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ABSTRACT

Various factors affecting the prediction of limit strains in biaxially-
stretched sheets are studied. Time-independent material behavior is
assumed, and both the flow theory of plasticity as well as a finite-strain
version of deformation theory are considered. A localization-band bi-
furcation analysis is first carried out. The influence of geometric imper-
fections is then analyzed using the long-wavelength approximation
treated in Part I. We also discuss the predicted forming limit curves and
comment on their relation to published experimental data. The main
emphasis in this Part, however, is on comparisons between the corre-
sponding predictions of flow theory and deformation theory.

INTRODUCTION

In this second Part, various aspects of localized necking in thin sheets are .
examined. We restrict attention to time-independent material response. A theo-
retical investigation of this phenomenon was apparently initiated by Hill [1], who
considered rigid-plastic solids obeying the common flow theories of plasticity.

Hill’s analysis, which is conducted within the framework of generalized plane
stress, predicts that localized necking in biaxially stretched sheets only occurs
for those principal strain states varying between uniaxial tension and plane strain.
However, it is well-established experimentally that necking-type failures take
place in the so-called ‘‘biaxial tension’’ range where, since both principal strains
are positive, Hill’s criterion predicts infinite ductility. Two approaches have been
formulated to resolve this discrepancy between Hill's result and experiments.
The first approach, due to Marciniak and Kuczyinski {2] and extended by Sowerby

* The material in this rhreé-pan paper was presented orally in Session Il under the title **Constitutive
Relations for Sheet Metal™ and Session IV under the fitle **Sheet Necking: Influence of Constitutive
Theory and Strain-Rate Dependence.'’
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128 J. w. HUTCHINSON, K. W. NEALE

and Duncan [3], postulates the existence of an initial nonhomogeneity in the form
of a narrow band across the sheet. The localization process during straining is
then described in terms of the growth of the nonhomogeneity relative to the
remainder of the sheet. To examine this hypothesis, Azrin and Backofen [4]
conducted a series of experiments on a number of metals under strain states
varying from plane strain to equibiaxial tension. For most of the metals tested,
they found that the experimental results contradicted the trend of the Marciniak-
Kuczyiaski (M-K) theory. It is important to note, however, that the J; (von
Mises) flow theory of plasticity was assumed in the analyses.

An alternative approach, recently proposed by Stéren and Rice [S], incorpo-
rates a J, deformation theory of plasticity into a classical bifurcation analysis.
The bifurcation mode corresponds to localized deformation in a narrow band, as
in Hill's analysis [1]. In certain cases, the results with this theory showed much
better agreement with experimental trends than those obtained with the M-K
flow theory analysis.

These developments in sheet necking analysis closely parallel discussions
which have taken place in the related field of plastic buckling. There, much
attention was focused on the reliability of J. deformation theory bifurcation
predictions vs. the severe imperfection-sensitivity often associated with J, flow
theory calculations. In spite of many objections which were initially raised con-
cerning the use of deformation theory, it was later shown that use of this theory
could be rigorously justified in bifurcation analyses since it is equivalent to a flow
theory which permits the development of yield-surface corners (see discussion
in [6]). The fact that bifurcation calculations based on deformation theory are
generally in much better accord with experimentally determined buckling loads

than the corresponding flow theory predictions has strongly favored the use of -

deformation theory in this application. On the other hand, it has also been
demonstrated that incorporation of realistic imperfections in a J, flow theory
analysis usually produces buckling loads which agree adequately with test data.
Consequently, it is still an open question as to which is the more fundamental
approach to analyzing plastic buckling.

This Part of our study represents an extensive investigation into various factors
which affect necking in thin sheets. The main emphasis throughout is on com-
parisons between the theoretical predictions of flow theory and deformation
theory of plasticity. A finite-strain version of J; deformation theory, somewhat
different than that proposed by Storen and Rice [5], is introduced and applied to
both a bifurcation analysis and an assessment of imperfection-sensitivity. The
imperfection-sensitivity analysis is based on the “long-wavelength’’ approxima-
tion treated in detail in Part I of this paper. We consider the full biaxial stretching
range, i.e., with principal strain states varying between uniaxial and equibiaxial
tension, and obtain corrgsponding results according to J» flow theory.

