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ABSTRACT

A review is given of one approach to the formulation of equations for
elastic~plastic solids at finite strains which lends itself to numerical
analysis. A generalization of J2 flow theory to large strains is given

which is in a form convenient for applications. Several aspects of the
analysis of necking in tension are discussed from this point of view.
Applications of the formulation to nonlinear plate and shell theory are
also discussed.

INTRODUCTION

Most of the noulinear theories of plates and shells are Lagrangian in
character in that they employ as a reference configuration the undeformed
state of the structure. In the construction of these theories it is common
practice to start with a set of strain measures and strain-displacement
relations (which are usually approximate in some sense), to introduce
conjugate stress quantities, and to then postulate a variational primciple
of virtual work in terms of the variables of the theory. FEquilibrium
equations are obtained as the Fuler equations of the variational principle,
In this way the variables of the ad hoc theory are connected by exact
variational equations and one or another of these principles is usually at
the heart of any scheme for discretizing the equations. Budiansky (1) has
emphasized the common mathematical structure shared by such ad hoc theories
and a particular form of the nonlirnear field equations for three-dimensional
solid bodies which erploys the Lagrangian strain tensor and the undeformed
configuration of the body as reference, This formulation as Lt pertains to
elastic-plastic solids will be briefly reviewed here. A finite strain
version of Jz flow theory will be discussed which fits nicely into the

Lagrangian formulation. Some recent results for the problem of necking of
a bar in tension will serve to illustrate the possibilities which are
opened up by the application of numerical analysis methods to problems
involving finite strain complications. A relatively scraightforward way



to incorporate certain finite strain aspects inmto the elastic-plastic analysis
of thin plates and shells 1s also discussed.

A LAGRANGIAN FORM OF THE FIELD EQUATIONS FOR ELASTIC-PLASTIC SOLIDS

Material points are identified by a set of convected coordinates xi .
Following the standard convention, superscripted:indices denote contravariant
components of a tensor and subscripted components the covariant components.
Let 83 and G be the metric tensors of the undeformed and deformed

i)
configurations and let gij and Gij be their respective inverses. Denote
base vectors in the undeformed body by e and their reciprocals by

ei = 81131 . Similarly, the base vectors in the deformed body are denoted by

-~

e and §i - Gijé

e, Denote the displacement vector from the undeformed

5

configuration by u = ue” = uigi where ui = gijuj . The Lagrangian strain
tensor is
1 1 1l k
Ny = 56y -8y4) = 5luy yH+uy D +5 0 4 1S

where the comma denotes covariant differentiation with respect to the
undeformed metric,

The exact statement of the principle of virtual work based on the
undeformed configuration is (1, 2, 3)
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1 1,k k

[ = =(8u +3u + =(u ,6u +u 4§ . 3

Myg = 300y g+ 0uy )+ 3000 Oy gt g0 y) ™
Here, dV and dS are the volume and surface elements of the undeformed
body, Tij are the contravariant components of the symmetric Kirchhoff stress
defined with respect to the deformed base vectors, and T = Tigi is the
surface traction vector per unit undeformed area. With o= nigi denoting

the unit normal to a surface element in the undeformed body, the surface
traction T acting on this surface element in the deformed body is

T= ('rij-i-‘rmjui m)nj_e_i . %)

let g = Igijl and G = lcijl . The contravariant components of the

Cauchy stress are given by

12,4y

i
oM = (g/6) (5)
The surface traction vector per unit current area f acting on a surface
whose current unit normal is E - Eigi is given by
= ij= =
Two ngey . (6)



The incremental form of the principle of wirrual work is

o1 190k .1
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and the associated equilibrium equations are
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Hill (&) has discussed the general framework for the classical rate-
constitutive relations for elastic-plastic solids with smooth yield surfaces
at finite strain. Using the convected rate of the contravariant components
of the Kirchhoff stress, the rate-constitutive relarion can be expressed in
the general form
1k
JkE,

_‘rlj - L k£ (ga)

where

LAk pa3kE %mijmkl ' (9b)

For stresses within the yleld surface a = § and for stresses on the yield
surface

- ij- - 13+
a=1 if m ”13 >0 and a =0 if = nij <0, (10}

Here, : 1s the current tensor of elastic woduli for this choice of stress-

rate and it is assumed that Lfijki -'Kklij The tensor of instantaneous

moduli for loading is L and m 1s the current unit tensor nmormal to the
yield surface in strain-rate gpace. The current level of strain hardening
is determined by g and the strain-rate 1is given by

nij
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where i is prescribed on S.r and u on Su and where the stress-rates

%ij are regarded to be a function of the strain-rates through (9) and (l0}.
The variational principle governing the incremental boundary value problem
is (5)

&1 = O (13)

for all admissible éui vwhich wvanish on Su . Equaticns (22) and (13)
reduce to the well-known principle for the classical small strain and small

rotation theory.

