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Mode Interaction in Axially Stiffened Cylindrical Shells

Esben Byskov*
Technical University of Denmark, Lynghy, Denmark

and

John W. Hutchinsont
Harvard University, Cambridge, Mass.

Postbuckling behavior and imperfection sensitivily associaled with mode interaction in axially stiffened
cylindrical shells under axial compression are studied. The two modes considered are an overall mode with
wavelengths thal are long compared {0 stiffener spacing and a short-wavelength panel mode involving buckling
between the stiffeners. A resiricled eptimication sludy is made where the numher of stringers is treated as a
design parameler, and (he range of designs considered includes the optimum design for the perfect shell, where
the two modes are simultaneous. The influence of a given level of imperfections on the optimum is explored. A
general method for analyzing initial postbuckling behavior is proposed for structures with simultancous or
nearly simultancous modes. Asymptotic expansions of all fields in the ampliludes of the competing modes

provide a set of uniformly valid results.

Nomenclature

Ay = postbuckling coefficient; see Eq. (5)

Bk By, = postbuckling coefficient; see Eqgs. (6) and
(13)

A, =sltringer area

c =[3(t -] "

d, =slringer spacing

D =Et?/(4c?)

e, =sltringer eccentrigily

E =Young’s modulus of skin and stiffener

F =stress function

Fi Fy, =first- and second-order stress functions for
shell; see Eqs. {7 and 8)

Fi Fy =first- and second-order stress functions for

panel; see Eqgs. (9 and 10}

=see Egs. {(7-11) and Appendix

=operators defined in Appendix

=cylinder length

=number of axial half-waves in overall mode

=number of circumferential waves in overall
mode

=number of interacting buckling modes

=number of siringers

=lotal axial load

=buckling load of equivalent shell; see Eq.
(14)

=cylinder radius

=shell thickness

=equivalent thickness; see Eq. (14)

= stringer thickness

=sec Eq. (1)

=normal displacement

= first-order normal displacements

=second-order normal displacements

=see Eqs. (8, 10, and 11)

=axial coordinate

=circumferential coordinate

=L (1-p2)Y"/(RD

= shell field coefficients

=A,/(d 1)
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E€p, 8,6, =see Eq. (3)

¥ :eg/{

8 =d, (RcY " /[aR(21) ")

A = P/P,, scalar load parameter

As =maximum value of A for imperfect sicucture

X, =value of A at overall mode bifurcation

Ay =value of A at panel mode bifurcation

Bpslly =panel field coefficients; see Eq. (10) and
Appendix

v = Poisson’s ratio

g, =amplitude of mode number {

£, =imperfection amplitude corresponding 1o

mode number i

0,04,4,,0, =see Eq. (2)

1. Introduction

ECENT concern with nonlinear mode interaction has

been stimulated by increased interest in optimal
structural design. Optimization of a built-up structure against
buckling often leads to a design in which at least two distinct
modes of buckling occur simultaneously at the same critical
load. It is now widely known'’ that a design with
simultaneous buckling modes may be highly imperfection-
sensitive because of nonlinear mode interaction. In some
manner, imperfections must be brought into the analysis to
accomplish a realistic design,

The van der Neut column' is typical of nearly all examples
that have been studied to date in that each of the two modes,
an overall Euler mode and a local platelike mode, has, by
itself, a stable postbuckling behavior, Nevertheless, the in-
teraction of the modes produces unstable postbuckling
behavior and imperfection sensitivity. Tvergaard’ discusses
and references work in this area in a very recent survey article.

A preliminary investigation of mode interaction in axially
stiffened cylindrical shells under axial compression is made in
this paper. The overall mode is a general instability mode with
circumferential wavelenghts that span at least several axial
stiffeners. The second mode is panel buckling of the skin
between the stiffeners. This will be referred to as the local
mode because of its relatively short wavelengths, even though
it involves participation of the entire skin. Local buckling of
the stiffeners is not permitted.

Postbuckling behavior and mode interaction in this
structure are different in an important respect from what has
been observed from examples studied previously. The overall
mode is imper fe¢tion-sensitive, by itself, over the entire range
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of design parameters which we shall consider, whereas the
local mode may or may nor have an unstable postbuckling
behavior, by itself, depending on the spacing of the stiffeners.
Thus, mode intéraction may exacerbate imperfection sen-
sitivity already inherent to this struclure. Such a possibility
must, of course, be anticipated for any built-up shell struc-
Lure,

The axially stiffened shell is analyzed by specializing a
general approach, given in the Appendix, which provides
uniformly valid asymptotic results whether the modcs are
simultaneous, nearly simullaneous, or well separated. For the
perfect shell, the optimum design has simultancous overall
and local buckling loads. The effect of imperfections on the
optimum js studied for a limited range of possible design
configurations. The nature of mode interaction is revealed for
several different types of designs, including an example,
tvpical of some large shells of recent design, where the stiff-
ening effect is substantial even though the amount of suff-
ening material is a small fraction of the total.