An important feature of sheet necking is seen to be the imperfection-sensitivity
associated with the deformation theory as well as with the flow theory. This is
in sharp contrast to plastic buckling results obtained using deformation theory,
which are often relatively insensitive to imperfections. In the discussion of such
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he form results and relevant experimental data, we address the issue of deformation ‘
uning is theory vs. flow theory in this context.
: to the ‘ :
ofen 4] -
n states | CONSTITUTIVE LAWS
tested, : N
rciniak- In this study finite-strain versions of both J, flow theory and J, deformation '
J: (von , - theory of plasticity will be employed. Throughout this investigation the material , .
; is assumed to be incompressible and initially isotropic. | :
ncorpo- .
nalysis. - I Flow Theory—For the flow theory analysis the constitutive law, with reference ! -‘j
»and, as A to fixed Cartesian coordinates, is taken to be (see for example [7-9]) |
:d much S 3 o f |
he M-K !_ € = 2E 5y + E SySuSp (H 1
‘ussions : where for incipient yielding : F _"
:, much . . . . alls
1I-Cati0n a=1 if Jz = FySy =0 . (2) ' “
5 flow a=0 if J,<0
ied con- !
5 theory Here, é;is the Eulerian strain-rate tensor, £ is Young's modulus, §; denotes the
0 a flow ; Jaumann rate of change of the Cauchy stress deviator s; = oy — 48,04, and
cussion H fis a function of J,(= §sysy) which can be chosen to make (1) coincide with
0Ty are i any monotonic proportional loading history. If the uniaxial tension curve is used ‘i
1g loads ; to determine f, the inverted form of (1) for plastic loading becomes J\'
e use of | 1E ,
30 been 1 Ty =3 €5 — Osysménd + 8yp 3) i
- theory I ‘ :
:st data. where p is the hydrostatic pressure, and i
amental 3 E,
l' =37 ( B ”}3:") @
;s factors { . . ) | Tl
N com- } Here, the tangent modulus E, is regarded as a function of the effective IJ’
rmation [", stress o.(=V/3J;) and in simple tension corresponds to the slope of the true
mewhat stress-natural (logarithmic) strain curve. ]
yplied to : In the localization-band bifurcation analysis, the assumption of approximate j
ity. The plane stress will be adopted. The state of upiform stress considered prior to ;I
‘roxima- bifurcation is such that the only nonvanishing stress components are o,, = o, I
retching _ and o = ¢,. In this case, p can be eliminated from (3) by means of the relation |
1ibiaxial % T3 = 0 and the incompressibility condition ¢, = 0. The constitutive law (3) for %
} plastic loading then reduces to _ &
n,SIl‘lt]l:;l?s( gy = I:uéz + {-12&2
theory, Gy = Lipéy + Lppé, (3)
of such 4

T = 2L4€
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130 J. W. HUTCHINSON, K. W. NEALE

where the flow theory instantaneous moduli are given by

4 o\
L:1=_E"(E‘“E¢)(‘{TI)

4 o\’
L22='3‘E_(E“Et)(_2)
% ©)

n 2 0'[0'2

=2 F — —E))

Ly, 3E (E i)(a-e)z
a E
Ly=—=
3

J » Deformation Theory—To construct a finite-strain version of the deformation
theory constitutive law, we make use of Hill's theory [10] for finitely deformed
isotropic elastic solids. Because of isotropy, the principal directions of Cauchy
stress must coincide with the axes of the Eulerian strain ellipsoid. Furthermore,
the state of sirain in a material element is completely specified by the three
principal stretches (A, Az, Ay) relative to some reference configuration, together
with the principal directions of strain. ‘‘Principal axes techniques’’ introduced
by Hill [10] can then be conveniently applied to determine the deformation theory
instantaneous moduli analogous to (6). Such principal axes methods will also
prove to be convenient for the direct finite deformation calculation performed in
a subsequent Section on Long-wavelength Analysis.

The most appropriate measure of strain in our formulation seems to be the
logarithmic strain tensor which, by definition, is coaxial with the Lagrangian
strain ellipsoid and has principal values

€ =InA; (7

In [10, 11] Hill has presented convincing arguments in favor of this measure. For
our purposes we simply note that since é; = Ni/h; with (7) the incompressibility
constraint A Ahy = I becomes exactly e; = 0 as well as €4 = 0.

