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SUMMARY

A Basic tensile bifurcation problem is studied. Bifurcations from a state of homogeneous in-plane
tension are investigated for an incompressible rectangular block constrained to undergo plane
deformations. The sides of the block are traction-free, and it is elongated by a uniform, shear-free,
relative displacement of its ends. For a wide class of incrementally-linear, time-independent materials
only two instantaneous moduli enter into the analysis. Symmetric and anti-symmetric bifurcations
are examined in each of the characteristic regimes of the governing equations (elliptic, parabolic
and hyperbolic). Both diffuse modes and localized shearing modes are considered. Lowest bifur-
cation stresses are computed for essentially the entire range of possible combinations of material
properties and geometry. A number of limiting cases are studied in detail, including those for
slender and stubby specimens and for specimsns which are rigid in shear. Applications to clastic
and elastic/plastic solids are discussed.

1. INTRODUCTION

A STANDARD bifurcation problem is formulated for a rectangular block which is
constrained to plane deformations and is subjected to tension in one direction.
We suppose that a uniform longitadinal displacement of the ends is prescribed, but
that no shearing traction is applied. The material is taken to be initially isotropic
or orthotropic with respect to the geometric axes, incompressible, and incrementally
linear (wholly or piecewise); its constitutive specification after homogeneous extension
then involves just two instantaneous moduli, namely g for shearing parallel to the
geometric axes and p* for shearing at 45° to them. A wide range of material response
is thus encompassed with a minimum number of parameters, so that the problem
lends itself to a thorough study aimed at documenting the variety of possible
bifurcations.

To gain perspective we begin by reviewing the theoretical basis in some generality,
going beyond the pioneering work of BioT (1965). In particular, we give prominence
to regimes of the stress and moduli that correspond to the elliptic, parabolic, or
hyperbolic classifications of the field equations. The extent to which such a framework
is significant for understanding bifurcation phenomena is one of our main objectives,

Critical loads are computed over the complete range of moduli and geometry,
allowing for competition between full sets of both symmetric and anti-symmetric
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modes. We take account also of the possibility of bifurcation by layer deformation
{shear bands). The total picture turns out to be much more complicated than might
be supposed from the preliminary investigation of the problem by ARIARATNAM and
DuBey (1969).

When u/u* > 2 we find that bifurcation first becomes possible within the elliptic
regime; further, that it is delayed somewhat beyond the load maximum, as observed
by HutcuinsoN and MILes (1974) in the analogous axi-symmetric problem for
elastic/plastic solids. But, when p/p* < 2, we find that an infinite number of bifur-
cations precede the load maximum and are located in the parabolic regime, with
points of accumulation on its interface with the elliptic regime.

For a rigid/plastic solid, treated on its merits, there is only a hyperbolic regime.
We re-analyse this problem and amplify the results of CowPErR and OwnaT (1962),
aided by the perspective afforded by the present computations in the limit p/p* — oo.

2. CONSTITUTIVE RELATIONS

Incompressible, time-independent materials are considered which are initially
homogeneous and orthotropic (possibly isotropic) with respect to directions of the
coordinates x,, x,, X3 in some ground state. The subsequent deformation is main-
tained plane with in-plane loading coaxial to the directions x,, ;. Up to the instant
of bifurcation the boundary-value problems considered here are such that the
material remains homogeneous with principal stretches (4, 1/4) from the ground
state. The rate equations governing arbitrary in-plane straining at any stage up to
bifurcation retain the orthotropic symmetry. Assume, further, that hydrostatic
pressure does not influence the constitutive relation between the deviators of stress-
rate and strain-rate. Then, for ‘incrementally-linear’ solids, these relations neces-
sarily have the following structure {as first noted in this context by Bior (1965,

p. 101)):

‘ g
;jft (11— 022) = 2p%(e;; —€3,), QJ}E 019 = 2pi8 3, E1+83, =0, (2.1)

where g;; is the Eulerian strain-rate, a;; is the Cauchy stress, and 2/%¢ is the Jaumann
derivative. In general the instantaneous shear moduli 4 and p* depend on the
deformation history; however, for special materials they may depend on A alcne.
When p* = pu for some A the moduli will be said to have in-plane ‘incremental
isotropy” at that instant. The tangent modulus in an in-plane uniaxial test along
either x, or x; is 4u*; a load maximum is attained when this tangent modulus falls
to the current stress value.

For a finitely-elastic rubber-like material which is isotropic with strain energy
W(2) per unit ground-state volume,

AR d

Z;L:AT_I (6,—02), dp* =1 a (o1—a3), s
. dw @2
Wlth 0-1 _0-2 = ;-‘ i,
da

where ¢, ¢, are principal stresses along x;, x,. In an in-plane uniaxial test, a load
maximum occurs when &2 W/di? = 0. In any history, p* vanishes when the maximum
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stress difference is attained, where also 1d?W/di* = —dW/d).. The Mooney-
Rivlin material provides a simple example of stretch-dependent moduli. For this
material,

W =3p(A+277=2), oy—ay=p¥—217%), pF=p=1p,(A"+17?),
where y, is the ground-state shear modulus. Hence this material has in-plane incre-
mental isotropy at all strains (and likewise if the pre-strain were to include a stretch
component along x;). Bror (1965, p. 103) proved conversely that this is the only
elastic material with this property.

For metals deformed into the plastic range, (2.1) can also represent the elastic
(unloading) branch. Then the moduli ¢ and p* are not given by (2.2), however, and
are likely to vary only slowly with 4; no specific dependence is proposed here. When
the current yield surface is locally smooth, (2.1) can also represent the plastic (loading)
branch, viz. ¢;, > 0 supposing that ¢, > &,. In that case, continuity demands that
the modulus for shearing parallel to the coordinate axes has the same value u in
both branches. On the other hand, the modulus for shearing at 45° to the coordinate
axes has different values p* and g, say; the usual strain-hardening parameter #,
associated with the Jaumann flux, is then given by

(_1__ a _1_>
R

When 2 is varied monotonically, # and p* decrease rapidly but yu, changes slowly.
If the unloading branch is assumed to be isotropic (as tacitly assumed by ARIARATNAM
and Dubgy (1969)) then p, = p.

The structure of the incremental relations (2.1) is preserved under transformation
to other objective stress-rates. For the family of fluxes infroduced by HiLL (1968)
one has in the present situation,

g™ 7 g 12

—— = —— 0y — 208 — @y = — Oy ViG585,

gt TUT g, 1 18155 g1 72T g 722 2822
9("‘) @ (23)
— 0y = o By — M0 G5B i
g1 T2 T g 012 (6,+02)852

where the parameter m can be assigned any positive or negative value. In terms of
the m-fluxes the constitutive relations (2.1) become

g[m) : {m)
a (01— 037) = 2u™(m)(e 1 —€22), a 0y = 2p(m)e,,,
where
prmy—p® = p(m)—p = —imig, +03). (2.4)

Whence, both the orthotropic symmetry and incremental isotropy are invariant under
transformation, but the magnitudes (and even the signs) of the moduli are relative
to the choice of flux.?

