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Buckling of circular cylindrical shells
under axial compression*

Bernard Budiansky and John W. Hutchinson

ABSTRACT

Buckling and postbuckling behavior under axial compression is analyzed for
a long circular cylinder containing an axisymmetric imperfection. Bifurcation
stresses are investigated for all possible modes, both periodic and aperiodic,
and postbuckling analysis reveals that bifurcation is not always associated
with a loss of load-carrying capacity. The results provide some theoretical
foundation for empirical knockdown factors.

INTRODUCTION

The notion of a ‘knockdown factor’ was introduced long ago in the field of
shell buckling to come to grips in a practical way with the highly unpredic-
table behavior of shell structures. This notion is still in use and as recently as
1968 the u.s. National Aeronautics and Space Administration released a
special report on design criteria based on this concept[1]. The knockdown
factor is chosen so that the product of it and the classical buckling load leads
to a lower bound to all the existing experimental data for that configuration.
An enormous amount of data for this purpose has been collected for the
monocoque cylindrical shell under axial compression (see, for example,
Weingarten, Morgan and Seide[2]) and knockdown factors of 1/4 or 1/3are
typical for all but extremely thin shells.

Is there any real physical basis to such factors; or are they simply empir-
ical lower bounds which will become even lower as more data is accumulated?
Considerable effort has been expended in attempts to answer this question,
and the current view of the buckling of axially compressed cylinders seems to
favor the second interpretation.

* This work was supported in part by the National Aeronautics and Space Administration
under Grant NGL 22-007-012, and by the Division of Engineering and Applied Physics,
Harvard University.
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Two kinds of theoretical results bolster this conclusion. The idea that the
minimum postbuckling load of the perfect cylindrical shell is closely related
to the maximum support load of a highly imperfect cylinder was popular for
a number of years. However, as more and more accurate calculations were
carried out, the predicted minimum of the postbuckling load turned out to be
well below the accepted empirical knockdown loads, The last calculation of
this type, by Hoff, Madsen and Mayers[3), suggests that the minimum
postbuckling load may even vanish as the thickness to radius ratio approach-
€8 Zero.

More recently the emphasis in shell buckling has been on the analysis of
the nonlinear buckling behavior of imperfect shells. However, very few
accurate resuits, either analytical or numerical, are available for assessing
behavior in the range where the imperfection level is such that the buckling
load is reduced below, say, 25 percent of the classical. One notable exception
is Koiter’s[4] work on cylindrical shells with axisymmetric sinusoidal imper-
fections. Koiter obtained a relatively simple formula for an upper bound to
the load at which nonaxisymmetric bifurcation from the axisymmetric state
occurs. Imperfection amplitudes of just one shell thickness reduce the
bifurcation load to a fifth of the classical load. Further, Koiter found that
as the imperfections get still larger, the bifurcation stress approaches one
tenth of the classical value. Thus, while a cylindrical shell with an axisym-
metric sinusoidal imperfection is admittedly an idealized model, there is,
nevertheless, nothing about Koiter's upper bound which attaches any
theoretical significance to any knockdown factor except possibly the limit
value of 1/10 for large imperfections.

The above discussion, however, embodies the tacit assumption that the
collapse load of the imperfect shell coincides with the bifurcation load. This
need not be the case. Certainly if the imperfection is sufficiently small
bifurcation is unstable and is equivalent to collapse, but the central conclu-
sion of the present paper is that for sufficiently large imperfections the
bifurcation from the axisymmetric state is initially stable, so that loads above
the bifurcation load can be sustained. The combined picture involving
bifurcation and postbuckling results to be presented suggests a qualitative
theoretical rationale for the empirical knockdown factors.