II. Carrying Capacity of Siructures with
Nearly Simultaneous Modes

We assume the prebuckling stale to be lingar in the load
parameter A, and we write its displacement field as Auy.
Suppose there are M buckling modes in competition. Denote
the fth mode by «,. Denote its associated critical value, or
eigenvalue, by X, and its amplitude by £,. The analysis in the
Appendix leads o the following expansion of the
displacement field for the perfect structure:

u=}\uU+E;“:+Ei£;uu+-~- {l)

where the range of the indices is 1, M, and throughout the
paper a repeated lower-case index will denote summation
from | to M. A repealed upper-case index is not to be sumrmed
unless indicated. For the stress and strain fields, the ex-
pansions corresponding to (1) are

o=Aag+E 0, +§8,0,+ ... (2)
e=heprE e, HEL e, T (3)

Statements of boundary-value problems for u, and u,, are
given in the Appendix. There it also i1s shown that the
maximum value As of the load factor for a slightly imperfect
structure is determined by the solution of M noonlinear
equations of the form

E.'[]_ (}\/kf)]+E:E,azj.’+£¢£,£kb1}“

=(MNYES I=4...M (4
An initial geometric imperfection is taken as the sum of
contribulions from each of the modes £,u,, so that £, is the
amplitude of the imperfection in the ith mode. Matrices a,,,
and b,,,, are determined from the boundary-value problems
of first and second order in £,, respectively. The expressions
for the coefficient matrices are

a=lo;- 8 {u,w) + 20, 0 (u,u) /(20 €)) (3)

Bugr=0,- Gy Quu ) +o,- 0, (U, 0)
+o Uy Quug ) to 0y, uy)
+ 20, 8w, u, )/ (20,06 (6)
where the notation is defined in the Appendix.
The A, a, and & in (4) are funciions of the design

paramelers of the structure. For any design, let A, denote the
lowest A;,. When one of the A, is distinctly lower than all of the

ATAA JOURNAL

others, the preceding representation becomes equivalent 10 a
one-mode Koiter analysis such as that of Refs. {0and 11. The
extra-mode amplitudes then play a passive role in the
solution. However, when the design parameters are such that
two or more modes give coincident values A, =A,, then the
representation (4) is equivalent to rhal given by a muliimode
analysis such as given originally in a more general [orm by
Koiier.?? In general, the represcniation (4) is uniformly valid
whether the modes are simultaneous, nearly simultaneous, or
well separated. This feawure is clearly desirable in swudies
involving optimization against buckling.

In most examples studied 10 date,’ " the modal inleraction
is such (hat (in our notation) at least some of the ¢ in Eq. (4)
do not vanish. It then [ollows immediately from the general
theary of elastic stability™ that, when the structure has
simultaneous modes, its initial postbuckling behavior will be
unstable on some paths, and it will be imperfection-sensitive,
at least 1o some degree. The symmetries involved in 1he
stiffened cylinder are such that all of the a in Eq. (4) vanish.
Thus, the postbuckling behavior then depends on 1he
magnitudes and signs of the b. At a later point in the paper,
we shall relate our approach to an alternative method recently
proposed by Koiter '? also for stiffened shell structures.?

111,  Stiffened Shell Analysis

The A, and other coeflicients in Eq. (4) will be evaluated
using results from two separate analyses. Local panel
buckling between the stiffeners has been analyzed by
Koiter.'* Torsional stiffness of the stringers is neglected, and
the shell is assumed 10 be sufficiently long such that there are
many local buckle wavelengths in the axial direction. Overall
buckling and postbuckling of simply supporied, axially
stiffened cylindrical shells under axial compression have been
investigated by Hutchinson and Amazigo' on the basis of a
theory in which the stiffeners are smeared out. The overall
buckling mode generally has one half-wavelength in the axial
direction, unless the shell is “*long."” The theory is limited to
cases in which a half-wavelength in the circumferential
direction spans at least two or three stringers. Torsional
stiffness of the siringers is neglected in this mode as well. It is
assumed that the stiffener is designed such that it cannoi
buckle by itself.

The (wo solutions, for local panel buckling and for overall
buckling, will be used in an approximale, but consistent, way
to obtain numerical values for the coefficients in Eq. (4). In
this preliminary study, no attempt will be made (o consider all
possible designs and thereby arrive at a realistically optimized
design. In particular, plastic yielding is not brought in as a
constraint. However, we shall treat the number of stringers as
a free design parameter, subject to olher constraints 1o be
detailed later, including constant volume of material. The
number of stringers will be varied over the ‘‘optimal’ range,
which includes a design in which the two modes of the perfect
shell structure are coincident.

Overall Mode Analysiy

The complete analysis may be found in Ref. 14, and we
outline the resulls of that analysis only briefly here. [I proves
convenient to employ a formulation of the Donnell-Mushtari-
Vlasov shell equalions in terms of the normal oulward
deflection ¥ and a stress [unction F. The membrane stress
resultants in the shell, including the coniribution of the
smeared-out stringers, are F . in the axial {x) direcuon, ¥,
in the circumferential {y) direction, and —F,, in shear. The
TA prehiminary version of the present paper was prepared prior 1o
Koiter’s paper. '* Inthat version, the coninibutions of The i ;- terms 1o
the imeraction were neglected in the numenical exampies. We are
indebied 10 Kouter for pointing out the wmportance of the &,y term
both through private commumicanon and throueh Ref. 12 The
prescnl version of the paper has been reworked completely, with
account taken the previously neglected erms, and  furtho

discussion of their importance is lound herein,
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prebuckling sitate is approximated by a simple linear mem-
brane solution. Boundary conditions are dis¢ussed in Ref. 14.

