The nondimensionalized Karman-Donnell equations for the cylinder con
taining an initial axisymmetric imperfection are 

~ w +r == 2c"'(f, w+w) 
{ (At)
~/-uf' == -c"'(w, w+2W) 

where 

"'(91,92) = 9ig2+g19~-2gig2 (A2) 

For the initial nondimensional imperfection w== -(olt) cos x, the appro
priate axisymmetric solution for the unbuckled cylinder is [4] 

Wo == (,,:) - (~) (l~A)coS x 

(A3) 

10 == -(i:)+(~) (l~A)coSX 

The postbuckling behavior will be represented by 

w = Wo + ,Wl +,2W2 +... 
1 ==/o+Ul +,2/2 (A4) 

AlAe == 1+ b,2 + ... I
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""l'",
 

where IW11_ - 1 and HWJWl dxdy - 0 for j¢ 1. Substitution of (A4) into 
(A 1) leads to the homogeneous equations 

- V4Wl +2l"wi+Ii+ "/ cos X[A"W1 -/1] - 0 
<. 

I-A" 
(AS) 

V4/ 1- wi + cos X[Wl] == 0
 
I-A"
 

for the buckling eigenvalue A" and buckling mode (wl,/l); and to the 
equations 

~w2+2A"W2+f.i' + "/ cos X[A"W2-/2] - 2cl/lU.. Wl)
I-A" 

(A6) 

V4f: " "/ cos x [ .. ] .1,( )2-W2 +-- W2 == -c,#, Wl, Wl 
I-A", 

for (W2.12)' 
For the idealized case of an infinitely long cylinder, buckling solutions 

may be sought in the Floquet form[6J 
~ 

Wl == Re [W11 (x)elb'/2] cos sy
2 

(A7) 

11 == Re U11(x)elb'/2] cos sy
2 u 

where W11' 111 are periodic in x, with period 2:1t, and, to satisfy circum
ferential periodicity, (qos/2) must be an integer. (This restriction on s will 
be dropped later.) The complex differential equations for W 11 andl11become 

S2)2 "/S2 cos x L'i - - [W11] +LU2A"Wu +/11] - [l.,w11-/11] == 0( r4 4(I-A.,) 
(A8) 

S2)2 "/S2 cos XJJ1 - - Ull]-L'i [Wll] - [W11] == 0( 4 4(I-A.,) 

where 

L,[ ]_[ J'+ipk[] 
2 

(A9) 

It can be verified that all of the essentially different solutions correspond to 
values of k in the restricted range[O, IJ. 

For given k and s, the solutions of (A 6) have the forms 

IW2 - 2cs2 Re {W200(X) +W220(X) elb'+ [W202(X)+W222(x)elb] cos sy} 
(AIO) 

12 == 2cs2 Re {f200(X)+/220(x) elb'+U202(X) +/222(x) elb] cos sy} 

2'0 

r 
\. 
I 

i 

Without loss of generality, it can be assumed that all of the functions 
W11 ,111, W200' 1200, etc. have Hermitian symmetry about x - 0 and x - :It; 
thus 

W11 (-x) == W11 (x) 

W11(n+x) - w11(n-x) 
and so on. 

The four sets of differential equations governing the functions of x in 
(A 10) are 

q2S2)2
L; - 4 [w2.1"l]+L~[21"w2",+/2.P4]+( 

2 2 
_ ,,/q s cosx[l W -/2] == -(-h")R" (AHa) 

J\( 24:1)~J..)' ,,'co..'H H 

L; - ~ U2"'] -L;[W2",] - "/~(1-A.,) [W2",] - (b)S.I"l 
. 4 (Allb) 

(p - 0,2; q - 0,2) 

where 

Roo - (W11]11)" Soo - (W11 W11)" 
R20 - ~[w11/11] S20 - JJ2[W~1] 

- L1[W1J11] -4];l L2[W11] S02 - L\[W11W11] -4w'L2[W11]R02 
R22 == w11/fl +wid11 - 2Wt d:l l S22 - 2[W11 wil-(Wtl)2] 

In solving the two sets of equations for q - 0, use must be made of the 
condition for single-valued circumferential displacement 

f
2"R f2d [ I(8W)2J8Y W-dY- e ---- - dY-O 
o er 0" R 2 8Y 

This gives 

f
2"«0 
o U"-1I/-w-ctb2]dy-0 

which leads to the requirements 

f.i'oo - W200 +b(W11W11) (AI2) 

and 
~U220] - W220+b(w~l) (AI3) 

These relations are consistent with equations (A 11b) for q - 0, and their use 
in the corresponding equations (A lla) permits the determination of each of 
W200 and W220 from the uncoupled fourth order differential equations 

~~0+21"WiOO+W200- -n(W11]11)"-h(W11 W11) (AI4) 
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and 

L'Hw1Z0]+2lcLU wzZO] +wzzo = -fiEz [Wl1 f l1] --tt-(Wl1)Z (AIS) 

The pairs of functions (wzoz ,/zoz) and (w22Z'/zzz) are governed by sets of 
two coupled fourth order equations. 