We follow Koiter[4] and consider the infinitely long cylindrical shell under
axial compression with axisymmetric sinusoidal imperfections. The bifurca-
tion problem is formulated exactly and a complete family of buckling modes
is identified. Koiter’s upper bound pertains to the critical stress associated
with one restricted set of modes, and the critical stress for a set of long
wavelength modes reproduces some numerical results obtained by Almroth
[5). The initial postbuckling analysis is also formulated exactly. An exact
analytical solution is obtained for the limiting case of modes with infinitely
long wavelengths, and numerical analysis is used to solve the equations
for the other cases. The body of the paper includes only a summary of the re-
sults and their interpretation. Details of the analysis are given in the Appendix.
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BUCKLING AND POSTBUCKLING BEHAVIOR:
RESULTS AND DISCUSSION

Bifurcation behavior

Tf{ne clfassical analysi_s of the buckling of an infinitely long cylindrical shell
0 .1:ad1us’ R and thickness ¢ subject to a compressive stress ¢ yields th
critical bifurcation stress 4 )

E t

V31— R ®

where E is Young's modulus and v is Poisson’s ratio. A multiplicity of

buckling modes is associated with o Th
1+ The norma :
W for these modes has the form 1 component of deflection

1 tcos(z)cos(z) 3]

where x and y are dimensionless axial and ¢ i
: ' rrcumferential coordinates
respectively, defined in terms of longitudinal and cir ial di ;
cumferential di
X and Y by x = Xg,/R and Y = Ygu/R where Pranees

O =

2 _ —»R
40 12(1 V)? 3)

The wave numbers in (2) must satisfy

(k=1 +s2 =1 @

wl;ere, for circumferential perfodicity, (9050/2) must be an integer. For future

reference we notf: that the axisymmetric mode is given by k=2 and 5, =0

;nd the mode with a square wave pattern corresponds to k=1 and So = 1.’
or any other value of s, in the range 0<s,<1, equation (4) has two

positive roots, ki and k,, that satisfy ki+ky=2.

X 1:Elquatums (D~4) as well Aas our subsequent analysis are based on the

X rﬁlsén-Donilgllt E}s(}ixell equations and consequently, as is well known, these
ults are restricted to modes with more tha ;

the el restrict n, say, four wavelengths around

An axisymmetric imperfection i i
: periection in the shape of the classical axi i
mode is considered, i.e., i symmetrie

W=—8cosx &)
TI%c eigenva}luc problefn governing nonaxisymmetric bifurcation from the
axisymmetric prel.)u_cl.(hng state is formulated in the Appendix, as are the
equations for the initial postbuckling behavior. For a given magnitude 8 of
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the axisymmetric imperfection, a mode can be written as

w; = Real [e*/2y,, (x)] cos °; ©)

where w,, is a complex function which is periodic in x with period 2n.
Values of k in the range 0 < k < 1 generate all possible bifurcation modes,
both periodic and aperiodic in x. Note that the classical modes (2) of the
perfect cylinder can be recovered from (6) by setting w, ; = 1. Note further
that letting w,, = A+ Be™* in (6) with 5 = s, yields the form
w,={Acos[—’f£]+Bcos[Q———kB cos 22 )
2 2 2
Thus, (6) can also represent any linear combination of the two modes of the
perfect cylinder associated with a given value of 5y In general, the axial
variation of such a mode is not periodic.

1.0

- 1.0 1 i ' I 1 1 1

Figure 1. Buckling and postbuckling of imperfect cylindrical shells under axial
compression
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Calculations for the imperfect cylinder are described in the Appendix.
Curves giving the bifurcation stress o, (normalized by the classical buckling
stress g, ) associated with values of k of 0, % and 1 are plotted in the top
half of figure 1 as a function of ./1 —v25/t. In each case, for a given value
of k and ./T—v?4/t, the value of o, shown represents the minimum eigen-
value found by treating the circumferential wavelength parameter s as a
continuous variable. The curves marked &k =1 and & = 1/2 are the result of
numerical calculations, whereas the curve for k=0 in figure 1 is an exact
limiting result. With 1y =a.o,, and y= /12(1—vHJ/t, the formula for
this curve is

P (1—640—428) +4y* (1~ 10)*(2— 64— 543) +16(1~ 1) (1 +15) = 0
®

Strictly speaking, this limit for k¥ —0 has no physical meaning since it
implies infinitely long wavelengths in both the axial and circumferential
direction. Its usefulness, however, lies in the fact that it does provide a very
good approximation for modes associated with small values of k and s
which are in the range of physical validity. Furthermore, for values of

J1—v%4/t less than about unity this limit provides the lowest eigenvalue g,
among all possible k. This is illustrated in the upper half of figure 2 where
some selected calculated results are plotted to display the variation in o,
as a function of k for fixed values of J/t.