The above variational equation provides the thecretical foundation for
a varlety of possible numerical solution methods. Chen (6) used a



Kantorovich approximation method in conjunction with this variational

equation to analyze necking in a bar. Needleman (7) used the principle as

the basis for a finite element method solution to a large strain problem
related to vold growth and coalescence in metals. The same method was applied
to the tensile necking problem (8) and some results from this calculation will
be discussed in a later section.

Oden (2) has given an extensive review of the work on the development of
finite element methods for the large strain analysis of elastic solids.
Hibbitt, Marcal and Rice (10) have discussed the formation of finite element
equations based on a Lagrangian formulation for elastic-plastic solids which
is essentially identical to that reviewed above. The choice of a Lagrangian
based numerical scheme as opposed to a Eulerian scheme, for example, is
dictated by a number of considerations. Since the variational functional
(12) is based on the undeformed configuration, the finite element (or finite
difference) grid remains fixed. For this reason, the Lagrangian approach can
be attractive if the undeformed configuration is a simple one., In the
simplest finite element scheme, used by Needleman, the displacement fields
within triangular elements are taken to be linear functions of the reference
coordinates and thus the strains, styesses and modulil are constant within
each element. At each stage of the calculation procedure the moduli must be
updated in a straightforward way which can be illustrated by one possible
prescription for the moduli in the next section. As in any elastic-plastic
calculation, the loading-unloading behavior associated with an incremental
step must in general be handled in an iterative fashion,

A FINITE STRAIN GENERALIZATION OF Jz FLOW THEORY

Small strain formulations of strain-hardening plasticity involve the
stress deviator s and the Jz invariant where in Cartesian coordinates

1]

and  J -% (14)

1
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where Gij is the Kronecker delta. It is usually unnecessary to give a
precise definition to the stress measure in small strain formulations and
for the moment the precise meaning of Tij will be left ambiguous. In one

of the most widely used plasticity theories, Jz flow theory, the strain-rate
is given in terms of the stress-rate by

. 1 . af .
ngy = £ (lw)61k6j2+v6“6k2]1'k2 + T sisz , (15)
where
a=1 if Jy=sf 20 and J)= ) 1
(16)
a=0 if Jy <0 or J,< (J) . ‘

In (15) E is Young's modulus, Vv 1s Poisson's ratio and f is a function
of Jz which can be chosen to make (15) coincide with any monotonic

proportional loading history.

The inversion of (15) is

. E v . E a .
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where if J2 = (JZ)max a=1 if ijnij >0 and a =0 if sijnij <0 .

Also, f and g are connected by

"

The expression for the modul{ in the small strain formulation is thus

Leegy = Bige = 1+v[2(6ik jk'*ﬁizﬁjk)*'l 7 8115k g 513 kz] a9

If a uniaxial tension curve is used to determine f and g , one finds
that they are given by

E
[1+% sz]'1 = (g—ZJz)/[g- %(1—2\)).12] = Tt , 20)

vhere Et is the tangent modulus which is regarded as a function of J2

through the connection with the tensile stress, J2 = 02/3

There are many possible ways to generalize the above relation to a
finite strain formulation (11, 12, 13). The one selected for discussion is
a special case of Hill's (4) general 1 class (9) and (10) and has a form
particularly suitable to a Lagrangian approach. It is a slightly modified
version of a relation proposed by Budiansky (14). As in the small strain
version the theory employs a J2 invariant of the stress to describe the yield

surface and thus .does not account for any Bauschinger effect. It is also
assumed that the strains are not so large that appreciable elastic anisotropy
develops.

The contravariant components of the Kirchhoff stress 'l'j"‘| will be used
in the formulation and a deviator stress tensor is defined according to

i i 1 .1 ke
sid o 71 L 36 3szr 1)

where G 1is the metric tensor in the deformed system as previously

introduced so that with this definition G,.s'd = 0 . We take J. to be

ij 2
defined in terms of the stress deviator by
1 13 ke
Jp = 7 60pCygs 78 ¢ 22

If the coordinate system in the deformed body happens to be Cartesian then
(21) and (22) have the same form as (14). Since the undeformed configuration
is used as reference the deformed configuration will not, in general, be
Cartesian and the general tensor formulation of (21) and (22) is necessary.

