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ABSTRACT

Two parameters are identified for characterizing the
deformation in the plastic zone near the tip of a crack when
mixed mode conditions prevail. Details of the near-tip stress
and strain distributions are presented for hardening materials
in which a diffuse plastic zone occurs under plane stress
conditions. For small scale yielding the two near-tip
parameters are related to the two elastic stress intensity
factors for combined Mode I and Mode II.

PLASTIC STRESS AND STRAIN FIELDS FOR MIXED MODE CRACK PROBLEMS

Solutions to two dimensional crack problems in the plane
for isotropic elasticity are characterized by the near-tip
stress distribution
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where r and € are planar polar coordinates such that 6 =0
directly ahead of the crack. The O~variation of the Mode I
contribution to the stresses is symmetric with respect to the
crack tip while the Mode II contribution is antisymmetric.

Mode I and II elastic stress intensity factors, KI and KII "

comstitute a two parameter characterization of the elastic
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contribution to the stresses is symmetric with respect to the
crack tip while the Mode II contribution is antisymmetric.

Mode I and II elastic stress intensity factors, KI and KII s

constitute a two parameter characterization of the elastic
near-tip field.

For two dimensional crack problems in which the material
is modeled by a deformation theory of plasticity and in which
the equilibrium equations and strain-displacement relations
are taken to be linear, it can be shown that the strain energy
density must vary like 1/r as the crack tip is approached
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Here Oo is a reference stress which can be identified with

the tensile yield stress if convenient, E 1is Young's modulus,
n 1is the hardening exponent and & 1is a material constant.
In this case the dominant singularity fields are of the form
O.. ~ L/ (atl) 5..(8) and €, - L) 2F
ij ij ij ij
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Details of these fields have been given for the pure wodes in
[1, 2, 3]. The B-variationms aij and Efj depend implicitly
on n and, in contrast to linearly elastic problems, depend
in a significant way on whether plane stress or plane strain
pertains.

The mixed mode crack tip fields for linear elasticity (1)
are simply the superposition of the Mode I and Mede II
contributions. The plasticity problem is inherently nonlinear
so that a representation such as (1) cannot be used. As a
measure of the relative amounts of Mode I and Mode II at the
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crack tip we introduce a near-tip mixity parameter M
defined by
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With this choice M ranges from MP =0 for pure Mode II to
EF=1 for pure Mode I.

The simplest deformation theory, J2 deformation theory,

has been used to generalize (2) to multiaxial states of stress.
It {s convenient to introduce the effective stress Oe where

02‘=33_.5,,/2 and s..=0,.-0_6&../3 . The near-tip fields
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can be represented in the form
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With this choice M ranges from MP =0 for pure Mode II to

MP=t1 for pure Mode I.
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n and for either plane stress or plane strain conditions, the
functions 6ij 5 ﬁe and Eij are completely specified by the

mixity parameter MP . Details of these functions have been

given for the case of plane strain in [4]; plane stress results

will be discussed below.

Once the hardening exponent n 1is specified, K; and MP
completely characterize the near-tip field. In place of the
combination (K; " MP) it may be more convenient to introduce
the path independent J integral [5] and to use the equivalent

pair (J , MP) . The three parameters are connected by [1]
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where In is a numerical constant determined from the

singularity analysis which depends on n and MP . Plane
strain values of In where given in [4] and plane stress

values will be given below. 1In the pure mode cases MP is
known and thus J (or equivalently KE) is a single parameter

measuring the intengity of deformation in the near-tip field.
But in the general mixed mode situation a pair of parameters
is needed for a complete characterization.

PLANE STRESS NEAR-TIP FIELDS

Figure 1 gives the O-variations of the stresses and strains
in (5) for a relatively low strain hardening material with
n=13 . Pure Mode I and pure Mode II are included along with
tyo, intermediate cases. .The plane stresg, formulatign used here
n

singularity analysis which depends on n and MP . Plane
strain values of In where given in [4] and plane stress

values will be given below. In the pure mode cases M? is
known and thus J (or equivalently Ki) is a single parameter

measuring the intensgity of deformation in the near-tip field.
But in the general mixed mode situation a pair of parameters
is needed for a complete characterization.

PLANE STRESS NEAR-TIP FIELDS

Figure 1 gives the O-variations of the stresses and strains
in (5) for a relatively low strain hardening material with
n=13 ., Pure Mode I and pure Mode II are included along with
two intermediate cases. The plane stress formulation used here
1s the same as employed in the Mode I study in [1]. It does not
take into account the nonlinear geometric effect arising from
sheet thinning. This, together with the assumption of a
hardening material, leads to a diffuse plastic zone as opposed
to the slender necking zone represented by the Dugdale model.
Numerical methods used to calculate these quantities are
discussed in {4] and in more detail in [6].
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Fig. 2 (a) Angular position of maximum tensile stress © (in
degrees) as a function of the near-tip mixity
parameter. (b) Ratio of the amplitude of the maximum
tensile stress in mixed mcde to that in Mode I for
identical values of J .