1 Dusey (1973, Section V) considers a family of compressible materials, each of which is defined
by an isofropic relation between @™ /% and &,; for one (and necessarily only one) value of m.
Dubey also considers the incompressible limit corresponding to u*(m) = p(m). However, Dubey
tacitly takes every p(m) > 0 (cf. his equation (5.3) and accompanying discussion of other work),
in line with his standpoint that each m-value defines a distinct material. Thus, he is not concerned
with transformations of the constitutive law for one and the same material, as here, and conse-
gquently overlooks the invariant property (2.4).
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For setting up the boundary-value problem it is convenient to have an alternative
form of (2.1), in terms of the rate-of-change of the nominal stress n,;, based on the
current state at stage ¢. That is, n;;4 dn,; is the x;-component of load at stage 7+ 6¢
on an embedded plane element Wthh was perpendlcular to the x-axis at stage ¢
and had unit area then. Specialized to the present situation,

" @ avl = @ 602
W=y — 6= fap=—02—03 =,
S gy T T gy 2= gl T2 5
" @ oy dv,y
g =——0,—H0o,+03) — + io, “02) R (2.5)
Pt 0x, S
7 v, v,
Fay=—0,,—30,~0) — — ¥o,+0,5) —
i = g ¥ai =My ~a3) A, oy +o2) 35

i1
where (v, v;) are the (x, x,)-components of velocity. Note that the equation
v, duy
R
is the statement of continuing rotational equilibrium. Now the Jaumann fluxes in
(2.5) may be eliminated using (2.1) with the result

ovy 61)2)

dx; By

Ryp—#y =6y

figg =tz = {ZH "‘2(9'1"'0'2)} (

" cu
s = {u+io, - crz)} + {p—%(o+0,)} ax—l, (2.6)
.

Azy = {B— 2(514‘0'2)} T + =30, —02)} ﬁ_vl
Biot (1965, p. 86) calls p—3(o,—0,) and p+3eo,—0,) ‘slide moduli’ since they
govern the increment of active nominal load in simple shearing parallel to the
(x,, x;)-axes respectively. Biot did not use the nominal stress as such but he arrived
at the same interpretation indirectly via his peculiar ‘symmetrized stress’ (which is
conjugate to the stretch measure of strain, as expounded by HiLr (1968, Appendix)).

The structural symmetry of (2.1), and hence of (2.6), is such that the latter can
be combined in a simple variational formula:

b
fiy;0 (O—i’:) =gt @2.7)

subject to the incompressibility restriction (7,7 = 1,2 with the summation con-
vention). The function U can be written shortly as

du;
ey @8)

but is to be regarded in (2.7) as expressed in terms of the components of the velocity
gradients alone. Explicitly:

W = 2024%—1 501 2 (702
=2{2p* - Yo, +0,)} %, + {u+4(o, +02)}

1 X1

U—Tn

“ dv, ov
+{H—‘£'(0'1_0'2)} (6“1) i 2{.”_%(0’1 +a,) — (2.9)
X, G,

2
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The terms in U can be combined in a variety of ways, one of the most useful being

v \? dv v \?
2U =2{2u*— 4o, +0,)} <_L> +( 2o “—1> /(014‘02)

ax] = 5;1 A axZ
1 0%4‘0’%} 61)1 avz 2
=12 — S LR oy
2{ g o,+0; (é‘x2 axl) )

We return to this later in connection with the existence of eigensolutions to boundary-
value problems.

3. FieLb EQUATIONS

For continuing linear equilibrium the nominal stress-rate must satisfy on,;/0x; = 0
or, in a form suited to incompressible materials,

— (i — W) + sy = — — 3y ),

£x, 0x dx, a1
0 e 22) e a VPREN =

— YAy = Fys) = — i, = — & f135).

ox, S T22) = o s =5 - 3 22

Differentiate and combine these so as to eliminate fig, + #,,, which does not appear
in the constitutive law. The resulting equation can be expressed entirely in terms of
derivatives of the velocities using (2.6). Then, introduce a stream function Y{x,, x,)
such that

Byl G
vy = — Py == = 3_2
1 aX2, 3 5x L ( )
On the assumption that the current deviatoric stress is uniform, the result is

a4

~4 -4
{u+Ma,—ay)} % F20ut ) 2 {—3a,—a2)} %x% =0. (33

¢
ox? ax2
Bior’s (1965, p. 193) derivation of (3.3) is via equilibrium equations for the Jaumann
flux.

Alternatively, we could proceed by introducing a ‘stress-rate potential’ ¢(x,, x,)
such that

(73 0% (74 0%

§E Ty = ag, __@; Gy == 67xf’
@ . S, ) & i
g O tHe—a) (éxl éxz) o

in accordance with (2.5) and (3.1), or more immediately by recognizing the left-hand
sides of (3.4) as the rates-of-change of Cauchy stress components on the fixed
coordinates.

Combine (3.4) with (2.1) and (3.2) to get

o _¢_, ., &
A R T 4
5245 ¥ : 52'1(, . c—)z—l‘b ( 2 )
W s {u+i(o,—0r)} P o {u—3o,—0a,)} P

In linearized elasticity, with g; = g, = 0, such equations are the basis of a complex
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variable formulation; we do not pursue a possible analogous technique here. By
eliminating ¢ we recover (3.3), and by eliminating yr we obtain

6’445 6445 @4d)
{u+i(o,—a,)} ax? + 2(2u* — ) ot ox + {p—Ho,—02)} Fr 0. (3.6)

Thus, ¢ and  satisfy the same differential equation. In the context of a class of
elastic/plastic materials, ARIARATNAM and DuBey (1969) derived (3.6) by another
route, without noting (3.5).

Alternatively, we may proceed from the variational principle (Hiiy, 1958, 1959);
see also Bior (1963, p. 138)):

§Jf U dx, dx; =0 (3.7)

for the conventional homogeneous boundary-value problemt for a finite region of
the (x,, x,) plane. When U is expressed as a function of velocity gradient as in (2.9),
or of nominal stress-rate, (3.3) and (3.6) respectively appear as the Euler-Lagrange
equation of (3.7).

A condition excluding the possibility of first-order bifurcation in conventional
problems for incrementally linear materials is

{{ U dx, dx, >0 (3.8)

for all piecewise-continuously differentiable velocity fields compatible with the
constraints (HiLL, 1938, 1959). The interpretation of the exclusion condition is
that, in any incremental virtual deformation, the loads do less work than is expended
internally. In a first-order bifurcation the external and internal works are equal, to
second order. Under all-round dead loading the condition is critical in that, when it
just fails, a definite first-order bifurcation can be exhibited (Hi.L, 1967). But under
mixed boundary-data of the type considered below, the initial loss of uniqueness
may be less simple.