If the Cauchy stress (5) is used in forming J2 in place of the
Kirchhoff stress, the invariant will differ from (22) by a multiplicative

factor G/g = (d‘-I/dV)2 , where dV/dV 1is the deformed volume per unit
undeformed volume. The volume change in the relation given below arises
entirely from the elastic part of the strain-rate. As long as the
hydrostatic pressure is very small compared to the elastic bulk modulus,
there is little experimental evidence to point to one choice over the other
in the formulation of a yield criterion as discussed by Lee (12).

With J2 defined by (22) it can be shown that the rate of change of
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Here the Tij are the contravariant components of the symmetric Jaumann rate
of change of the Kirchhoff stress which are related to the convected rate

%ij by

* . . .
e Y LT (24)

The generalization of (15) we will use is

.1 ©oAKE | af ks
Ryy = FLARIGLC, +16,,6, 1T + § 6,6, 0T, (25)
with
o=l 4f 3,20 and J, = @) }
(26)
a=0 if J, <0 or I, < (Jz)max s

In (25) f 1is regarded as a function of JZ ,and E and Vv are taken to

be fixed constants corresponding to their values in the undeformed state.
The second part of (25) is regarded as the plastic strain-rate; and since
Gijsij = 0 , the plastic volume change is zero.

In the absence of plastic deformation (25) 1s a hypo-elastic relation
in that the relation cannot be integrated to give the strains in terms of the
stresses. Curiously, though, it is possible to write the work done by the
stresses per unit original volume in terms of the stresses (and the deformed
metric tensor) as

ITijdnij - 2—1E[(1+v).12+ %(1-2\:) (cijrij)zl . @@n
0

The inversion of (25) is
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The same relation (18) holds between f and g as in the small strain
formulation. Using (24) the rate-constitutive relation can be cast into the

form (9) involving %ij and appropriate to the present formulation, i.e.,

+1j _  1jkee
T L Mo (30)
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The instantaneous moduli are

ikt | kidy _’L[%(Gikcj"+ci"cjk)+
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with a obeying (29).

If data from a uniaxial stress-strain curve is used to determine f and
g one finds by specializing (25) to pure tension that, instead of (29),

1/2(E
[1+§ J2f1'1 - (g—2J2)/[g'%(l-2v)J2] - [%] LTt+%(l-2\-)):| . (32)

The tensile data in this equation is considered to be known as a function of
the true stress O . In simple tension J2 - (G/g)02/3 . The tangent modulus
Et is now defined as Et = do/de , where € is the logarithmic, or natural,

Eensile strain. The instantaneous contraction ratio is defined to be
Ve -dczldc , where €, is the logarithmic strain transverse to the tensile

direction. For an elastically incompressible material, v = v = 1/2 and
G/g = 1 so that (32) reduces to the small strain expression (20) with the
proper interpretation of Et .

As has been discussed by many authors, two conditions are required for
the small strain relation to provide an accurate approximation to a full
finite strain version. For the purpose of discussion cl oose a Cartesian
system in the undeformed body. If the strains are suff’'ciently small the
distinction between the deformed and undeformed metric tensors in (31) can
be ignored. Secondly, if the stresses are small compared to the instantaneous
moduli then the second set of bracketed terms in (31) can be neglected
compared to the first. In addition, (32) becomes (20), and the rate-
constitutive relation becomes indistinguishable from the small strain version.

The above relation is due essentially to Budiansky (li). His original
suggestion is identical in all respects except that the contravariant
13
a

contravariant components of Kirchhoff stress Tij in equations (21) through
(31). In particular, the deviator components (21) are formed from the Cauchy
stress components and J2 is based on these deviator components., Similarly,

* . * .
™ and Tij' are replaced in (24) by old and ot , which are the

Jaumann and convected rates, respectively, of the contravariant components

of the Cauchy stress. In this alternative formulation equations (21) through
(31) remain unchanged although (27) is now interpreted as the stress work per
unit deformed volume.

components of the Cauchy stress (5) are used everywhere in place of the

One feature which is particularly attractive about this second form
is that, instead of (32), f and g are given by the formulas for the

classical small strain version (20) where Et is the tangent modulus of

the true stress-natural strain curve in uniaxial tension. The one drawback
of the version formulated in the form of the Cauchy stress is that when

the modull are converted to the form (9) involving {ij , the moduli do not

satisfy the symmetry Lijkl = Lklij required for the variational principle
(13) to hold.” This can be noted directly using the relation
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For elastically incompressible solids the two versions are obviously
identical. Numerically the difference between the two formulations will be
inconsequential as long as the pressure is sma}} compared to the bulk modulus.