For a simply supported shell of length L with a buckling
mode with m axial half-waves and » circumferential waves,
the expressions for the [irst- and second-order fields are

W, =t sin(mzx/Lysin(ny/R) (7a)

F,=Fsin(imax/Lysin(ny/R) (7b)

and

WH: WH [ E apsln pﬂ-ﬁ )

p=tad

+co:.(2n z_‘? ) E Fpsin{pT — )] {8a)

p=13

F=Fy [ E? 6,13”'1@“")

p=!

+cos(2n z“? E {osin(pm — )] {8b)

p=4a

where the coefficients £,, W,,, F,,, a,, 7,. 8,, and {, can be
found from Eqgs. (28-32) of Ref. 14. Here £, an effective
thickness introduced in Eq. (14}, is used 10 normalize the
amplitude of the overall normal deflection rather than ¢ used
in Ref. 14, Thus the expression for £, in _Refl. 14 must be
multiplied by 7, /¢ and the expressions for W,,and F,, by
(£, 7037, In Ref. 14, the expressions corresponding (o our Eq.
{7 have cos(ny/R) instead of sin(ny/R). However, in order
for the formulas for «,, 7y, B,, and {, to be ¢orrect, the sine
has 1o be used. Furthermore, the expression for 3,, formula
(32) of Ref. 14, should have a sign shift on the entire right-
hand side. The reader is referred to the Nomenclalure for a
specification of symbols. The expression for b,,,, may be
determincd either from our formula {6) or from formula {27)
for & in Ref. 14, with A, inlerpreted as min{k;, A} in for-
mulas (24) and (32) of Rel, 14 {see Appendix for introduction
of A ).

Local Mode Anals sis

Koiter'* has solved the curved panel buckling problem
using a formulation in terms of the three displacement
components of shallow shell theory or, equivalently, Donnell-
Mushtari-Vlasov theory. Later, Stephens’® utilized the W-F
formulation o analyze this problem (with some extensions).
We shall make use of a derivation similar to his which gives
results identical Lo those of Ref. 13.

For sufficiently narrow panels, i.e., ones for which the
flainess parameter @ <1, the first- and second-order fields are

W)= 1,sin ( fl)s'n ( X) (92)
=1 ﬂ-d\ 1 7Td§
F,=F,sin <wdis)sin (ﬂd_x;> {9b)

and

W= W,, [1 —28%05(277?—)

.

+cos(27rdi> i ;LFCOS(2JD1T§)] {10a)

< p=0 5
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_ 5 Y XN % ¥
Fp=F,, [cos(gwa«) +c05(21r;)x v T;DCOS<2JUWF)}

H 5 p=t s
(10b)

where d; is the distance between the siringers, and where the
coeffxcxents Wz, F2, 224 F,z, pp, and g, the panel [lield
coefficients, are listed in the Appendix. The circumferential
coordinate ¥ in Eq. (9) is measured from any one of the
stringers. The mode extends over the entire shell, with nodes
running axially at rhe stringer locations. Allention is restricled
to shells for which L is large compared to 4,. Consequently,
as in Refs. 13 and 15, no attempt is made (0 require the pauel
mode to satisfy boundary conditions at ihe ends of the shells,
For A.=A;, the expression for b,,,, given in the Appendix is
the same as that given in Ref. 15 for & except for a factor (1 +
«,}?, which comes aboul because of our different nor-
malization. For #<0.64, the postbuckling behavior of the
local mode is stable; for 0.64 <&« 1, ir is unstable. For 81,
the shell stll is unstable, but the preceding analysis does not
apply. Our examples all are restricted such that 0 <8< 1.

Combined Mode Analysis

The lowest-order coupling terms a@,, in (4) involve only the
two buckling modes. A typical term arising in the evaluation
of the @ is

ay b Qupu;) =g d,x& dy[Fo W1,

+F2,1J: Wiv - 2F2.\\' WI,\ WIJ*]

In carrying out the indicated inlegrations, we have made use
of the fact that wavelengths of the overall mode are long
compared to those of the local mode, This permits an ap-
proximate decoupling of integration with respect (o overall
and local quantities. It also permits stress resultants in the
skin itself to be extracted in a consisten{ manner from the
overall modal quantities. Both peints are iliustrated in the
Appendix. For each configuration considered in this paper,
all # vanish, as previously mentioned. This is a consequence of
the symmetries and periodicilies of the (wo modes and not of
the approximate integration methoed.