In view of the above remarks, the well-known small strain J; deformation
theory can immediately be extended to finite strains as follows

€; = M Sy (8)

where u is assumed to be a function of the effective stress o, = (33;5:/2)" or
the effective strain €, = (2€:€;/3)*%, obtainable from the uniaxial tension curve.
Since o, and e, are respectively equal to the true stress and true strain in uniaxial
tension,

9

in which E, denotes the secant modulus. (Note that & rather than e, will be used
to denote effective strain in the flow theory analysis. This is defined as | de
where de = (2de;de; /3)2. For monotonic proportional straining paths €, = €.)
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In terms of the principal components of Cauchy stress, the constitutive law
(8) becomes
oy =3k — p ‘ (10)
For a true stress-natural strain curve of the form

o, = Ke (deformation theory)

_ (11)
o, = Ke¥ (flow theory)
equation (10) can also be expressed as follows (c.f. {12})
aw
o, =MN——p (no sum on i) (12)
dA
where the strain energy density function W is given by
K
— N+ 1 3
N+1° (13)

Although the ““total” form (10) of the deformation theory will be employed in
our long-wavelength analysis, a rate form of (10} is required for the localization-
band bifurcation analysis. From (9) and the conventional definitions of effective
stress and strain, the rate form of (10) becomes

si=0; + p
(14)
5z ék
(o)
When this is specialized to the plane stress case considered in the derivation of
(5), the deformation theory instantaneous moduli corresponding to (6, ;) are

=3E. & — 5,(E; — E;)

- 4 o\’
Lyy=zE; ~(E; - E;}){—
g,

3 e
. 4 o\ 2
Ly, =3 E, = (B, — E) (—) (15)
Te
a 2 o0y
IL,=2E, - -
12 3 Es (Es Et) (O'e )2

These relattons also follow from a substitution of the secant modulus E; for E in
(6). Hill’s formula [10] for the instantaneous shear modulus gives

_ /\12 4 A‘zz

. A\ Mg+ Ag?
2L, = ———— —_— 16
= ) (16)

2
(o, — 03) =§E31n (‘\—2 At
A finite-strain version of J, deformation theory has recently been proposed by
Storen and Rice [5] which, as discussed by these authors, has path independence
only when the strains are small or when the principal axes of strain are fixed
relative to the material. If the principal axes are fixed relative to the material the
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132 J. W. HUTCHINSON, K. W, NEALE

present deformation theory and that of Stéren and Rice coincide in relating stress
to strain. For proportional loading, which in the present study corresponds to
monotonically increasing €, and ¢, in fixed ratio, the two deformation theories
and the flow theory (3) all coincide. Only the present deformation theory is
independent of the loading path for arbitrary histories. According to the theory
of [5] the instantaneous shear modulus, instead of (16), is 2L, = 2E, /3, whereas
the remaining moduli are given still by (15). For equibiaxial stretching (A, = A,)
the instantaneous shear modulus L from (16) does coincide with the Stdren-Rice
value. However for the strain levels and ratios of interest here, spanning equi-
biaxial and uniaxial, the value of L, from (16} exceeds the value E, /3 used by
Stéren and Rice. Since indirect evidence in the range of small strains suggests
that deformation theory tends to underestimate the instantaneous moduli of an
actual metal when they differ substantially from those of simple flow theory, it
can be argued perhaps that the present ‘‘true’”’ deformation theory is sufficiently
conservative in its estimate of L, in the large strain range.
If the proportional straining path
€

2 p = const a7n
€

is impoéed on the sheet, then from (1) or (8)

oy _ 2+ p
oo DB+ p+ e

(18)
Ty _ 1+ 2p

o BA+p+p)pe

which can be substituted in the moduli expressions (6) or (15). Furthermore, for
power-law hardening of the type (11) in the plastic range

E, = NKe,/ "1, E, = Ke, 8! (19)
where

_20 4 ptpn

\/5 € (20)

LOCALIZATION-BAND BIFURCATION ANALYSIS

The localization-band bifurcation analysis is carried out within the context of
plane stress. The analysis is similar to those performed by Hill and Hutchinson
[13] and Stdoren and Rice [5] in that conditions are determined for which the
bifurcation mode corresponds to localized plastic deformation in a narrow band
while the deformation remains homogeneous elsewhere.

We consider a thin flat sheet which is currently of uniform thickness and
subjected to the homogeneous stress field (Fig. 1)

Ty = Ty, . GOz = 03

(21
all other g; =0
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Fig. 1. Localization-band geometry.