APPLICATIONS TO NECKING ANALYSIS

In the analysis of necking in tension it 1is essential to use a bona fide
finite strain formulation. The above formulation of the field equations has
been used in the analysis of two separate aspects of necking of a solid
circular cylindrical bar in tension (6, 8, 15).

First consider a bar whose ends are subject to a prescribed uniform
relative axial displacement in such a way that the ends remain free of
tangential traction and the lateral surface is traction-free. For these
ideal boundary conditions, the uniform state of uniaxial tension is an exact
solution at all values of the relative end displacement. Necking will start
as a bifurcation from the uniform state. Bifurcation first becomes possible
at the value of the elongation where there first exists a nonzero
displacement-rate field ﬁi such that

J}Lijklﬁijﬁkl + tijﬁk'iﬁk'j}dv -0, (34)

\
where the moduli L are given by (31) with a = 1 . Here the strain-rate
is given by (11) and the axial component of the eigenmodal displacement-rate
must vanish on the ends of the specimen.

Denote the true stress and natural strain associated with the state at
wvhich the maximum total load of the cylindrical bar is attained by % and
€ 0 respectively. Miles (16) has proved that bifurcation cannot occur

before the maximum load is attained. The axisymmetric bifurcation problem
for an incompressible bar has been studied within the context of the full
three-dimensional formulation in (15, 16, 17). Let R and L denote the

radius and length of the specimen when the maximum load is attained and let
Y - ﬂR.m/Lm . For an incompressible material characterized by (31), the true

stress and natural strain at bifurcation, Oc and €. respectively, are
given by the expressions (15)

dE | ]-1{_2 4
- -t Y_ Y __
% "% * [1 ® |, [ g o%tToz |t (358)
and
aE_| 1-1.,2 4
t Y Y
- + - —_— e
€c " En [1 dg | [8 m 192 Lol IR ARTER (35b)

which are asymptotically exact for small Y . In these formulas u = E/3
is the elastic shear modulus of the incompressible material, and (dEt/do)m

‘denotes the derivative of the tangent modulus of the true stress-natural

strain curve with respect to the true stress and evaluated at the maximum
load.

An example presented in (15) uses the Ramberg-Osgood tensile relation
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Fig. 1 Tensile bifurcation of a solid cylindrical specimen of an
incompressible material with a Ramberg~Osgood tensile stress-strain
relation. See (}2) for an accurate plot. (Asymptotic results
—ewem—eee-e—: Exact results ——————)
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Fig. 2 Schematic of results of a numerical analysis of necking of a
solid cylindrical bar from (8).



between the true stress and natural strain, i.e.,

e o, 3fa)"
e—-'g-+7{o—] ’ (36)
y y y

where ey and oy H Eey are the effective yield strain and yield stress and

n 1is the hardening exponent. For this case Eqs. (35) become

o 2 4
(- 1y .,y u
71! *E[a +193 o_] (37a)
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€ 1+ ne | 8 +192 o ’ (375)
m m m

Figure 1 displays plots of Oclom and ec/em as a function of 'nRo/L° where
where Ro and L° are the undeformed radius and length of the bar. The

dashed line curves are derived from the asymptotic formulas (37) and the solid
line curves are the exact results for arbitrarily large 'nRolL° (which
require some numerical analysis in their evaluation).

Needleman (8) used the variational principle of the previous section to
formulate a finite element scheme and applied it to the necking problem. He
considered elastically compressible solids and used the moduli (31) together
with an inconsequential approximation in which the right-hand-side of (32)
is replaced by Et/E . The axisymmetric eigenvalue problem governing

bifurcation was solved using a finite element method and the post~bifurcation
calculation was carried until a point where the specimen had undergone
significant necking down. Figure 2 depicts the character of his solution

in a typical specimen with ROIL° = 4 ., Bifurcation occurs beyond the

wmaximum load and from that point on the solution for the necking specimen
turns down from the fundamental solution for the uniform specimen which
undergoes no bifurcation. The second part of the plot shows that bifurcation
marks the onset of the rapid contraction at the mneck.