To evaluate the b in Eq. (4), one needs the second-order
fields u,,, u,,, and u,,, in addition o &, and «,. The two
independent analyses summarized previously provide u,; and
it,;. The boundary-value problem for the mixed second-order
field w,, invelves products of 4, and u; as nonhomogeneous
lerms, as can be seen from the general theory in the Appendix
from Eq. (Al12). These nonhomogcneous terms give rise (o a
deformation field w,,, which has the form of the local mode
modulated by the overall mode.!? An approximate solution
for u,, is obtained in the Appendix using a Rayleigh-Rilz
procedure. The normal displacement component is of Lhe
form

W, =W, sinfmzx/Lysin(zx/d,)sin(ny/R) sin(my/d,) (11)

In the general notation. the lowest order, nonvanishing
interaction terms in the potential energy for the present
problem turn oul to be [see Eq. (A16) in the Appendix for the
entire expression]

GEisfa,, b () +ay, L (u, ) +4a,, ¢, {uu,)

+da by {upug) A a8 (g, u,) ] (12}

As a consequence, lhe algebraic equations for the inital
postbuckling behavior are

EpI=NA ) +E7h, + 5 ELb =50, (13a)
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(7 =N/N) HESE by, HESDy =E,0N, (13b)

where the notation for the & has been simplified from that in
the general system {4}, with the obvious connection between
the two notations. Calculation of the & and A is discussed in
the Appendix.

The overall mode is siable or unstable by iwself (i.e., with
£, =0) in the initial posibuckling regime il b,; is positive or
negative, respectively, Similarly, the sign of &,; determines
the stability of the local mode acting alone. [nteraction arises
due to b,, and b,,. In general, only when one of the im-
perfection amplitudes is zero is it possible 1o solve for the
maximum value of the load A; in closed form. Then the
equations degenerale, and A will be associaled either with a
limit point or with bifurcatien inte the other mode. For the
resulls given later for given combinations of £, and £,, a
modified Newton-Raphson numerical method was used 10
solve for Ag. At sufficienty low loads, N\ is incremented,
whereas in the neighborhood of the maximum, the fastesi-
growing amplitude is taken as the independent variable.

IV. Numerical Examples

With P as the towal axial load, the load parameter A is
defined as P/P,, where P, is the classical buckling load of a
long unstiffened cylindrical shell with the same radius R but
with thickness ¢, corresponding to the same 1otal cross-
sectional area of the stiffened shell. Thus,

f,=1(I+w); P,=—2uRt,(El /cR) (14)

The imperfection amplitudes are normalized with respect 10
r.; a value § =1 corresponds, therefore, to a maximum
deflection equal to/,.

The resulis presented here cover five shells with different
levels of stiffening and different values of the Bardorf length
parameler Z. One shell is inside stiffened, the rest outside. In
each example, the total amoun( of material, the skin thickness
{, the radius-thickness ralio R/¢, and 1he radius-lenglh ratio
R/L are held constant. The amount of stiffener marterial,
characlerized by the degree of reinforcement «, is therefore
fixed, The reference values t, and P, will not change as
various stiffener combinations are considered. Furthermore,
in all bul one example, the shape of the stiffeners is 1aken to
be rectangular with constant thickness ¢, thus leaving the
distance ¢, between stiffeners (or the number of stiffeners
N,) as the only design parameler. In the last example, we
consider T sliffeners, which are taken 1o be geometrically
similar rather than of constant thickness. Ln all five examples,
the size of the stiffener is lied o N, and diminishes as Vv,
in¢reases. (The additional parameters v, and 3, of Ref. 14
charactenizing the level of stiffening alsa are tied uniquely to
Ng.)

I.S[ X 7 T

.0n
Rl
.51
]
Local mede —s——s— Locat mode
o uniaiahle | slable Ms
&0 70 80 30 100 110

Fig. 1 Buckling of perfeet and imperfect shell wilh medinm outside
stiffening a< a function of the number of axial sliffeners ,, Dashed
line curves iudicale results with mode interaelion neglected. Shell

paramelers are speeified in (ext.
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The number n of ¢circumflerential waves and the number
of axial half-waves vielding the lowest value of the averall
bifurcalion load A, are determined in each case. However, the
two neighboring values of n often give values of X\, only
slightly above the smallest and sometimes are associated with
a somewhat more severe postbuckling behavior, indicated by
a more negative b,,. Consequently, the combined mode
analysis is performed for these three possibilities, and the
lowest value of A is chosen. (The interaction belween modes
with neighboring values of # is extremely weak and therefore
is not taken into account.)

For all shells analyzed, the overall mode was found to have
an unstable postbuckling behavior and had m=1. The
bifurcation load for the lowest axisymmelric buckiing mode
is, in our examples, several limes higher than A, and X,, and
therefore it is not necessary to treal the axisymmelric mode as
one of the compeling modes.