However, the exclusion condition is still informative. For instance, by {2.10),
U itself is a positive quadratic in the velocity gradient components if and only if
(cf. HiiL (1967 (equation 5.4)))

2 2

o] +o
B2 gy by < du® dnd -2
0;+0;

< 2. (3.9)

In this range of stress the possibility of first-order bifurcation is therefore ruled out
by (3.8), whatever the boundary data. For all-round dead loading, in particular, it
was shown by Hill that impending failure of one of these inequalities is in fact
critical,

4, CLASSIFICATION OF REGIMES

By way of preparing to solve specific boundary-value problems, we investigate
the general character of the differential equation for ¢ and . and its dependence
on the current values of the stress and moduli.

t *‘Conventional’ means that eithier the velocity or nominal traction-rate vanishes, or else their
complementary components vanish over a plane frictionless constraint. If non-planar, a term in
its curvature has to be added to (3.7) (cf. BioT (1965, pp. 143-6)).
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8]
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w

Consider any velocity field for which the stream function is of type

= Flcyx(+c3%5), “.0D
where function F is arbitrary and ¢, ¢, are constants. This represents an inhomo-
geneous simple shear parallel to planes e¢,x, +¢;x; = constant. By virtue of the
constitutive law every component of any stress-rate deviator is uniform on each
such plane, which is to say that all deviator components are annihilated by the
operator (¢; d/éx, —¢, 8{0x;). From (3.1), therefore, after multiplying the member
equations by ¢; and c, respectively,

A -

G - » 0 . v
(e iy +eany) =0, a (e1fp+ey,,) = 0.
x4 0%,

Taken with the preceding statement, these require that
Cyfyteatipg = ¢ h, Cifyy €7ty = Colt (4.2)
for general F, where # is independent of x; and x,. The nominal traction-rate over

the shearing planes is thus purely normal and of uniform amount #. Elimination
of this unknown from (4.2) leads to

cyea(iyy —Rag) = CAa—ciiyy.
Whence, evaluating the deviator components from (2.6) and (4.1), we must have
{#+¥o,—o)}et +202p* — et 3 +{p—o, —a3)}e; = 0 (4.3)

for consistency (unless F(z) oc z* when ¢,/c, is arbitrary).
In general there are 2 distinct roots ¢i/c2. By combining the 4 associated functions
of type (4.1) linearly we obtain a general solution of (3.3). Since we are interested
only in real i, the character of this solution depends on the reality or otherwise

of ¢;/c,. There are three main possibilities, which can be classified as follows under
the restrictions

pr =0, p>0, 6, >0, — (4.4)
E: no real ¢;fc,, 2u* > u—/{p*—1(6,—a,)*}, (4.5)
H: dreal ¢ fc;, 2p* <p—/{p*—Ho,—0,)"}), (4.6)
P: 2real eyfc,, p<io,—a,). (4.7

Symbols E, H, and P stand for elliptic, hyperbolic, and parabolic in conformity
with standard terminology for systems of partial differential equations, The
corresponding regimes in a plot of u/2u* against (6, —a,)/4u* are similarly labeled
in Fig. 1; here a point shows directly the degree of incremental anisotropy, and the
stress difference relative to the tangent modulus.

The interfaces between regimes £ and P, and between H and P, are segments
of the line

n = 4o, —0,). (4.8)

On this line two roots ¢, /¢, vanish, while the other pair are real along H/P but
pure imaginaries along £/P. The interface between £ and H is a parabolic arc

2
H Gy —03
LA Py S A L ) 4,
pu* +( 4u* ) ¥ S

On E/H the roots ¢,/c, coincide in pairs; in addition to (4.1} there then exist stream
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-

qu*

Fig. 1. Characteristic regimes.

functions of type
Y ={c,x; —€;%,)G{e, % +€2%3) (4.10)

which are needed to generate a general solution. Note that a further arc of the
parabola (shown broken in Fig. 1) divides regime E into an upper part where the
roots ¢2/c¢? are complex conjugates and a lower part where both are negative (so
that all roots ¢;/c, are pure imaginaries).

The mechanical significance of (4.3) can be appreciated by evaluating the function
U in (2.9) at any point of the shearing field (4.1):

2U = [{p+3(oy — o)}t +2Q2u* — et i + {n— 3o, — 02) }eS ] LF"(e; X, + €3 32)} .

In regime E the factor [...] above does not vanish for any real ¢; and ¢,, and is
consequently always positive, being so when ¢, = 0 by (4.4). Correspondingly, the
function ¥ is positive-definite for any incremental simple shear; it is well known
that this precludes internal deformation of an incompressible material whose surface
is cemented to a rigid container {see, for example, Hirt (1962)). In regimes P and H,
on the other hand, the factor [...] is indefinite since it vanishes for either 2 or 4
real values of ¢,/e,;, respectively., Each corresponding line ¢,x, +¢,x, = constant
is a characteristic, across which there may be a jump in velocity gradient, amounting
to an incremental simple shear in the direction of the line (associated, for example,
with a jump in F"). More generally, by setting # = 0 in (4.2), we see that incremental
deformation of type (4.1) can occur inside a layer between any two parallel charac-
teristics, while the loading on momentarily rigid material outside the layer is main-
tained dead in conformity with zero nominal traction-rate on the layer boundaries.

5. EIGENMODES IN A TeExsiLE TEST

The specimen 13 rectangular with current dimensions 2a¢, x 2a, subject to a
current uniaxial stress: ¢, = ¢ > 0, 6, = 0. We examine the possibility of incre-
mental deformation when the sides (the faces perpendicular to the x,-direction)
remain traction-free and the ends are subject to frictionless constraints keeping
v, = 0. We search for modes of the type

¥ = v(x,) cos (¢, x,) (5.1)
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where, from (3.3), v must satisfy
(p—4oW" = 2Q2u*—wietv” + (u+ie)etv = 0. (5.2)
Since
vy = v'{x3) cos (¢1X,), v = ¢y 0(xz) sin (cy %), (5.3)

the kinematic constraint on the ends is satisfied when
ey = maay, wm=1; & (5.4)

by placing the origin of coordinates at the specimen center when m is odd and at a
distance a,/m from the center when m is even. (Alternatively, the origin could be
kept central with the case y oc sin (¢;x,) treated separately.)

Since 7, given by (2.6) also varies as cos (¢,x,), the smoothness condition on
the ends is automatically satisfied. On the sides, #,; = 0 if

el =0  ‘xy=Lay (3.5)
while 7i,, = 01if
(H—4o)0" = @u*—p—40)3v,  x,=ta,. (5.6)
The latter can be derived by calculating 7, +#,; from (3.1) and setting it equal
to fiy; —H,, in (2.6). Alternatively, the field equation and boundary data for #(x,)
follow from the variational principle (3.7) with free » and v’ at the limits, where U/
is given by (2.9) and (5.3).
Symmetric modes satisfy y(x;, x;) = —¥(x,, —x,); anti-symmetric modes
satisfy W(x,, x;) = ¥(x;, —x,). Hence for the symmetric modes the choice of v(x;)
as an odd function of type

v(x;) = Re {4 sin (¢, x,)} (5.7
satisfies (5.2) provided ¢, is any root of
(u+40)et +22u* — et 3 +(u—4o)c; = 0 (5.8)

in conformity with (4.3). Similarly, anti-symmetric modes are generated by even
functions v of the form

v(x,) = Re {4 cos (¢ax,;)} {5.9)

where ¢, must again satisfy (5.8). We now examine the three regimes in turn.

