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ABSTRACT 

Two parameters are identified for characterizing the 
deformation in the plastic zone near the tip of a crack when 
mixed mode conditions prevail. Details of the near-tip stress 
and strain distributions are presented f or hardening materials 
in which a diffus e plastic zone occurs under plane stress 
conditions. For small scale yielding the two near-tip 
parameters are related to the two elastic s t r es s intensity 
factors for combined Mode I and Mode II. 

PLASTIC STRESS AND STRAIN FIELDS FOR MIXED MODE CRACK PROBLE11S 

Sol ut ions to two d i mens i ona l crack problems in the plane 
f or isotropic elasticity ar e characterize d by the near-tip 
stress distribution 

(1 ) 

wher e rand e are planar polar coordinat es such that e = 0 
directly ahead of the crack. The 8- var i a t i on of the Mode I 
con t r i bu t i on t o the stresses is symmetric with respect to the 
crack tip while the Mode II contribution is antisymmetric. 
Mode I and II elastic stress intensity factors, K and K ' I I I 
~~~~S!tuE~_a_E~9_ p.~Ea~§E~r_ch~Ea~E ~Ei~~~ion of the elastic 

PLASTIC STRESS AND STRAIN FIELDS FOR MI XED MODE CRACK PROBLE11S 

Sol ut ions to two d i mens i ona l crack problems in the plane 
f or isotropic e l as t i c i t y ar e characterize d by the near-tip 
stress distribution 

(1 ) 

where rand e are planar polar coordinat es such that e = 0 
directly ahead of the crack. The 8-variation of the Mode I 
contribution t o the stresses is symmetric with respect to the 
crack tip while the Mode II contribution is antisymmetric. 
Mode I and II elastic stress intensity f actors, K and K ' I I I 
constitute a two pa r amet er characterization of the elastic 
near-tip field. 

For two dimensional crack problems in which the material 
is model ed by a def orma t i on theory of pl as t i c i ty and in whi ch 
the equilibrium equations and strain-displacement relations 
are t aken to be l i near , it can be shown that the strain en ergy 
dens i t y must vary like llr as the crack tip is approached 

~ , 



°
Here is a r e f e r ence stress which can be identifi ed with 
o 

the tensile yield stress if convenient, E is Young's modulus, 
n is the hard ening exponent and a is a material constant. 
In t his case the dominant singularity fields are of the form 

0" _ r-l ! (n+1) a, ,(e) and €~. _ r-n!(n+l) ~~ ,(e) • (3) 
1J 1J 1J 1J 

Details of these field s have been given for the pure modes in 
- -p[1, 2 , 3J. The e-variations 0ij and £ i j depend implicitly 

on n and, in contrast to linearly elastic problems, depend 
in a significant way on whether plane stress or plane strain 
pertains. 

The mix ed mode crack tip fields for linear elastic ity (1) 
are simply the superposition of the Mode I and Mode II 
contributions. The plasticity problem is inherently nonlinear 
s o that a r epresentation such as (1) cannot be used. As a 
measure of the relative amounts of Mode I and Mode II at the 

P
crack tip we introduce a near-tip mixity parameter M
defbed by 

MP=~tan-l llim ° ee(r, e=O) 1 (4) 
1T r+O 0re(r,e=O) 

P
With this choice M ranges from ~ =0 for pure Mode II to 

~ = 1 for pure Mode I. 
The simplest deformation theory, J deformation theory,

2 
has been used to generalize (2) to multiaxial states of stress. 
It is convenient to introduce the effective stress ° where 

2 e 
0 = 3s. ,s ,./2 and S1'J' = 0 i J' - ° 0., /3 The near-tip field s 

e 1J 1J pp 1) 

can be represented in the form 

crack tip we introduce a near-tip mixity parameter M~ 
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1T r+O 0re(r,e=O) 
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With this choice M ranges from ~ =0 for pure Mode II to 

~ = 1 for pure Mode I. 
The simplest deformation theory, J deformation theory,

2 
has been us ed to generalize (2) to multiaxial states of stress. 
It is convenient to introduce the effective stress ° where 

2 e 
0 = 3s. ,s ,./2 and S1'J' = 0 i J' - ° 0 . , /3 The near-tip field s 

e 1J 1J pp 1) 

can be represented in the form 

p -1/ (n+1) . l' l'
[° , J' ,(Je J = (J r [0' .. ( e ,}1 ) , iJ (e, M )]

1 oKM ~ e 
(5) 