For values of ./T—v24/t greater than about unity the case for k=1
yields the lowest bifurcation stress g,. Thus over essentially the entire range
of / 1—v28/t the critical (lowest) bifurcation stress is given either by the
case for k=0 or for k= 1. The companion curve for k =} has also been
included in figure 1 even though it is only slightly displaced from that for
k = 1. Postbuckling considerations diviige a special role for this case,

Koiter’s[4] upper bound calculation took into account modes inthe k =1
class and his results are exceedingly close to those shown in figure 1 for this
case. In fact, the absolute discrepancy is never greater than that associated
with the limit for 8 — o0, where Koiter’s upper bound predicts o /o, = 1/10
and the numerical result is g /o, = 0.0958.

Almroth[5] extended Koiter’s analysis to include certain long wavelength
modes and he found buckling modes which fit the description given by (6)
with low k values. For values of \/1—v% 3/t less than about 0.8 Almroth’s
results fall on the curve labeled k = 0 in the upper half of figure 1.*

As mentioned above, the circumferential wavelength parameter s is
treated as a continuous variable in all our numerical calculations in the
search for the minimum eigenvalue. For completeness we include in figure 3

* For values of d/t between about .8 and 1 Almroth shows values of ge/ae lower than
those shown by the curve for k= 0; however, we have not discovered any bifurcation
stresses in this range lower than those found for k=0,
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curves of the minimizing value of s as a function of the imperfection ampli-
tqde. If, as shown on the ordinate, s is normalized by 54, the value associated
with the perfect cylinder (4), then all curves lie between those shown for
k=0 and k=1. In the limiting case k0 both s and 5o approach zero;
however, the limit of the ratio s/s, is well defined.

[
Long
=)

0 2 4 6 8 10

Figur'e 2. Variation of bifurcation stress and postbuckling parameter as a
Junction of k for fixed values of imperfection (v = 1)

Postbuckling behavior

Af; a measure of the postbuckling behavior we consider the change in overall
stiffness following bifurcation. The average compressive axial stress is
denoted by o and the average axial shortening per unit length is denoted by A.
At bifurcation the nondimensional prebuckling stiffness S, is given in terms
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of the axisymmetric prebuckling quantities by

1/{de
Sy =—{8%
° E(dAo)a=-a., ‘ ©

where the zero subscript refers to the prebuckling configuration. The initial
postbuckling stiffness is denoted in terms of the corresponding postbuckling
variables by

1/de
s==(52
2(5).... @0

1.2 i I ] ¥ , i i i 1

Si4(k—1)% =1

0 i I 1 I ] 1 i 1
0 2 4 8 1.0 8 4 2 o

.6 K3
J]-—v’i} ""'l"" [ 1-v3%]~1

Figure 3. Critical circumferential wavelength parameter as a function of
imperfection amplitude

A convenient measure of the relative magnitudes of the postbuckling stiffness
and the prebuckling stiffness is the nondimensional parameter o where

=—2-arctan( s ) (11)
A So“s

As depicted in the insert in the bottom half of figure 1, « ranges from +1,
corresponding to unchanged overall stiffness, to the most highly unstable
situation at ¢ = — 1.

Curves of « as a function of /T—v28/t are presented in the lower half
of figure 1. The curve for £ =0 is the plot of the exact solution for this
limiting case and the other cases, for k = 4 and 1, were obtained by numerical
analysis. Both the analytical and numerical analyses are given in the
Appendix.
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Of the three cases shown, that for £ = 1 is most readily interpreted. For

JI—v28/t less than about 0.35 (and o./o,, greater than about 0.33),
bifurcation into the k =1 mode is unstable under dead load since the average
stress falls as buckling proceeds, i.e., x<0. However, for values of o/,
less than about 0.33, bifurcation is stable (« > 0) and an average stress above

o, can be supported. Furthermore, for ./T—v28/t greater than about unity
the lowest value of o, is associated with £ =1 and thus in this range the
initial postbuckling behavior is stable.

For /T—v%3/t less than about unity both the limit for £ = 0 and the case
for k& =4 yield values of ¢, which are lower than for k= 1. In addition,
as measured by a, they generally have a more unstable postbuckling behavior.
As the imperfection amplitude becomes larger both of these cases first enter
a range of stable bifurcation under dead load (¢>0) and then, for suffi-
ciently large imperfection levels, become unstable (x<0) again. But at the
same time, the values of o, associated with these two cases become larger
than those for & = 1 and are therefore no longer critical.