V. Examples

The shell of Fig. 1 has a medium level of outside stiffening
with o, =0.7, £,/1=4.09, R/L=1.0, R/{=850, and »=0.3.
Asaresult, Z=811, and the modes are simultaneous (A, =A.)
for a design with N_ =83 stiffeners. In this figure {and in ihe
others that follow it), the curves labeled A, and A, are the
bifurcation loads for the perfect shell in the overall and local
modes, respeetively. As already mentioned, the overall mode
is unsiable (&,, <0) in all of the examples considered in 1his
paper; the transition point from siable (o unstable behavior
{b,, =0) for the local mode by itself is indicated and, for the
example in Fig. 1, occurs approximately at the simulianeity
point. The dashed lines are the buckling loads for various
imperfection levels determined from (13) with interaetion
neglected (i.e., b,, =b,, =0); ouly the lower of the two values
of A¢ for local and overall buckling is plotrted. Of course, a
value of Ag for the local mode by itself exists only 1o the left of
the stability transition point. The solid line curves give Ag
from Eqs. (13) with interaction taken into account. Four
imperfection ¢combinations are considered and are labeled in
the figures as (£,,£,) = (0.01, 0.01), (0.1, 0.1), (0.5, 0.5), and
(1..1.). Equations (13) are asymptotic, and therefore the
results for the larger imperfections must be regarded as
gualitative.

With increasing imperfection levels, the maximum value of
As in Fig. 1 shifts from the simulianeity point al &, =83
stringers to a somewhat larger number of stringers, although
the curve of Ag vs N, becomes quile flal for imperfections as
large or greater than (0.1, 0.1), [Recall (that, by virtue of our
normalizations in Egs. (7) and (9), £=1 corresponds to an
imperfection amplitude equal to (,.] Comparison of the
dashed and solid curves reveals (he imporlance of (he
nonlinear interaction in that the imperfection sensitivity is
considerably greater than for the individual modes, par-
ticularly in the range of N, on either side of value where X, =
A,

ﬂ ; ‘

~sichie he bie
o | siak [ s i
0 50 ar ¥ AL 40

Fig. 2 Example with local mode unslable by itself in vicinity of
“optimum”* of perfeci shell. Shell parameters are specified in text.
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tocal mode —tw Local mede
unstable I stable Ng

L0 SO 60 70 a0 30

o

Fig. 3 Example with local mode stable by idsell in vicinity of *‘op-
timum'’ of perfect shell. Shell paramelers are specified in text.

2D

rocal mede **—— Local mace ' !
unstable stable I s

0
40 30 &0 70 ] 9G

Fig. 4 Relatively shorl tnside stiffened shell whose parameters are
specifiedin text,

The local mode of the shell of Fig. 2 is unsiable everywhere
in the vicinity of the coincidence of A, and A,. This shell has
outside stiffening with o, =0.5, r,/t=5.13, R/L=1.0, R/{
=525, »=0.3, and Z=301. Here again the *“‘optimum"”’
nurmber of stringers shifts toward more stringers with in-
creasing imperfection levels than the number that maximizes
the buckling load in the perfect shell, i.e., N, =33, where
As=A;=h,.

The local mede of the shell of Fig. 3 is stable everywhere in
the vicinity of the coincident point of the perfect shell at
N, =63. This shell also has oulside stiffening with a, =0.5,
(=412, R/ L=2.0, R/t=420, »=0.3, and Z=100. Overall
buckling is slightly more imperfection-sensitive, by itself, in
this example (han in the previous two. The curves of Ay vs N,
are also very flat for imperfections as large as 0.1 ¢, but here
the maximum does not shift appreciably from the
simultaneity point.

Semewhat different behavior is seen in Fig. 4 for the
relatively short inside stiffened shell with o, =0.5, ¢, /¢r=4.12,
R/L=33 R/t=420,»=0.3, and Z=37. In this example, the
local mode agaiu is stable for values of N, in the vicinily of
the coincidenl point at N, =63. Now, however, the “‘op-
timum’’ number of stringers shifts toward the (ransition peint
of the local mode as increasing levels of imperfections are
considered.

The final example in Fig. 5 is an outside, T-stiffened
cylinder with light stiffening o, = 0.2, A/¢, = 16, R/L =2, Ry
=480, »=0.3, and Z=114. The height and width of the cross
section of the stiffener are the same, #, and its thickness,
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|
\-—~ Local mode slable

0 : I |

NS
50 70 80 30 100 10
Fig. 5 Oulside T-stiffened cylindrical shell with a relatively small

fraetion of material in stiffeners typical of designs for very large
cylinders. Parameters are specified in texi.

which now varies in proportion 1o h. is ¢, (When N, =60,
{;/t=0.5) This shell has dimensions and stiffening levels
similar toc a proposed test shell discussed by Réren and
Hansen'® in connection with support shells for the huge tanks
of liquid natural gas tankers. Very light stiffening, in terms of
the proportion of material comprising the stiffening, resuls in
substantial increases in classical buckling loads. Such in-
creases are not atypical in appiications involving very large
shells. The shell of Fig. 5 is highly imperfection-sensitive, and
interaction clearly is important. As in all of the other
examples, the curves of Ag vs AV, flatten out with increasing
imperfections, but here an erosion of the maximum actually is
suggested in the curves for (0.3, 0.5) and (1.,1.). As these are
only asymprotic results and as the reductions in buckling
loads associated with these curves are large, this effect, which
is not large, must be regarded tentatively,