cr ~ =3s and Sij= cr i j -cr <\ / 3 . For a gi ven value ofi jsi/2 pp 
n and for either plane stress or plane s t r a i n conditions, the 

- - Pfunction s cr . . , a and c.. are compl etely specified by the 
1J e 1J
 

P

mixity parameter M Details of thes e functions have been 
given for the case of plane strain in [4]; plane stress r esults 
will be discussed below. 

Once the ha r deni ng exponen t n i s spec i f i ed , ~ and M! 
completely characterize the near-tip field. In place of th e 

combin<i~i on (~, M!) it may be more convenient to introduce 

the path ind ependent J integral [5] and to use the equivalent 

pair (J,~). The t hr ee parameters ar e connected by [1] 

( 6 ) 

where I is a numerical constant det ermined from the 
n 

singular ity ana l ys i s which depend s on n and ~ . Plane 
s t r a i n va l ues of I where given in [ 4] and plane stres s 

n 
values will be given below. In the pure mode cases ~ i s 

known and thus J (or equivalently ~) is a s i ngl e parameter 

measuring the intensity of deformation in the near-tip field. 
Bu t in the general mixed mode s i t ua t i on a pair of parameters 
is needed f or a complete characterization. 

PLANE STRESS NEAR-T IP FIELDS 

Figure 1 gives the O- va r i a t ion s of the stresses and strains 
in (5) f or a relatively low strain hardening material with 
n = 13. Pure Mode I and pure Mode II are i nc luded along with 
two intermediate cases. The Blane stress formulation us ed here 
W!l~.L ~ ....n ..... .:1 C1 Ll \,.L.LU. ~""~""C1..L .... U .:J .... a.LLL. u~ ....~ ....L.U. ..... 1 L~ U ..... .l. vJ.U. "-u ~ 

singular ity ana l ys i s whi ch depend s on n and ~ . Plane 
s t r a i n va l ues of In where given in [ 4] and plane stres s 

values will be given below. In the pure mode cases ~ i s 

known and thus J (or equivalently ~) is a s i ngl e parameter 

measuring the int ensity of deformation in the near-tip field. 
Bu t in the general mixed mode s i t ua t i on a pair of pa r ame t er s 
is needed f or a complete characterization. 

PLANE STRESS NEAR-T IP FIELDS 

Figure 1 gives the O- va r i a t ion s of the stresses and strains 
in (5) f or a relatively l ow strain hardening material with 
n = 13. Pure Mode I and pure Mode II are i nc luded along with 
two i ntermediate cases. The plane stress formulation us ed here 
is the same as empl oyed in the Mode I study in [1]. It does not 
take into account the nonlinear geometric effect arising from 
sheet thinning. This, together with the assumption of a 
hardening material , leads to a diffuse plastic zone as opp osed 
to the s l ende r necking zone represented by the Dugdale mo del. 
Numerical methods us ed to calculate these quant ities are 
discussed in [4 ] and in more detail in [ 6]. 
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Fig. 2	 (a) Angular position of maximum tensile stress e* (in 
degrees) as a function of the near-tip mixity 
parameter. (b) Ratio of the anplitude of the maximum 
tensile stress in mixed mode to that in Mode I for 
identical values of J. 

The value of this maximum stress is normalized by the 
corresponding Mode I value, 0ee(e =0) , at the same rand 

same value of J. This ratio is shown as a function of Mt 
in Fig. 2b. Analogous curves for plane strain in [q) indicate 
a significant fall-off in the maximum tensile stress amplitude 
away from Mode I which is absent in plane stress. 

Values of In' which enter into (6), are given in the 

form of	 curves in Fig. 3. 

SMALL SCALE YIELDING 

In the small scale y i e l d i ng limit, vhen, roughly speaking, 
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tensile stress in mixed mode to that in Mode I for 
identical values of J. 

The value of this maximum stress is normalized by the 
corresponding Mode I value, 0ee(e =0) , at the same rand 

same value of J. This ratio is shown as a function of Mt 
in Fig. 2b. Analogous curves for plane strain in [q) indicate 
a significant fall-off in the maximum tensile stress amplitude 
away from Mode I which is absent in plane stress. 

Values of In' which enter into (6), are given in the 

form of	 curves in Fig. 3. 

SMALL SCALE YIELDING 