3.1 Elfipiic regime
As already observed in connection with (3.9), no modes of any kind exist when
0 <6 < 2u and 4p*, (5.10)

In Fig. 1 this is that part of region E which is bounded by the E/P interface and the
line ¢ = 4u* corresponding to maximum tensile load. Thus, we need only investigate
the possibility of modes where the roots ¢? are complex conjugates and

4 H
]<4?k</\/(ﬁ_1) and ,u>2,u*

from (4.9). Accordingly, using (5.7) for the symmetric modes, (5.5) and (5.6) can
be written as
Re [(¢f —¢3)d sin(c;a5)] =0,
Re [eoA{(dp*—p—1odei + (e —4o)el} cos (c,a,)] = 0.
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The result of eliminating the amplitude factor 4 can be put as
Im [¢,{ci —&3) sin (&, a,) cos (¢, a;)] = 0.
Whence, or by working from the beginning with an explicit real expression for o,
we find the eigenvalue equation for the symmetric modes (taking the (+) in (5.11)):

Lt

g sin (2pcyay)

=+ -, 5.11
psinh (2gc,a,) J(Zﬂ—a) 3 (1 E) -
2u+6 o
where
2p—4u* 2u+ta
P = pag=, (5D (5.12)
2i—a 2n—a

Repeating the above calculation for the anti-symmetric modes (5.9) gives (5.11)
with (—).

Equations given by ARIARATNAM and Duggy (1969), and by Dugey (19735), can
be reduced to the above form, which has the merit of combining the parameters in
directly meaningful groups.

5.2 Hyperbolic regime
The appropriate real solution for the symmetric modes is
v = A sin (peyx,)+ B sin (g, x,),

where p and g are now the positive roots ¢,/c; of (5.8). Elimination of 4 and B
between (5.5) and (5.6) leads to the eigenvalue equation

g tan (pe; ;) _ (cf"_l i (5.13)
ptan(ge,ay) \p*—1/° '
where
2p—4p* Hdu* =2p)" +(a* —4*)
é(p2+q2)=---2-u_?, é—(pz—qz)=”{ = 553 24 (5.14)

For the anti-symmetric modes, v is a linear sum of cos (pe,x,) and cos (gc, x;) and
the eigenvalue equation is

r 2—
g tan (g¢, a;) (q I)Z' (5.15)

ptan(pc;ay)  \p*~—I

The discussion in Section 4 indicates the possibility also of localized shearing

deformation in a vanishingly narrow layer, combined with homogeneous extension

so as to make v, vanish on the ends. For example, a single layer would be geometri-

cally feasible whenever the specimen dimensions are such that @ /a, exceeds the
smaller of p and 4.

5.3 Parabolic regime
This is not found with finitely-elastic materials (2.2), for which the signs of
i +14(o,—0,) always agree, in opposition to (4.4) and (4.7) jointly (cf. Brot (1965,
p- 199). Generally, however, there are symmetric modes
v = A sin (pc, x,)+ B sinh (ge, x,),
where p and ig are respectively the positive and positive-imaginary roots ¢,/e,.
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The eigenvalue equation is

g tan (pe,a;) _ (qj+l 2’ (5.16)
p tanh (gc, a,) pe—1
where
4u* -2 . {(du* —2u)* +(0? — 4u?)
H'-a)=——— *+g)= J 4 (5.17)
o—2u 6—2p
The eigenvalue equation for the anti-symmetric modes is
tanh 11y ;
q tanh (ge; @) <612 ) . (5.18)
ptan (pe,d;) p-1

Actually, as we shall see later, the E/P interface is a locus of points of accumu-
lation of eigenvalues of (5.16) and (5.18). That is, bifurcations are possible imme-
diately the interface is crossed from E to P, if that is the sense in which the system
evolves in parameter space. Some such phenomenon could already be expected
from one feature of the behavior of the functional (2.10). This does not comply
with (3.8) but takes negative values, however closely ¢ approaches 2u from above,
for admissible virtual fields v o sin (¢x,) with ¢ sufficiently large; the negative term
in (8v,/éx,)* is of order ¢* and dominates the integral.

6. BIFURCATION STRESSES IN A TENSION TEST

Qur aim in this section is to present a sufficiently complete analysis of the eigen-
value equations listed in Section 5 to reveal the bifurcation stresses for essentially
the entire range of material and geometric parameters. Attention is focused on
eigenvalues leading to the lowest possible bifurcation stress.

Specialization of (3.9) to in-plane tension (o, = ¢ > 0, ¢, = 0) leads to the
pair of implications

2u* < p=>0 > 4u*, (6.1)
2u* > =0 > 20 (0.2)

From (4.5) to (4.7) it follows that for 2u* < u the bifurcation stresses may be in
any of the three regimes E, H and P, although we will show that the lowest always
lies in E. The second case, 2u™ > u, implies that any bifurcation stress must fall
in P. Case (6.1) is examined first.

6.1 Numerical results 2u* < y)

Since coincidence of the stress and the tangent modulus 4u* corresponds to
{possibly local) maximum load, (6.1) ensures that bifurcation cannot occur at stresses
below the stress associated with a load maximum. For specified values of 2u*/u < 1
and y, where

y=c¢,d, = mra,/2a,, {6.3)

the lowest eigenvalue ¢/4u* was calculated for the syminetric modes (Fig. 2(a)) and
for the anti-symmetric modes (Fig. 2(b)). A standard numerical search procedure
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F1G. 2. Lowest bifurcation stresses for 2u*/p << 1: (a) symmetric modes, (b) anti-symunetric modes,
and (c) svmmetric and anti-symmetric modes.
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was used which provided o/4p® to six significant figures. First, the relevant part

of the E-regime,
g I
I e ——1},
4u* N/ (#* )

was searched using (5.11) for the symmetric and anti-symmetric modes, respectively.
If an eigenvalue was not found, the search was extended into H, i.e.

U g 2
— =l —<—
'\/(u" ) du* " Z2u*

using (5.13) and/or (5.15). ln Figs. 2(a, b), values of ¢/4u* falling in E are shown
as solid-line curves while dashed portions are in H. The search need never be taken
into P since an infinite set of eigenvalues lies on the H side of the H/P boundary,
as will be explained later in Section 6.3.

Included in Figs. 2(a, b) are the limiting solutions to (3.11) for y*/u — 0:

a 1 ¥
4u*®

2 = sin (2y) Ty
where the (+) and (—) go with the symmetric and anti-symmetric modes, respec-
tively. Equations (6.4) can be derived directly taking the specimen to be rigid in
shear (¢ = oo) from the start as discussed in Appendix Al. For the special choice
m = 2, corresponding to artificially enforced symmetry with respect to the midpoint
between the ends, (6.4) was given by CowpPER and ONAT (1962). The limiting process
leading to (6.4) from (5.11) is discussed in Section 6.2.