Additional calculations were made to obtain the crossplots of « vs. k in
figure 2, which reveal that the most unstable postbuckling behavior is
associated with either the & = 0 limit or the case for k£ = 1, depending on the
value of ./T—vZ§/t. The parameter a is a smooth function of k except at the
isolated points £ =4 and 1, where « has discontinous values. (This singular
behavior is discussed in the Appendix.) It appears evident from figures 1
and 2 that an assessment of the cylinder behavior can rest on study of just
the results for k=0, 4 and 1.

Implications of the analysis

In figure 4 the measure of postbuckling stability « is plotted directly as
a function of ¢,/0,, for each of the three important cases. By eliminating the
explicit role of the imperfection in this figure we can hope that the inter-
pretation is somewhat freed from the specific imperfection shape assumed.
Figure 4 reveals a strikingly sharp transition from the highly unstable behav-
ior which occurs when o /o, is greater than roughly 0.3 to the mildly
unstable, or even stable, behavior for lower bifurcation stresses. The transi-
tion is most abrupt for the cases of k=4 and the limiting case k =0 and
hoth of these cases are far more critical in this range than for k£ = 1. Thus the
values of oo, of about 1/4 to 1/3 {corresponding to the knockdown
factors often suggested) do have a special significance. Lower collapse loads
are clearly possible, however. The solid dots which terminate the curves in
figure 4 correspond to the limit values for & — oo. It is interesting to note
that the lowest possible bifurcation stress for which the initial postbuckling
behavior is unstable under dead load occurs for & =} with ¢./5,, = 0.125;
this, however, is a limiting result for & - co (see fig. 2).
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Figure 4. Postbuckling behavior as a function of buckling stress

Another feature which shows up in figure 4 is that stable initial post-
buckling behavior under prescribed axial shortening (i.e., «> —1%) will always
occur for values of ¢,/o,;.less than 1/3. This result has implications for the
effect of the formation of a local buckle on a cylindrical shell. Suppose such
a buckle develops (due to a localized imperfection pattern) at an overall
stress level below a/a,, = 1/3. If it can be assumed that the local buckling
region ‘sees’ a surrounding constraint which is approximated by the pre-
scribed shortening condition, then local snapping will not immediately
occur and, therefore, total collapse will not be precipitated.

No explicit dependence on the ratio of radius to thickness, R/f, appears
in our analyses. Modes associated with low k and s values have long axial
and circumferential wavelengths but these modes are physically meaningful
for all but relatively thick or short shells. More to the point though is the
fact that the mode associated with k = 1/2 is a short wavelength mode and
this case does stand out as being the most unstable over nearly the entire
range of imperfection levels. Thus it would appear unlikely that any deter-
ministic analysis of imperfect cylinders (excluding thick or very short shells)
could bring in an effect of R/t such as is observed in the experimental
trends[2].

Our final conclusions drawn from this analysis with regard to knockdown
factors are mixed. On the one hand, figure 4 does display a remarkable
transition in behavior in the range corresponding to the most frequently
used knockdown factors. On the other hand, one may still have to appeal
to the presumption of increased likelihood of large imperfections for thinner
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shells in order to explain observed reductions in knockdown factors with
increasing values of R/t.

APPENDIX

Symbols

Young’s modulus

Poisson’s ratio

cylinder radius

cylinder wall thickness

longitudinal coordinate

circumferential coordinate

=[12(1 = V)] /4 [R/1]/2

=[3(1-v)?

axial displacement

circumferential displacement

outward radial displacement

initial radial displacement (imperfection)
amplitude of initial imperfection

Airy function for stress-resultants

= Xqo/R

= Ygo/R

= W/t

= 2cd/t

average axial compression

value of o at bifurcation buckling
classical buckling stress (= Et/cR)

= 0'/ Oy

= c/ Oy

amplitude of buckling displacement
postbuckling coefficient (eq. (A4))
postbuckling stiffness indicator (eq. (11))
longitudinal wave number (eq. (A7))
circuszerential wave number (eq. (A7))
= y§

= 2k/s*

average shortening per unit length
postbuckling axial stiffness

prebuckling axial stiffness

number of intervals in finite difference scheme
=n/N

=h"2+4ipkh™?