V1. Discussion

The feature ¢ommon to each example just studied is the
relatively weak dependence of Ag on N, al realistic im-
perfection levels. As reported in studies of other structures in
Refs. 1-7, design for mede coincidence (h,=Xx,) of the
perfect structure does not appear to lead 1o a design that
would be Tar from oplimum. In fact, the examples studied
here suggest that the designer has considerable lalitude in this
regard, although one must not lose sight of the fact thal the
imperfection sensitivily is greater for designs with coincident
modes, In all cases, except that in Fig. 4, the optimum iu the
presence of imperfections tends to shift toward a design wilh
A, > A,. Furthermore, when the local mode of the perfect
structure is unstable at the design of coincidence, the presence
of' imperfections tends (o shift the optimum roward the regime
in which the local mode is siable.

Koiter’s'? method assumes that (he overall modal
wavelengths are large compared to those of the local mode
and, in effect, ignores continuity of the local mode frem one
half-wavelength of the overall mode to another. For the
axially stiffened c¢ylinder, his approximation allows panel
buckling in the circumferential half-wavelength portions of
the overall mede, where interaction enhances local buckling,
and assumes no local buckling in the other portions. As a
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result of this simplificalion, his potential energy functional
has nonvanishing cubic terms thal produce the nonlinear
interachion between the modes. When applicable, his method
has the important virtue that, in addition to being valid lor
more advanced postbuckling states, it 1dennifies a single
nondimensional parameier thai plays the central role in the
discussion of the nonlinear interaction.

In the examples examined in Figs. 1-5, the number of
stiffeners per circumferential half-wavelength of the overall
mode was found to fall in the range from approximately 2 to
4, which seems (o be typical of many of the shells that have
been tested. Whether or not this is a sufficiently large number
o justify Koiler's approximadion is not clear a priori, but
perhaps this can be answered partially by the relatse size of
the ;. terms, since such modulated nmodes are employed in
his analysis, Our numerical resulis ndicate that the
modulated mode &, contribution to the interaction terms (12)
is predominant in the examples of Figs. 1 and 2. For the
examples of Figs. 3 and 5, the u,, coniribution is comparable
10 the other contributions, whereas for Fig. 4 the u,, con-
tribution is relarively unimportant. Furthermore, our (upper-
bound) estimates of the eigenvalues associated with the in-
teraction problem (cf. section on the evaluation of t,; in the
Appendia and Sec. 2 of Ref. 12) indicate that, in the range of
stiffeners per half-wavelengih involved here, these eigenvalues
still lie more than 40% abowve A,. The range of validity of the
expansions of the present approach go 1o zero as this
separation goes 10 zere. In contrast. Koiter’s approximation
mvolves the assumption thal this separation is negligible.
Thus, our numerical resulis do not appear (o permii any clear-
cul conclusion with respect 1o Koiler's approximartion in the
present apphcation. It is encouraging (1o note, however, that
the results of Koiter’s approach for the shell of Fig. 3 (Sec. 9
of Ref. 12) for 60 stiffeners give resulis for A vs £, which are
numerically close to those of the present approach.§ Further
study of the ranges of applicability of these two more-or-less
complementary approaches is needed.

Appendix: Initial Postbuckling Analysis for
Simultaneous and Nearly Simultaneous Buckiing Modes

The method proposed below is based on an expansion
involving cach of the amplitudes of M buckling modes. 1t
applies whether the modes are simultaneous, nearly
simulianeous, or well separaied. When the modes are
simultaneous, it reduces to Koiter’s®? multimode analysis and
is otherwise similar in mos! respects. The nolation is essen-
nally the same as that used by Budiansky and Huichinson'®
and by Budiansky!! in their single-mode analysis, which wiil
be assumed 10 be familiar 10 the reader.

Consider the perfect struciure first. Let w, ¢, and o denote
ficlds of displacement, strain, and stress guantities. Dead
foads are applied proportional to a single-load parameler A,
and the poiential energy of the load system is Af; (1), where
B, (1) is a linear funciional of «. The constitutive relation is
linear and 1s wrilten as o= He¢, where the reciprocal relation
Hee=Hée is assumed. We consider strain-displacement
relations of the form

=V, (u) + 48, () (A1)

where [, and {, are linear and quadratic operators. A bilinear
operator £, is defined by

U (u+v) =0, (u) + 28, (u,v) +6,(v) (A2)
such that £, (w, vy =8, (v} and £, () =0, (u).
Attention is restricted 1o a structure-loading combination
with a linear prebuckling stale whose fields are denoted by
Ay, Mg, and Aoy, with

eo=8(up), Glup) =0, 0 {{u;0)=0

$Fizure 4 referred toin Rel. 1215 Fig, 310 the present paper.
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for any v. The potential energy functional is written as
P=1lro-e—NB, (1) =1io-e—hoy ) (1) (A3)

where replacement of B, {u) by o,-f,(¢) can be shown o
follow from the fact that o, is an equilibrium field. On a
bifurcated path. the principle of virtnal work statement is

o-be=Ag, -, (bu) (A4)
where
Be =, (du) +¢,, (u,0u)