We have already mentioned that, in H, localized shear layers are in competition
with the modes considered in the derivation of (5.13) and (5.135). Where the shear
layers are compatible with the boundary conditions, they may lead to bifurcation
stresses lower than predicted by (5.13) and (5.15). However, when both symmetric
and anti-symmetric modes are taken together the lowest bifurcation stress is always
in E, Nevertheless, in some instances shear layers may be associated with stresses
only slightly above the lowest bifurcation stress and there is the possibility that they
become the final failure mode. A shear-layer analysis is given in Appendix AIL

Figure 2(c) shows curves of the lowest eigenvalue g/4u* as a function of y when
the results for the symmetric and anti-symmetric modes are thrown into competition.
A comparison of Fig. 2(¢) with Figs. 2(a, b) reveals that the first segment of each
festooned curve, as y increases from zero, is always associated with symmetric
bifurcation and the second with an anti-symmetric mode; subsequent segments
alternate between symmetric and anti-symmetric modes.

1t is now useful to note that the left-hand side of the elliptic eigenvalue equations
(5.11) vanishes as y —» o0 due to the presence of sinh (2¢y) in the denominator
(7 and g remain finite). Thus, for both symmetric and anti-symmetric modes, the
bifurcation stress for y — oo is given by the condition that the numerator on the
right-hand side of (5.11) vanishes, i.e.

L_1+LJ(?#‘“) (6.5
du* 4u* 2u+a) 3)

This relation is plotted in Fig. 3. The trend towards the limiting values for large 7
can be seen in the numerical results of Fig. 2.
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Fic. 3. Lowest bifurcation stress for the limiting case y — < from {6.5).

The left-hand side of (5.11) also vanishes at all values of y given by
y=i=f2p, j=1,23,.... (6.6)

The value of ¢/4u* given by (6.5) is therefore attained for both symmetric and anti-
symmetric modes at these values of y, where, of course, p is computed using the
same value of gfd4u* in (5.12). As seen in Fig. 2(c) the values of y given by (6.6) are
the points of transition between segments associated with symmetric and anti-
symmetric modes. The lowest eigenvalue o/4p* at any value of y is never greater
than (6.3). Since (6.5) is in £, it immediately follows that the lowest bifurcation
stress always lies in E when 2u* < .

The difference between o/du™ at any y on a curve segment in Fig. 2(c) and the
upper-bound value (6.5) diminishes steadily as segments farther and farther from
p = 0 are considered. It is evident from Fig. 2(c) that the lowest bifurcation stress
for a given geometry ratio na,/2a, is always associated with m = 1. Exceptionally,
if ma,/2a, = kn/2p for any integer value of & then the bifurcation stress is (6.5) and
all values of m are simultaneously available, including modes with arbitrarily short
wavelengths,

6.2 Asymptotic formulae (2u* < p)

For sufficiently small y the bifurcation mode is symmetric, The result of a rela-
tively straightforward asymptotic expansion of (5.11) for small y is

g ]

=i 1+4y* +7557* +00°, v°u* ). (6.7)

The ratio of the tangent modulus to the shear modulus, 4u*/u, first appears in the

expansion only in the term of order y°. Up to and including terms of order 3,

(6.7) is identical to a similar expansion of (6.4;). In fact, on the scale of Fig. 2 the

difference between the result for infinite shear rigidity (u*/p = 0) and the curves

for 2u*/u < 1/2, say, is virtually undetectable if y < 1.
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The connection between the simple formula (6.4) and the results for a finite shear
stiffness is brought out even more clearly by calculating the lowest order influence
of a large but finite shear modulus g on the bifurcation stress. The fairly delicate
(and lengthy) process of expanding the eigenvalue equation (5.11,) for the symmetric
maodes in small values of p*/u at fixed, finite values of y gives

Pl S y = } ey
e e : 14cos 2y)—4——— (3 +1 +0({—1). (6.8
4u* +sm 2y p {(sm 2}1) ( N3 sin 2y SRR M -
For p*fu — 0, (6.8) obviously becomes the limiting equation (6.4). Furthermore,
for small y the terms in the brackets multiplying 2p*/i can be shown to be of order
7%, as required for consistency with (6.7).
Next consider the other extreme of the range of 2u*/u under present consideration

where 2u*/p = 1 =56 with 0 < § € 1. It is readily shown using (6.5) that, for the
limiting case y — oo,

b=

o 1+6+0(5%) with g ~ p//3 = 1/2,/5). (6.9)

The relations (6.9) continue to hold for any fixed, finite y for sufficiently small
since as 0 — 0 the left-hand side of (5.11) becomes exponentially small. As can be

seen in Fig. 2 and from (6.9), the lowest bifurcation stress just slightly exceeds the
stress at maximum load for all values of y when 2u*/u is close to unity.

6.3 Eigenvalues in the parabolic regime 2u* > 1)

As remarked in connection with (6.2), 2u* > pu implies ¢ > 2 with ¢ in P.
The key to discovering the eigenvalues in this regime is the behavior of p and ¢ for
values of a/2y only slightly greater than unity. Using their definitions in (5.17) one
finds for small positive g/2¢—1 that

Pt - G e

The right—hand side of (5.16) for the symmetric modes becomes

1+a?\? _ (1o =21\
) =Gara) iy

and is depicted schematically in Fig. 4.

g tonyp
ptenhyq

F1G. 4. Schematic sketch of the properties of the parabolic eigenvalue equation (3.16).
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Now consider the left-hand side of (5.16). For any fixed non-zero value of y,
yp — o0 as o — 2p from above as seen from (6.10). Because of the presence of
tan (yp) in its numerator, the left-hand side of (5.16) oscillates between + oo in an
infinite sequence of intervals bounded below by ¢ = 2y, as depicted in Fig. 4. It
follows that in any finite interval closed below by ¢ = 2u there is an infinite sequence
of eigenvalues. One can easily show that the value ¢ = 2y on the E/P boundary
cannot be an eigenvalue itself but is a point of accumulation. The E/P boundary
plays the same role for the anti-symmetric eigenvalues. A somewhat similar spectrum
of eigenvalues was found by BioT (1965, pp. 194-203) for the problem arising from
the compressive loading of a rectangular block between smooth rigid plates. A more
detailed discussion of this problem is continued in Appendix AIIL

For the tension problem at hand, bifurcation will be possible as soon as ¢ exceeds
2u when 2p* > g, and thus there will always be an infinite set of bifurcation stresses
below the stress at maximum load. The associated spectrum of modes includes
modes with vanishingly short wavelengths as remarked on in Section 5.3.

Similar considerations reveal that each point on the H/P interface is a point of
accumulation when 2u* < u. An infinite sequence of eigenvalues is encountered as
g —+ 2u from below. In this case there are isolated points on the H/P interface which
are themselves associated with eigenvalues.

7. DiscussioN

{i) We have remarked that the Mooney—Rivlin material is incrementally isotropic
under in-plane tension (i.e. u* = u). If bifurcation occurred it would necessarily
be in the parabolic regime when o exceeds 2u. But the constitutive relation itself
excludes this possibility (cf. (2.2)) and it follows that bifurcation is never possible
under plane tension for the boundary conditions considered.,

We have also remarked that an initially isotropic, incompressible, finitely-elastic
material as in (2.2) can never penetrate the parabolic regime in plane tension. Thus,
if bifurcation occurs it will necessarily take place at a stress above that at a load
maximum, i.e. g > 4u*.  Obviously, if no such maximum exists, bifurcation is
excluded. On the other hand, the existence of a mmaximum load point by no means
ensures that a bifurcation stress will be reached. Whether or not one will actually
be aitained depends on the evolution of ¢/4u*, 2u*/u and a,fa, beyond the load
maximum.