S Q%\&E%RQQQQ‘:Q(\E& g b ™y ey

QS
-

o

ZHUDOT =R

'Uk =
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Square matrices:
qurn Pn’ Q;v Hu: Mpq

Column matrices:
zlu zp. ny Tp. n

Operators:

L,() equation (A9)
£, () equation (A 38)
{ > denote average on the cylinder

Theoretical analysis

The nondimensionalized Karman-Donnell equations for the cylinder con-
taining an initial axisymmetric imperfection are

Viw+f" =2y (f, w+ib)
{V‘f—w” = — o (w, w+2) (AD
where
V(91,92 =414:+d:92—2d142 (A2)

For the initial nondimensional imperfection & = —(3/#) cos x, the appro-
priate axisymmetric solution for the unbuckled cylinder is {4]

(5 ) ()
()0

The postbuckling behavior will be represented by

(A3)

(1w = wo+Ew, +Ewy+... |
f =fo+¥i+&f (Ad)
[ AJA, = 1+bE2+...
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where |0, lmx =1 and j‘j‘w}w, dxdy =0 for j;él Substitution of (A4) into
(A1) leads to the homogeneous equations

V40,4 20,0417 + L2 2, i1 = 0

(A5)

Vifimwf + T2 18] =0

for the buckling eigenvalue A, and buckling mode (w,,f;); and to the
equations

Véw, +2 w3 +f5 + ? cos x[l W, —f] =2y (fy, wy)
(A6)
V4, —w} + ”f"s % 6,1 = — oy, wy)

fOT (wz ,fz):
For the idealized case of an infinitely long cylinder, buckling solutions
may be sought in the Floquet form[6]

w,y = Ré [wy4(x)e*%] cos %—
(A7)

fi =Re [fus(x) ™) cos
where w,,, f1; are periodic in x, with period 2=z, and, to satisfy circum-

ferential periodicity, (g,5/2) must be an integer. (This restriction on s will
be dropped later.) The complex differential equations for w,; and f;; become

(L2 - —--) [wy 3+ L4240, +f1,] - 3;8(160:'; [Acwii—fill= O(A
8

2
(Lz - —) Lfid- L1 [wi]— is(lcfij; [w,;] =0

where

L,.[J=[J'+f‘;—"[1 (A9)

It can be verified that all of the essentially different solutions correspond to
values of k in the restricted range[0, 1].
For given k and s, the solutions of (A 6) have the forms
w, = 2¢5% Re {10200 (%) + 10220 (x) € + [W202 () + 10325 (x) €*] cos sy}
(A10)
J2 =2¢5* Re {f200(%)+f220(x) €™ + [ 202 (%) +222(x) €**] cos sy}
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Without loss of generality, it can be assumed that all of the functions
W1, fi1s W2005 S200, €tc. have Hermitian symmetry about x=0and x=mn;
thus

wy(—x) =w;;(x)

w1 (®+X) = wy,(n—x)

and so on.
The four sets of differential equations govermng the functions of x in

(A 10) are

(Lg, - “—2;4‘—) [0350] + L (24 030 ol +
2.2
R a1
2.2 2,2
(Lf, - q—zs*')z[f aped — Lo [W2pg] ~ Zgzm [0250] = ') Sy

| -2
(Al1b)
(=02 4=02)

where
Roo = (w011f11)" Soo = (1011 %,)"
Ryo = L4 [wy1f14] S30 = L3 [w},]
Ros = I3 [wy1f11]—4F11 La[w1;]  Soz = L3[wy,] -4 Ly [wy,]
Ry =wyyffy +wiifu=2winfiy  Saz= 2[wyy w7y —(w1)%]
In solving the two sets of equations for ¢ =0, use must be made of the
condition for single-valued circumferential displacement

*2xR 22R
W gy = e,-z—-l-(aw dY =0
Jo Y o R 2\dY
This gives
* 2xq0
! [f’—vf—w—ci*]dy =0
0

o

which leads to the requirements

Sioo = Wa00+ 3 (w11,,) (A12)
and

I3[ f220] = Waz0+3(wi,) (A13)

These relations are consistent with equations (A 11b) for g =0, and their use
in the corresponding equations (A 11a) permits the determination of each of
w500 and w,,, from the uncoupled fourth order differential equations

o+ 24 Whoo +Wa00 = — g (W11 F11)" — 35 (W11%14) (A14)
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and
L5 [wa20] + 224, 15 [wa20] + Waz0 = — g L[y f1,] —(wy,)*  (ALS)

The pairs of functions (w,4;, f202) and (w35, f332,) are governed by sets of
two coupled fourth order equations.