Included in the second plot are results for a calculation (8) for
another set of boundary conditions where the ends of the bar are considered
to be cemented to rigid grips. In this case no bifurcation occurs. Instead
departure from the uniform state occurs with the first application of load.
The maximum load was found to be essentially the same as in the other case;
but as can be seen from the plot, significant necking starts at somewhat
lower elongations.

As mentioned previously, Chen (6) used the same formulation together
with a Kantorovich approximation method to study the same problem, He
considered the shear-free end conditions case and initiated necking by
introducing a small initial axisymmetric imperfection. This same technique
was used by Osias (18) in his study of temsile necking under plane stress
and plane strain conditions. However, Osias’s approach was based on a
Eulerian formulation and his numerical scheme derived from a discretization
of the governing differential equations directly.

APPLICATIONS TO THIN PLATE AND SHELL PROBLEMS

As emphasized in the Introduction, the structure of the field equations
as developed for the three-dimensional solid closely resembles the structure



of the equations for the most widely used nonlinear theories of plates and
shells, In most applications involving structural materials, whether the
response is elastic or elastic-plastic, the strains are small and the
significant geometric nonlinearity is due to rotations. In a first order
theory in which the strains are assumed to vary linearly through the
thickness the inplane Lagrangian strain tensor is often approximated by

Nyg = EaB + ’qu (a=1,2 ; B =1,2) , (38)

where EuB and KaB are the stretching and bending strain tensors of the

middle surface. The coordinate z 1is measured along the normal to middle
surface in the undeformed shell. The stretching and bending strains are
expressed in terms of the displacements of the middle surface in directions
normal and tangential to the undeformed middle surface.

The internal virtual work is approximated by

+-N°86£ae}dA , (39)

aB B
Ir 6n,gdV = I{Ma K g

v A

where dA 1is the element of the undeformed middle surface. The bending
moment and resultant stress tensors are related to the Kirchhoff stress
tensor by

t/2 t/2
NuB - Tquz and HaB = I Tuezdz . (40)

-t/2 -t/2

where t is the thickness of the undeformed shell. The contravariant
components of the Kirchhoff stress enter into these expressions because the
Lagrangian strain tensor has been used along with the choice of the
undeformed body as the reference configuration.

Suppose the three-dimensional rate-constitutive relation is of the form
discussed in the previous sections for the finite strain formulation, i.e.,

;ij - Lijk!akl (41)

The assumption of approximate plane stress in a first order plate or shell

theory requires n , = 0 for o =1,2 and 1335n33 =0, i.,e., 133 =0

Thus from (41)

. aB33, 3333
Naq -(L /L )"aB (42)
The plane stress moduli E relating the inplane stress-rates and strain-
rates, i.e.,
:aB _ raBkye
T L Ney (43)
are given by
iaeny - LGBKY _ 19833L33KY/L3333 (44)



From (40) the rate-constitutive relations written in terms of the -
stress-rate and strain-rate quantities of the plate or shell theory are

8 - “??;Yérv + u??f’i(y (4s)
B8« TR s e “6)
where .
t/2
H%E;Y - f poBky, i-1y, 1)
Ze/2

In particular, note that for the case of a flat plate with KGB = 0 and

EaB uniform through the thickneés, Eq. (45) gives exactly the same relation

between ﬁaB and éaB as would be obtained from the full finite strain
formulation by integrating through the thickness.

Equations (38) through (47) constitute a full complement of equations
for first order plate and shell theories including finite strain effects. If
the moduli L given by (31) or some similar prescription are used, then the
quantities needed for updating L from one incremental step to another are
contained in the above set of equations, ’

If the strains are small and the stress levels are low compared to the
instantaneous moduli, then as discussed previously the finite strain
formulation can be replaced by a small strain formulation in which it is not
necessary to give a precise definition to the stress measure. Most plastic
buckling problems in thin plates and shells fall into this category.
Typically, the stresses at buckling are proportional to the product of an
instantaneous modulus and some ratio of the thickness to a characteristic
length much greater than the thickness. On the other hand, in problems
involving the onset of necking or bulging, for example, it may be essential
to use an appropriate finite strain formulation even when the strains are
small. As long as the characteristic length of the deformation field is
large compared to the thickness one can expect the first order theory to have
approximate validity. Of course, once the characteristic deformation length
becomes on the order of the thickness, as in the advanced stages of necking,
the first order theory is no longer applicable.
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