As an illustration consider the following generalization of the Mooney-Rivlin
material whose energy function for incompressible, plane deformations is

24t

W=0:—2(;~1+;':_1—2) (7.1)

where without loss in generality o can be restricted to positive values and p, is the
ground-state shear modulus. By (2.2) one finds
¢ 1 A1 g 1 A1 4
T Ea ™ T o
These relations are depicted in Fig. 5. The total load is proportional to
Glh = Quolod(i® 1 =277, (7.3)

(7.2)
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Fis. 5. Sketches of the dependence of ¢/4u* and g/24* on the stretch 2 fromi (7.2}

If % > 1, o never attains 4u*; but if ¢ < | the load has a single maximum at the
value of 4 where ¢ = 4u*, namely

A= {0 +a)(L—a)}' (7.4)
Thereafter the load diminishes monotonically. At the load maximum,

I
P 5
which falls within £, This can be seen in the evclution of the homogeneous defor-
mations (7.2) in the space of yf2u* and ¢/4p* shown in Fig. 6. The relation (7.4)
is plotted on the right in Fig. 6. In the limit « — 0, equation (7.4) gives 2 = e.

If the specimen is suffictently slender, bifurcation will occur just following the
load maximum as previously discussed. In all cases bifurcation will occur at a stress
which dces not exceed the limiting value for ¥ — oo in (6.5). Substituting (7.2) into
(6.5), one obtains the following equation for the value of A at which this upper-bound
to the bifurcation stress is attained:

1

‘2&_1 42 1

A sl =al
)21;‘ ’ )4 = (75)
EIFURCATION
0R y —w, £q.{6.5)
NIl T i}
!
VALUE ASSOCIATED

04— wiTH MAXIMUM [ DAD, -
[t _EQ-{7.4]
———— —

03+ Pegioe ] i

14X

| VALUE ASSOCIATED

O.21—WiTH BIFURCATION =
A Ll

STRESS FOR y—o, %,

[V EQ. {75 N

Al \=.|l'
f |

. ol L | !
2 ] £ 4 ) 8 e
a a

A
Fic. 6. Trajectories of (a/du®, p/2u*). Values of the stretch 7 associated with the load maximum
and with the upper limit on the bifurcation stress for » - 1.
18
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This relation is also plotted in Fig. 6. Thus, for ¢ < 1 the lowest bifurcation stress
will be reached at a stretch A between (7.4) and (7.5); the precise value depends on
the initial slenderness ratio. Remarkably, the spread between (7.4) and (7.3) is
small (see Fig. 6). This is due to the fact that 2u*/y is only slightly less than unity
at bifurcation so that (6.9) pertains—see also the curves in Fig. 2. It is of further
interest to note that this is an example where it is possible to choose an initial slender-
ness ratio such that the lowest bifurcation stress is equal to (6.3) and consequently
all modes (m = |, co0), symmetric and anti-symmetric, are simultaneously available,

(ii) The present analysis applies to incompressible elastic/plastic solids assuming
the properties are initially homogeneous and isotropic, or at least orthotropic with
respect to the specimen axes. Typically, an initially isotropic metal suffers a mono-
tonic decrease in the ratio of the tangent modulus to the shear modulus on the active
plastic loading branch with increasing extension in piane tension. 1f the yield surface
is smooth then, as discussed in Section 2, p is also the instantaneous modulus for
elastic shearing paraliel to the specimen axes. Then 4u*/y may be as small as 1/100
at maximum load. Even if a vertex develops on the yield surface, g (which is no longer
the instantaneous elastic value on the active plastic loading branch) is still likely
to be many times 4u*. Thus, any plane tension specimen with the boundary condi-
tions studied here will undergo a necking bifurcation in the elliptic regime at a stress
which is above the stress at maximum load. The total bifurcation mode is some linear
combination of fundamental solution increment and eigenmode which ensures that
elastic unloading does not occur at bifurcation.

For a relatively slender specimen (ma,/2a, < 4, say) the asymptotic formula (6.7)
and the rigid/plastic result (6.4) give numerically similar and accurate predictions.
If the tangent modulus is a smooth function of ¢ in the neighborhood of the stress
at maximum load, o, = 4u), then {(6.7) can be transformed to relate the bifurcation
stress explicitly to o,,. With

u* = uh+(du*lde)lo—a)+ . ..,

(6.7) becomes for small y,

#, 7-1
Zoal + [1 —4 (di) ] W+ 60y, {7.6)
o da m

For metals, 4(du*/de), is negative and usually large in magnitude, typically on the
order of 1 + strain. Therefore the bifurcation stress only slightly exceeds the stress
at maximum load when the specimen is not inordinately stubby.

(iii) In one respect the plane tension problem differs markedly from the analogous
problem of the tensile bifurcation in an incompressible elastic/plastic cylindrical
bar. All evidence to date indicates that a cylindrical tensile specimen of rigid/plastic
material with a smooth yield surface, and subject to a uniform, shear-free, relative
axial displacement of its ends, cannot undergo necking-type bifurcations. On the
other hand, HUTCHINSON and MIiLEs (1974) showed that an incompressible specimen
with a finite shear modulus i could undergo axisymmetric necking bifurcations very
shortly after maximum load even if E /i is as small as 1/300, where E, is the tangent
modulus in uniaxial tension. However, their numerical results also strongly suggest
that, for any finite slenderness ratio, the bifurcation stress becomes unbounded as
EJpu — 0, consistent with the inability of the rigid-plastic specimen to bifurcate.
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This point is further emphasized by the asymptotic relation between the bifurcation
stress and the slenderness ratio, ¥ = nR/L (R and L are the radius and length of the
cylinder at bifurcation}. For y < 1,

B 4
a ¥ 0oy PG
—=l+—+ = —=+0(y ) 52
} (}’ E,yE) (4

As opposed to the analogous expression (6.7) for the plane problem, coefficients in
(7.7) become unbounded as £,/ — 0.

{(iv) An interesting feature of the numerical results of Fig. 2 is the many modes,
both symmetric and anti-symmetric, associated with stresses which are, in some
instances, only slightly above the lowest bifurcation stress. Included is the possibility
of modes with arbitrarily short wavelengths. (For the elastic material (7.1) we have
seen that it is actually possible to select an initial slenderness ratio such that an
infinite spectruin of modes is associated with the lowest bifurcation stress.) At
stresses which may be only shightly higher still, shear bands such as those discussed
in Appendix All become possible. It is not unlikely that some of these higher modes
may make their appearance as post-bifurcation or failure modes, rather like the
concentrated oblique necking observed in strip tension tests,
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APPENDIX Al

Rigid{plastic analysis

The constitutive relations (2.1) on the plastic branch are replaced by their normal
limit as g — oo, viz.

@

Y s %, s
I(gll"o'zz):‘i'ﬂ*bu = —4)1%;,, &gz =0.