In the small scale y i e l d i ng limit, vhen, roughly speaking, 
the plastic zone is small compared to the crack length and all 
other relevant geometric lengths, J can be expressed in terms 
of the elastic stress intensity factors according to (for plane 
stress [5]) 

J	 (7) 



Fig. 3 Values of 

2 -l ilim ° eeer, e =0)1 tan 2 -l lKr I (8)= iT tan ~I1T r r- O 0re(r,e = 0) 

(For a crack in an infinite sheet making an angle B (in 

radians ) to a far pure tension field, Me = 2B/TT .) Either 

pair, (KI • ~I) or (J I Me) , compl e t e l y specifies the 

near-tip field of the elastic mixed mode solution. 
The results of the numerical analysis of the small s cale 

yielding problem are shown in Fig. 4a in the form of plots of 

Mf as a function of Me for various n. The curve labeled 
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Fig. 3 Values of I (~) 
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2 -l ilim ° eeer, S =0)1 tan (8)
1T r r- O 0re(r,e = 0) 

(For a crack in an infinite sheet making an angle B (in 

radians ) to a far pure tension field, Me = 2B/TT .) Either 

pair, (KI • ~I) or (J I Me) , compl e t e l y specifies the 

near-tip field of the elastic mixed mode solution. 
The results of the numerical analysis of the small s cale 

yielding problem are shown in Fig. 4a in the form of plots of 

Mf as a function of Me for various n. The curve labeled 
n = "" was obtained by ext r ap ol a t i on. The functional relation 

between ~ and Me in plane stress small scale yielding is 
independent of Poisson's ratio and the amplitude of the 
s ingularity. It doe s de pend implicitly on other shap e details 
of the uniaxial stress-strain cur ve in addition to n. The 
results of Fig. 4 were obtained using the tensile relation 

el e; = 0/0 for o < (J and ei e , = (O/(J_)n for 0 > 0 _ , 
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Fig . 4 Near-tip ~ixity ~ as a function of Me for small 
scale yielding. (a) plane stress, (b) plane strain 
for V= 0.3 from (4]. 

The results of Fig. 2 may be reexpressed in terms of 

using the connection between ~ and Me. Thus , Fig. Sa 
shows the effect of the hardening exponent on the critical angle 

e* as a function of the elastic mixity parameter for small 
scale yielding in plane stress. The curves for plane strain 
from (4] are shown in Fig. Sb along with some experimental data 
on fracture initiation angles from [7, 8]. According to the 
plasticity analysis, a fairly wi de range of fracture initiation 
angles about the elastic prediction (n =- 1) should be expected 
de pending on the hardening exponent and on whether the plane 
stress or plane strain condition is ap proached. 

Plastic zones for small scale yielding in plane stress are 
"h ",.~ -;"'sH1e h~j'a~~g>:"" nJ "pl'.aB~ ~~f~ss, \'i5)"'pfang"'§h~fn° 

for V= 0.3 from (4]. 

The results of Fig. 2 may be reexpressed in terms of 

using the connection between ~ and Me. Thus , Fig. Sa 
shows the effect of the hardening exponent on the cr i t i ca l angle 

e* as a function of the elastic mixity parameter for small 
scale yielding in plane stress. The curves for plane strain 
from (4] are shown in Fig. Sb along with some ex perimental data 
on fracture initiation angles from [7, 8]. According to the 
plasticity analysis, a fairly wi de range of fracture initiation 
angles about the elastic prediction (n =- 1) should be expected 
de pending on t he hardening exponent and on whether the plane 
stress or plane strain condition is approached. 

Plastic zones f or small scale yielding in plane stress are 
shown in Fig. 6 for four va lues of mixity. These zones were 
calculated using the power hardening law for uniaxial tension 
stated above. Mode I zone s have been given earlier in [9] and 

are similar to those shown in Fig. 6 for Me=- 1 , except that 
the present zones ex tend somewhat further ahead of the c r ack . 
It i s felt that the present calculations are more accurat e than 
those reported in [9). 
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Fig. 5	 e* (in de grees) as a function of Me for smal l s ca l e 
yi el di ng . (a ) pl ane stress, (b ) plane strain . 
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