The value of this maximum stress is normalized by the
corresponding Mode I value, oee(e =0) , at the same r and

same value of J . This ratio is shown as a function of MP
in Fig. 2b. Analogous curves for plane strain in [4] indicate
a significant fall-off in the maximum tensile stress amplitude
avay from Mode I which is absent in plane stress.

Values of 1n , which enter into (6), are given in the

form of curves in Fig. 3.
SMALL SCALE YIELDING

In the small scale yielding limit, when, roughly speaking,
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tensile stress in mixed mcde to that in Mode I for
identical values of J .

The value of this maximum stress is normalized by the
corresponding Mode I value, Oee(e =0) , at the same r and

same value of J . This ratio is shown as a function of MP
in Fig. 2b. Analogous curves for plane strain in [4] indicate
a significant fall-off in the maximum tensile stress amplitude
avay from Mode I which is absent in plane stress.

Values of 1n , which enter into (6), are given in the

form of curves in Fig. 3.
SMALL SCALE YIELDING

In the small scale yielding limit, when, roughly speaking,
the plastic zone is small compared to the crack length and all
other relevant geometric lengths, J can be expressed in terms
of the elastic stress intensity factors according to (for plane
stress [5])

22
J = (KI+KII)/E . (N



Fig. 3 Values of In(MP) "

ME = £ tan_l lim —_Gee(r’e = - tan_l ——KI 8)
m r+0 ore(r,e =0) m K_H

(For a crack in an infinite sheet making an angle £ (in
radians) to a far pure tension field, Me==28/n .) Either
pair, (KI 5 KII) or (J , Me) , completely specifies the

near—-tip field of the elastic mixed mode scolution.
The results of the numerical analysis of the small scale
yielding problem are shown in Fig. 4a in the form of plots of

MP as a functiom of Me for various . The curve labeled
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Fig. 3 Values of In( ) .

_ X 0,,(r,8 =0) LK
Mo = % tan il-:“o Oee(r 5=0)| % tan | (8)
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(For a crack in an infinite sheet making an angle £ (in
radians) to a far pure tension field, Me==28/n .) Either
pair, (KI , KII) or (J , Me) , completely specifies the

near—-tip field of the elastic mixed mode sclution.
The results of the numerical analysis of the small scale
yielding problem are shown in Fig. 4a in the form of plots of

; e
as a function of M for various n . The curve labeled
n =% was obtained by extrapolation. The functional relation

between MP and e in plane stress small scale yielding is
independent of Poisson's ratio and the amplitude of the
singularity. It does depend implicitly on other shape details
of the unlaxial stress~strain curve in addition to n . The
results of Fig. 4 were obtained using the tensile relation

¢/e =og/o for o <ag and e/ce =(c/c )" for o >0
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Fig. 4 Near~tip mixity MP as a function of M° for small
scale yielding. (a) plane stress, {(b) plane strain
for v=0.3 from [4].

The results of Fig. 2 may be reexpressed in terms of M

using the conmection between MP and M® . Thus, Fig. 5a
shows the effect of the hardening exponent on the critical angle

8* as a function of the elastic mixity parameter for small
scale yielding in plane stress. The curves for plane strain
from [4] are shown in Fig. 5b along with some experimental data
on fracture jinitiation angles from [7, 8]. According to the
plasticity analysis, a fairly wide range of fracture initiation
angles about the elastic prediction (n=1) should be expected
depending on the hardening exponent and on whether the plane
stress or plane strain condition is approached.

Plastic zones for small scale yielding in plane stress are
showm in Bife §280a1887 V&) "B1aRE Birdsy, (By°praRerstrith®

for v=0.3 from [4].

The results of Fig, 2 may be reexpressed in terms of M

using the conmection between M? and M® . Thus, Fig. 5a
shows the effect of the hardening exponent on the critical angle

6* as a function of the elastic mixity parameter for small
scale yielding in plane stress. The curves for plane strain
from [4] are shown in Fig. 5b along with some experimental data
on fracture jinitiation angles from [7, 8]. According to the
plasticity analysis, a fairly wide range of fracture initiation
angles about the elastic prediction (n=1) should be expected
depending on the hardening exponent and on whether the plane
stress or plane strain condition is approached.

Plastic zones for small gcale yielding in plane stress are
shown in Fig. 6 for four values of mixity. These zones were
calculated using the power hardening law for uniaxial tension
stated above. Mode I zones have been given earlier in [9] and

are similar to those shown in Fig. 6 for Mo=1 , except that
the present zonmes extend somewhat further ahead of the crack.
It is felt that the present calculations are more accurate than
those reported in [9].
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*
Fig. 5 & (in degrees) as a function of M® for small scale
yielding. (a) plane stress, (b) plane strain.
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