The general formula displayed by Fiteh[7] for the postbuckling coefficient 
b in problems involving nonlinear prebuckling states leads to the result, in 
the present problem. 

b _ 6 (Q[fz. Wt, wt]+2Q[ft. Wt, wz]) (AI6) 
z 

l-v - cAC ( 2(w' )Z + ;' [tbtcos x-2(!tW~- f(tbt) sin x]) 
t (l-lS 

where Q[Ut>UZ,U3] == UtU'zU;+Uigz!I3-Ul·(gzU;+U"g3), and <>repre
sents averaging over the shell. 

Note that for k =11m, where I and m are integers. averages in the x 
direction may be computed via integrals with respect to x in the interval 
[0, nm]. But this process becomes inefficient for large m; fairly lengthy 
calculations show that except for k = 0, t and 1, (A 16) can be reduced to 

4 

~ = 38 Re fll: {-8fzozILt (wu)I Z-41
22z [L t (Wu)lZ +-h-lwl1 1

4 + 
I-v SAc Jo 

+2IwuI Z
( 2 wzoo- f2'01)+W~t [2wzzo-LHlzzz)] + 

-4f~01[Wl1 Lt (wu)+WULt (wu)] - 4 wu L t (wl1)Lz(/zzz) + 
-2[2wzoo+W'z01] [fULl (wU)+JULI (wu)] + 
-2fl1 Lt (wl1)Lz[2wzzo+wzzz]+ 4 wzoz[wu .z:t (f11) + 
+wuL1(/u)] +4WZZ1WuL; (f11)-2[2w'z00-w'zoz] x 

x [WULI (fu)+wu Lt (/u)] -:-2wu i; (fu)L2(2wZ10-WZZZ) + 

-4WZ01 [L t (ftt)Lt (wtt)+LI(/11)LI(Wtl)] + 

-4WZZ1 L1(fu)L1 (Wu)}dx 

z

fll: { ;'8 cos X }..;- ILl (wu)I Z + --z [l wu I1
- 2 Re (wulu)] dx (AI7) 

o 8(I-Ac) 

The cases k = o. t and 1 are exceptional because only for these values of k 
in the range [0,1] will one or both of the quantities e ih and eZ ib, which 
appear in the evaluation of the Q functionals, have the same period 2n 
enjoyed by the solutions of (A 11), (A 14) and (A 15). For k = 1 and k = t, 
(A 16) may be used directly for the evaluation of b; the case k = 0, however, 
requires careful asymptotic treatment, and is analyzed in a later section of 
this Appendix. 
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The average shortening-per-unit.length A is 

A= -\:~)= 
= / _8 + oW oW + (OW)2) = 

\ " ex ex ex 
=!. (-!+2c[w'w'+Hw')z])

R 

This gives the prebuckling axial stiffness at A= Ac as 

1 (00 ) [ ;,Z ]-1 (AIS)8 = - _0 = 1+-~-
0 E dAo ;."';." 4(1-A,,)3 

The initial postbuckling stiffness becomes 

8=i(-~-)A"A" =[;0 +-4~-Ac(_I--bv_2)IJ1 
where 

1=j: ILI (wu )11 dx for k =F I 

z 
". =fll:{ILI(Wu)12 + 8;'8 Re [L 2(wZ20)e

u+wzoo] sin X}dx for k = 1 
I

o I-A" 

The postbuckling parameter «, given by equation (11) in terms of S and So, 

becomes 

«= ~ arctan [4d" (~)] (A19) 
n 3180 I-v 

For a given y and k, the appropriate choice of s is that which minimizes A" ; 
the restriction that (qosI2) be an integer was ignored in this minimization. 

To find limiting results for /' -+ 00 we may set s = 0 in equations (A 8) and 
(A 11) but keep p = /'S2 finite, and minimize A" with respect to p, It is evident, 
then, that bls4(l-v2) remains finite for s-+O. so that the limiting value of 

«for y-+ 00 is 

(IX) _ = ~ arctan { nAc p2 [ b 1l (A20) 
y-rL) n 31(1-lJ3 s4(1-v2)JS 

Numerical analysis 

Introduce the vector 

WUlL1 ( Wu (A21) 
Z = L2 (fU) 

[ 1

fu 

2S3 