0

From the latter, in place of the fourth-order equation (3.3) for the stream function,
we have a standard second-order equation

~2 ~2
&y 6l .
— = =0 AL}
St i R P

at all stress levels, subject to 8%/dx, éx, = 0 for continued loading when ¢, > a,.
This is of course hyperbolic, with a single pair of families of characteristics bisecting
the coordinate directions.

In the first instance we examine bifurcations for the associated incrementally-
linear solid. For the tension problem, with the notation of Section 5, there exist
eigenmodes of type

U = v(x,) cos (cxy), ¢ = mnf2a,, m=12... (AL.2)
where
' +efv=10

everywhere. (We recall from (5.5) that previously this had to be satisfied just on the
sides.) Such modes have symmetry about the x,-axis when v = sin (¢x,), and then

vy = e cos (cx,) cos {cx3), v, = ¢ sin (¢x,) sin (cx,). (AL3)
In place of (2.6), therefore, we have

By —Hyy = (6 —4p®)c? sin (ex,) cos (ex2))) (AL4
A a—Hy; = oc” cos (exq) sin (ex,), J )

but no longer constitutive relations for 5n,, and #,, separately. In compensation

the end-condition #,, = 0 does not now automatically result from the particular
choice of ¥, but can be satisfied by taking
i3 = F(x,) cos (ex). (ALS)

Correspondingly, we take

fa, = G{x;) cos (cxl),} (AL6)

where F—G = ac? sin {cxa),
by (Al.4,). Then, having regard to (3.1) and (Al.4,), we have
3,y +13,) = H(x;) sin (ex,),
where G’ +cH = 3(4u* — a)c? cos (cx,), (ALT}
H'—cF = ¥{4u* — )¢ sin (cx,).

Finally, we must satisfy 7i,; = 0 and iy, 4+, = 8, —A,, on the sides,



Bifurcation phenomena in the plane fension test 259

The solution can be carried through in terms of the differential equation and
boundary conditions for any one of F, G, and H, but we give all three for
completeness:

F' 4+ F = —4u*e* sin (ex,), s
with F =+oc? sin (ea,), F' = 4u*c? cos (ca,) On x, = +4a,, (A1)
G"+¢2G = —4u*c* sin (ex,), At
with G== () G’ = (4u* —0)c’ cos (cay) on X, = ta,, LAl
H" +¢*H = 4u*c* eos (ex;),
with (AL 10)
H = Yo—4p*)c* cos{ca,y), H =+Ho+4u*)csin(ca,) on x, =+a,.
We thus obtain the eigenvalue equation
sin {ca,) cos (ca SR
{eay) ( 2):7 H E (ALI1)
ca, o—2u*
in conjunction with the respective solutions
Fj2u*c? = {1+-ca, tan (ca,)} sin (ex;)+ cx; cos (ex,), (AL12)
Gi2u*e? = —ca, cot {ca,) sin {ex,) +cx, ¢0s (¢x5), {Al.13)
Hj2u*c* = {ca, col (2ca,)—4} cos (cx,) +ex; sin (ex,). (AT.14)

It may be noted that the associated stress-rate function is
¢ = 2p*{ca, tan (ca,) cos (ex3) — X, sin (ex,)}

as defined in (3.4).

An analysis of this problem by CowpPErR and ONAT (1962) was based on charac-
teristic coordinates, together with associated fixed-axes components of Cauchy
stress-rate. They introduced an assumption corresponding to (3.2), but discarded
modes that do not have a transverse axis of symmetry (and in faet considered only
the case m = 2). However, we see no mathematical reason to reject the mode m = 1,
for which the eigenstress given by (Al.11) with ¢ = =n/2a, is

o i, fay
"l sin (wa,/a,) R
We have examined the spectrum (AI.11) for all integers m, and find that the least
eigenstress is indeed (AI.13) for dimensions such that a,/a, > 1. Cowper and Onat
also constructed a quite different type of solution when a,/a, > 2; this involves a
localized necking, but can be activated only by stresses substantially higher even
than when m = 2,

Analogously to (3.8), a condition that excludes eigenmodes for the incrementally-
linear material (and hence also bifurcation in the inhomogeneous problem for the
rigid/plastic material} is | U dx, dx, > 0 for all piecewise-continuously differentiable
velocity fields consistent with the constraints and derivable from a stream function
satisfying (Al.1). Here, in replacement of (2.10),

G, v,

- G by g : £v; ¥ dvy % dvy\?
2U = (1), —1iz2) r™ +(”12_T?21)5Tc1=(4# —0—63) i + (0, +0,) B i
Xy 1 1
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An immediate inference is that, when 0 < a;+a, < 4p*, bifurcation cannot occur
under any standard boundary-data. For the present tension problem, in particular,
the deformation certainly remains homogeneous at least up to maximum load. For
velocity fields of type (AL3), with ¢ as in (AL2),

in (2
.” U dxl dx; = alazc"' {2;5*-_(0-_2#*)@_(@}.

2¢d,

Since the left-hand side must vanish in an eigenmode, we recover (Al 11).

To obtain the complete solution for amti-symmetric modes from equations for
symmetric modes, simply replace sin (cx,) by cos (ex;) and replace cos (¢x;) by
—sin (cx,) everywhere, in particular at x, = -ta,. Then (AL11), which is

a 2¢ca, —— a 2ea,
i = 3 OREy —= 1 — — Tmi
2u* sin (2¢a;) 2u* sin (2ca;)
where ¢ = mnf2a, and m = 1,2,.... We can assemble all branches of these two

formulae on one diagram (Fig. 7) to furnish the complete spectra for the block under
either tension or compression. Cowper and Onat, in dealing with compression, again
consider only the anti-symmetric mode m = 2.

=z a \
au* i
5 |
1 | | LINE OF SYMMETRY
7 — e S e P
\02 = 3 45}
|m/2 " In/2

Fig. 7. Bifurcation stresses for a rigid/plastic specimen; S and 4 denote eigenvalues associated
with symmetric and anti-symmetric modes, respectively.

For a rigid/plastic specimen, bifurcation must take place with continuing plastic
deformation everywhere in the specimen if the above bifurcation stresses are to hold.
A bifurcation mode is some linear combination of the homogeneous solution
( ~ x,x,) and an eigenmode. For example, in simple tension the form of the
symmetric bifurcation modes is

WY = ax x,+cos {exy) sin (ex,)

where a = ¢® ensures continued loading.
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AprpPENDIX Al

Shear-band bifurcation modes

We have noted that solutions to the field equations exist in the hyperbolic and
parabolic regimes of the form ¥ = F(¢,x, +¢,x,) where ¢; and ¢, are real and
function Fis arbitrary. The resulting velocity vector is parallel to, and constant along,
the planes ¢,x,+¢,x, = constant, and thus these solutions constitute a shearing
field. Here we give a direct shear-band analysis which follows along the lines of
HiLi's (1962) analysis of acceleration waves in solids.