Suppose thal there are A simultaneous or nearly
simultaneous incteracling modes («, i=1, M), which are
taken 1o be normalized in some definite way. The associaled
fieldsare o, and ¢, wheree, =0, (4,)and o,=He,. The
buckling modes satisfy

a8 Bu) F X0, 0 (e, bu) =0, I=1 M (A3
for all admissible du, where A, is the eigenvalue associated
with the fih mode. We always may (ake the M modes 1o be
mutually orthogonal in the sense that

oo 0y Qupiey) =0, i#2j (A6)

For a displacement field w, define the amplilude £; of its
component 1n the /th mode according 10

ag- Oy Cupuy =Epay- 0 (uy) (A7)
We adopt the summation ¢onvention for repeated lower-case
indices, A repeated upper-case index is not to be summed
unless indicaled.
With
ull}zgzun E(‘;::giel’ oulngDr (AS)

the postbifurcation solution can be wrillen as

w=Aug+u''t+i {ASa)
e=hey el pire {A9b)
g=hos o' +a+ s (A9¢)

where

=L () + 40wty E=E, (w0 + 10, (i)
F=He  a=He

By Eq. (A7), i is orthogonal to each «,. The potential energy
can be reduced without approximation to

B=const+ 42 ) (h=A) Edog b (1) + Vaa -, (D)
i

FAAG-E+ aha, LLa) +at 0 (w1 R)
LA N 07 S B LT Y (A1D)

in carrving out this reduciion, use has been made of or-
thogonality and identities that follow from (AS) such as
g6, = =Ny (uy)

gy =gt E—tagtD g, (w1 ) =gt Lagth
u i —_
Hiuty =0

To obtain the boundary-value problem for &, we take
vanations of ® with £ fixed. That is, 6& = for all 4w such that

ag- by (u,bu) =0, i=IM
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tmplies that
G0, (0u) + hog {, (Bdu) = =& £ a0, (1, bu)

+ higher-order terms (All)

The terms neglected on the right-hand side of Eq. (All) are
either cubic in the £, quadratic in &, or of order £ and are
asymproticatly negligible to the order thar the analysis is
carried oul here. Equation (A11) specifies a linear boundary-
value problem for @. The solution to Eq. (A1) can be written
as

Q=Et<l:';ug (“t,;:u‘n)
€=EJEJEU) f;}':(:jf:tjt‘(uu)+I/‘1Pi:‘(uuu;)
d=%4,0, o,=0,=He,

Foreachiand/, (All)decouplesio

g, 6 (6u) +hag- 0 (u,,0u)

iy
== o, U {w,du) + o, by (w0 ] (A12)

where u,, and du are orthogonal to each uy.
The foliowing two identities will be useful in the subsequent
analysis. Letting du =4 in Eq. (Al1) gives

G E+ho, ()Y =—a'D 8, (u, T E)+ 1250 (u' ) (AL3)

Next. by letting du=u;; in {Al12) and making use of the
reciprocal property of A, one can show that
Co =m0, 0y (uug) +o, 8y (u,u )+ oy (u,u)) =Gy,
{(Ald)

ikt

The expression for ¢ now can be reduced further 10
S =const+ 45 Y, (A=A )Edap 0, (1) + 2000 8, (uti)
i

b Laa g, (Y B) + Y- (u ) + (A15)

Written out, this becomes
b=const+ 423, (A= A;) Eiay- b (u;)
I

+ g E Epa, O Q) +EEEE (o6 {uy )

+ 20, 0 ()] + (A16)

Initial geometric imperfections are 1aken 1o have the form
a=¢,u,. As Koiter®® has shown, Lhe lowest-order influence
of the imperfeciions can be obtained by appending the rterms

+)\Ef £8,00-8, (uy)

to the expression for ®&. The field guantities in Eqg. (Al6)
remain unchanged. Algebraic equations (4-6) governing the
amplitudes of the modes follow from d®/3¢,=0, /=1,M.

As discussed in the body of the paper, the advantage of the
present method is thar it applies equally well to cases when the
modes are simultaneous or distinctly separate. Of course, if
one is concerned only with the latter situatien, a one-mode
analysis would suffice. As specified by Eq. (A12), the second-
order quanuties i, depend implicitly on X, as do the 5 in Eq.
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(6). In many problems, A may be set equal 1o A,, where A,
=min{A,) is the lowest eigenvalue, so that the b are in-
dependent of A. This is done in the present analysis and will be
discussed further in connection with evaluation of the u,,
terms and in the discussion. Finally, it can be mentioned thar
an approach more akin 10 that in Refs. 10 and 11, based on
rhe principle of virtual work [Eq. (A4)], leads to results
identical 1o those just given, although to show this it is
necessary to use the reciprocal relation (A 14).