The general formula displayed by Fitch{7] for the postbuckling coefficient
b in problems involving nonlinear prebuckling states leads to the result, in
the present problem,

b =_6_ (Q[fz’ w19w1]+2QU1aw1’w2]> (A16)
2
e + s Lo cos 220w~ i) sin )

where Q[g1,92,95]1 = §19293+91§29:— 97(4293+9343), and ) repre-
sents averaging over the shell.

Note that for k& =1I/m, where / and m are integers, averages in the x
direction may be computed via integrals with respect to x in the interval
[0, mm]. But this process becomes inefficient for large m; fairly lengthy
calculations show that except for k=0, 4 and 1, (A16) can be reduced to

b
1—-v

4 =
27 %Re ,L {-8f2°’{1‘1(w11)|2‘4f222[l'1(w11)]’+—f’-o—lwul“+

+2(w4 112 Qwa00 = f102) + w31 [28320— L3 (F222)]+

—4f302 (w13 Ly (1) + @44 Ly (01 )] — 4wy Ly (014) Ly (F222) +
—2[2wy00 + w2021 [f11L1 (Byy) +F 11 Ly (011)]+

—2f11 Ly (3 ) L, (2550 + 22,1+ 420, [B:, Ly (f1 )+

1wy L3 (Fy )]+ 4182250 1 Ly (f11) = 2[205 00 — Wo2] X
x[@y1 Ly (fi)+w13 Ly (F10] = 2wy Ly (f1) L (28220~ 222) +
—4w302[Ly (f1 ) Ly (#11) + Ly (f1 ) Ly (w1,)] +

—4me,(fu)L1(wn)}dx

* 2
+ J.O {lLl (i + g%:_?:o% [Iwy,)2—2 Re (wu]‘“)]} dx (A17)

The cases k=0, $ and 1 are exceptional because only for these values of &
in the range [0,1] will one or both of the quantities e™ and ¢***, which
appear in the evaluation of the Q@ functionals, have the same period 27
enjoyed by the solutions of (A 11), (A14) and (A15). Fork=1 and k=14,
(A 16) may be used directly for the evaluation of b; the case k = 0, however,
requires careful asymptotic treatment, and is analyzed in a later section of
this Appendix.
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The average shortening-per-unit-length A is

_ - <Qg _
ox
ow oW aw)2>
) — B =
< =T ox X (ax
= £ (= Fr2elu &3 @)D
This gives the prebuckling axial stiffness at A=A, as
1(dao 12 ]_1 (A18)
- = -+
So=% (dAo)m, [ 4(1-1)°
The initial postbuckling stiffness becomes
2 -1
E\dA Ja=2. |8, 4mi .\ b

where
I= L |Ly (w4 DI?dx

fork#1

2 3

= J ) {w,qw,,);z + 18“’“; Re [L,(w220) €™+ W00l sin x}dx for k=1
o he

The postbuckling parameter a, given by equation (11) in terms of § and S,,

becomes

2 4nd. [ b )] (A19)
= = gretan | ———{ —
n [3180 (1-—\:2

For a given y and k, the appropriate choice of sis th:.xt wh_ich mnmmzes Acs
the restriction that (gos/2) be an integer was ignored in this @mmnzanon.

To find limiting results for y - co we may set 5 = 0 in equations (A 8.) and
(A11) but keep p = ps* finite, and minimize A, with respect to p. ;t is evident,
then, that b/s*(1 —v?) remains finite for s—0, so that the limiting value of
o for y— o0 is

2 nd p? [ b B (A20)
(@)= = Z8rC130 {3 T0—1) |s*d—)
Numerical analysis
Introduce the vector
Li(wyy
w
Z = 11 (Azl)
Li(f10)
f 11
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