For a three-dimensional, incompressible, incrementally-linear solid the rate-
constitutive law is taken in the form

;= €y 60, f0x, + g0y, (AIL.1)
where g is undetermined and dv;/éx; = 0. Continuing equilibrium requires
€ 0P0)f8x; Oxy+0g[0x; =0 (AI1.2)

where the current state is taken to be homogeneous.
With v as the unit normal to planes v.x, = constant, velocity fields are considered
of the type
v, =Hflvex) with v, =0 (AIL3)
and with g as a function of v,x, alone. Incompressibility requires orthogonality of
v and n corresponding to shearing velocities as depicted in Fig. 8. By (AIL2),
Cinf " +vig' =0, (AIL4)
where

L= Cmir:j Vin Va: (AIIS)

ij

ittt

T
q

Fi1G. 8. Shear-band mode.

A trivial homogeneous solution to (All.4) corresponds to /" = 0 with g constant
and v arbitrary. If /“ # 0, then the component of (AIl.4) on v implies

vCymf"+g'=0. (AIL6)
Elimination of g’ from (AIl.4) and (AIL6) gives
Cij’?j = (Con Vi) ¥ (AII-7)
where the component on 7 is
C,imm; =0, (AILS)
The traction-rate on the planes with normal v is
v = Camf +gv; = (0Comf '+ 9)v; = Av;. (AIL9)

From (AIL9) it follows that the traction-rate is normal to these planes with value

A which is a function of v.x,. But (All.6) states that #" = 0 and therefore # is
uniform.
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Thus, if equations (ATL.7) are satisfied by at least one real orthogonal pair (v, n),
a solution is momentarily possible with vanishing velocity gradients (f* = 0} outside
some band bounded on each face by a plane vix;, = constant as depicted in Fig. 8.
Shearing velocities (f' # ) occur within the band. Continuity of traction-rates
across the band faces is guaranteed since ii;v; = fiv; is everywhere uniform. In
general, there is a jump in the components #i;; across these faces, since #;; = #d;;
outside the band. This jump can be related to the quasi-static speed at which the
developing shear-band traverses the material as discussed by HiLL (1962). A mode
such as that depicted in Fig. 8 is the full bifurcation mode in that it is the sum of
eigenmodal and homogeneous contributions. Note also that the requirement that
the traction-rate vanish on the sides of the specimen is not necessarily satisfied
within the band. Strictly speaking, the band at the moment of bifurcation must
be vanishingly narrow for a finite-width specimen, and can he regarded as being
homogeneously deformed in the limit. The situation is analogous to Hill's ‘dis¢’
test, when the rigid platens there are replaced by non-deforming material.

For plane deformations, n is fixed in advance according to (1, #2) = (v4, —v,).
In terms of the moduli and stresses introduced in the text the non-zero components
of ¢;;, relevant to plane deformations can be inferred from (2.6):

Ciy11 = €2220 = 20* — 3o, +0,),
1212 = p 3o —02), €121 = fi—3(0; —02),
C1221 = C2112 = #—Ho, +03).

Equation (AIL8) when written out, using (#,, #5) = (v, —¥v,}, 18

(et 30 +202u* — w33 +(—e)vi = 0 (AIL10)
where ¢ = 6, —0,. This, of course, is the same consistency equation (4.3} derived
before. Satisfaction of {(AIl.10) ensures (AlL.7) since the two components of this
equation are not independent.

Shear bands are excluded in the E-regime since (AII.10) has no real solutions,
However, in H and P real solutions exist and shear bands are a possibility, as has
already been emphasized. For values of 2u*/u > 1, diffuse bifurcation modes are
encountered in the rectangular specimen as scon as g/4u* passes into P from E
(cf. Section 6.3). Thus, shear-band solutions and diffuse-type modes appear essentially
simultaneously. On the other hand, if 2u*/u < 1, then diffuse hyperbolic modes
are first encountered at a finite distance into # from the E/H boundary as discussed
in connection with Figs. 2(a, b). Shear-band modes are available as soon as the
specimen crosses the E/H boundary if a;/a, exceeds v,/v,.

ArpenDIx AL

Noates on Biot's problem

Bior (1965, pp. 194-203) investigated the probiem of a rectangular block,
2a, x 2a,, compressed on its sides between smooth rigid plates; its ends are main-
tained plane by smooth passive constraints. The curreat stress is homogeneous
with ¢ = ¢;—0, > 0. Boundary data in the eigenmode problem are v, = 0 and
fi;; = 0 on the ends and v, = 0 and #A,, = 0 on the sides. We look for eigenmodes
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of the form

Y = cos (£ x1) €os (¢; X,), } (AIIL1}

The block center is at the origin when s, and m, are odd, but is displaced to
(a,/m,, a,fm,) when m, and m, are even, etc. All conditions are satisfled since i
and &%jr/éx? vanish on the ends, while y and 6%)/dx3 vanish on the sides. The
differential equation (3.3) is satisfied if
(n+io)et +202u* — et s+ (u—do)ci = 0\

€ my 4, j (ATIL2)

oy My a4y

with 0y, = P28, £ = Mg LL2as, G R

when

For given moduli and block dimensions we can show the spectrum of eigen-
stresses o by a simple construction based on Fig. 1. In Fig. 9 denote a general point

—
£ spectrum

Fic. 9. Graphical construction for eigenvalues in Biot™s problem.

(o/du*, u/2p*) by (x, y) and a point on the parabola by (£, #). The equation of the
parabola 2y = &2+ 1 can be parametrized as
Bs Wk (AIIL3)
n—1 H+c
where 0 < 5 < 1 on the full arc and s < 0 on the broken arc. The tangent at (&, n)
has equation
gx: ¥

it ==
=i =
which with (AIII.3) can be written as
(+xl + 2l —y)s+(y—x)=0. (ATIL.4)
But this is just (AII1.2) if we make the identification
2
m 4
§ = ( L. ~:> : (ATTL.5)
m, a,;

so restricting (£, ) to the full arc. Notice that only one tangent can be drawn to
this arc from any point in regime P but two tangents can be drawn from any point
in regime H.

Accordingly, for given a,/a,, we can imagine the dense set of points (ATTL.S) along
the full arc, for all positive rationals »i,/m, < a,/a,. Specifically, each value of s
is associated with a point (£, #) by means of § = BA/CA (Fig. 9), the left-hand ratio
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in (AllL.3). Tangents are imagined drawn from this set of points to intersect the
horizontal line at given ¥ = p/2u*. The corresponding abscissae form an everywhere
dense, countable, spectrum of eigenvalues x = ¢/4u* extending to infinity.

When p/2p* < I, the spectrum lies entirely in regime P, and its greatest lower-
bound falls on the E/P interface. When p/2u* > 1, the spectrum lies partly in regime
H and partly in regime P, and its greatest lower-bound falls on the E/H interface
(for particular dimensions and moduli the interfacial point is itself an eigenstate).
Put otherwise: eigenmodes are not found in regime E, namely at stress differences
below

2p when p < 2u* or 4#*\/(#* - l) when p > 2u¥,
I

but are generated if these critical values are exceeded, by however little.

Biot's discussion of (AIIL.2) runs on different lines and is mainly for the case
u < 2u*. Note that he holds fixed certain moduli that correspond to u++e and
2u* — 1 in our notation {or equivalently p+4e and p* +40a).