Evaluation of u,

A variational eguation for u,, follows direculy from Eq.
(A12) and can be writen as 6P{ ) =0, where

Pluy="1i{o-e+ oy £, ()] + Yala, -8, (u,,00)

+a, by (g, )] {(ALT)

and where e={,{«) and e=He. An approximate Rayleigh-
Ritz solution for u,; is obtained by minimizing Eq. (A17) with
respect to a limited class of admissible displacemenis. The
displacements, which satisfyv conditions that the normal w and
axiai # displacements vanish atl ¢ach stringer, are given by

w=c,t sin(max/Lysin{xx/d, ysin(ny/&}sin(zy/d.) (A18a)
u=0c,r sinimwx/L)cos(wX/d, ) sin(ny/&)sin(zy/d.) (A18b)
v=c5t sin(max/L)sin(rx/d, ) sin(ny/ &) cos(my/d,) (Al8c)

where v is the circumferential displacement. The displacement
fields in Eq. (A18) are substituted into Eq. (Al7), with a result
of the form

P=1:A, cc,+Rc, {sumon i={3 j=13) (Al9)

Evaluation of A and R in Eq. (A19) is straightforward, and
these coefficients will not be listed. In this calculation, we
have assumed that there are many local waves in the axial
direction and therefore have neglected md, /L compared (o I.
On the other hand, the ratio of stringer spacing d, 1o the
circumferential half-wavelength of the overall mode, i.e.,
p=nd. /(xR), must not be neglected compared to unity. In
fact, A, is singular at A=A, if p=0. The extent to which the
lowest eigenvalue A of A, lies above A, gives some indication
of the range of validity of the asympiotic expansion. In our
examples, we found that the lowest eigenvalue of 4, always
was more than 40% above h,. In our calculations, A in Eqg.
(A17) was replaced by A., which, although asymprotically
correct, should overestimate somewhat the importance of the
u;; terms at A below A,

Minimizing Eq. (A19) with respect to the ¢ gives A, ¢, =
—R,. Evaluation of the interaction terms in (12) due to u,,
gives

Et5 ! LOF +E,)
§ik3p7(2nRL) a 15[_ SO
[0 ode
+ S [C3+’/2(1-y)cz]]

Computation of Remaining Coefficients

A considerable simplification of the evaluaiion of the
integrals in Eq. (6} follows from an approximation that makes
use of the fact thar wavelengths of the local mede are small
compared 10 those of the overall mode. This permits in-
tegrations over local quantitics 1o be performed independently
from those over the overall quantities. For a typical integral,
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the approximation is

2R ¢ 7o
Sn dygo W Fp Wi = 5 [u\a dy

x S:jdxF W]UOR dySl AW, |

The numeralor in expression (6) for b, comains wo
essentially different types of integrals, namely,

— ]
jukm =00 ”p”km)
juim =0im FH (uu “})

It is observed immediately that integrals with (i),
komy={1,1,1,1N or {2,2,2,2) d¢ not vanish, since they con-
tribuie 1o the b of the pure overall and local problems.

In the evaluation of the remaining integrals, it is important
to notice that for {,,, and J,,;, the stresses invelved are the
skin stresses and not the smeared-out shell siresses. Ex-
pressions for deriving the skin stresses from MW and F
associated with the overall mode are givenin Ref, 14,

At this point, it must be observed that formulas (10) for 1he
second-order panel field are derived under the assumption
that the siringers are inextensional.'’ This is obviously in-
consisient with stringer deformations, which do occur ac-
cording 1o the description from the overall analysis. Fur-
thermore, Lhis inconsistency leads 10 erroncous results for
some of the A if care is not taken. It may be deduced from
Koiter's discussion in Ref. 13 that the [irst-order fields o, and
W, are not affected by this inconsistency. Also, it i3
reasonable (o assume that the second-order deflection W/, is
not influenced significantly by the in-plane boundary con-
ditions Tor the second-order problem. The main error of
concern here lies in a;5. The only integrals thal may not be
calculated with sufficient accuracy by the procedure just
outlined are J,,,, and J,5,,. The first of these integrals can be
computed by the identity (Ald), C,,5 =Chyyy 01 21,50+ 152
=255, + 3y, giving Jyp=J5,. With this formula in
hand, the contribution to b,, from u,; and w,, is found to be

w Ri Em o o
Y R 2'2 : ( ( g s ) :I
)\;’fl’?’?‘j d;) p[ ¢ ks IJ"Q\&H—J‘- "+I 1+C‘5 IBH

p=tll

The errer involved in J,,),, which contributes to 4;,,,, has
been discussed to some extentin Ref. [3, where il is concluded
thal, in general, one may expect the error to be small. We note
thai. because we have normalized the buckling mode am-
plitudes with respect to ¢, instead of ¢, our b, ,,, is equal to the
baofformoal (33)of Ref. 14 mulriplied by (1 + ) 7 = (i./1) .

Panel Field Cocfificicnts

e =6LA U +2S(I 407y U=/ 0)3 71, p=d
ne=1-6S, n,=/+p’) p, p=1

631—20’—9§<r(,)3
{

Daspr=byy=— —— "
T8 (1+87)
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where

|~

S=§t1+2SU+6 (U=N/M) L S=), -
=1

L=
o

A,=07 (1+p)y = (U480 DN+ (H+p)) 77
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