Furthermore, we assume proportional loading up to the current state with the o,/

o, ratio being given by (18).
The velocity field describing the bifurcation mode is constrained to vary only
across the band, i.e., {5]

v, = Fy(n,x; + naxz) i=1,2 (22)
where »; denotes the differences between the velocity components inside and

outside the band, and r; = cos ¥ and n, = sin ¢ are the components of the unit
normal to the band. The velocity gradients corresponding to (22) are

Vi = .Fi'ﬂ‘j = gl i’j: 1,2 . (23)
and the strain-rate field is given by
€y = vy + v54) Lj=12
ST @4
€3 = —(€n T €z)

Equilibrium across the band at the instant of bifurcation requires that the
nominal traction-rates T: on the band boundaries be continuous. Thus, with £
denoting the difference or jump in nominal stress-rates across the boundaries of
the band

ATJ- = nii,-J =0 (25)

From the following relation between nominal stress rates and Jaumann rates
of Cauchy stress (for incompressible materials)

[U = d'u + Oaq Ui — (O—ikéjk -+ O'jkéik) (26)

and the constitutive law (5), the condition (25) for the above bifurcation mode
becomes

{”12(£11 —ay)+ nf[i,s + oy — oy e,
+ n1n2{i112 + E‘s - o, T gy )l =0
"1”2{13-'12 + i‘s - o, + o2)}g

+ {nlz[i’s + oy — o, =+ ”22(1:22 ~ oyl =0

@7)
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134 J. W. HUTCHINSON, K. W. NEALE

Bifurcation is thus possible for those states where a non-trivial solution to (27)
exists, i.e., when the determinant of the coefficient matrix of the g; vanishes:

(&) o+ L= on | {(32) theriton ol L |

- {(ﬂ) [£12 + i's = oy + 0 )]} =0 (28)

Ry

In general there is a bifurcation state for each band orientation ¥. However, the
pertinent critical state corresponds to that n, /n, ratio in (28) which minimizes
the bifurcation stress. This stress will be denoted by o, * and its associated value
is op* = (1 + 2p) o */I2 + p).

In the flow theory analysis the appropriate moduli are (6) together with (18)-
(20) for the simple power law stress-strain curve (11). Substitution of these
relations in (28) leads to an expression of the form

fi(o. B+ %2 fulo, B & N) + (%) £l B, & N) = 0 (29)

where 8 = n,/n,. By implicitly minimizing o with respect to 8 in (29) and
neglecting terms of the order o /E < 1, we obtain the critical orientation first
given by Hill [1]

¥* = tan~'(V—p) (30)

Moreover, the term f;(p, B) vanishes for this value of ¢, so that the bifurcation
condition reduces to f, = 0 when terms of the order o, /E are neglected compared
to unity. This furnishes Hill's well-known result [1] for the critical strain €,* at
localization

N
1+p

&

€y

In Hill's analysis the material is considered to be rigid-plastic and the above
represents the only localization-band solution available. Furthermore, in view of
(30), bifurcation is predicted only for values of p = 0. In contrast, a detailed
numerical solution of (29), which is based on elastic-plastic material behavior,
reveals that bifurcation occurs for each band orientation ¢ and for the full range
of p. However, as suggested by (29) and the subsequent development leading to
(31), the bifurcation stresses become of the order of the elastic modulus £ when
 deviates from Hill's angle (30). The corresponding strains are then unrealisti-
cally large.

In the deformation theory analysis the appropriate moduli to be substituted in
the bifurcation equation (28) are (15) and (16). In view of (11} and (17)-(20), we
can eliminate stress quantities in (28) and, for prescribed values of p, N and ,
treat €, or €, as the eigenvalue. The bifurcation strains obtained in this case do
not exhibit the strong sensitivity to variations in ¥ characterized by the flow
theory results. (Plots illustrating this will be displayed later.)

i
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In general, simple expressions such as (30) and (31) cannot be obtained with
the present deformation theory, so numerical solutions of (28) are required to
determine the value ¢* which minimizes the bifurcation strain €,*. However, in
the so-called *‘biaxial tension range™ (p = 0), ¥* = 0 is the minimizing angle and

Fd Deformation Theory
N 1 ——~ Hill's Formula (31}
N -—-— Storen-Rice Theory

N 0.8fF

pe-172 N
N L
~N lL-P=0
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- N L
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Fig. 2. (a) Forming limit curves from bifurcation analysis for various plasticity theo-
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the critical condition (28) reduces to n, = g, = 0and o,* = Ly, i.e.,
. 3pt+ N2+ pP
22+ p)1 + p t p?)

The principal axes of strain do not rotate for the associated bifurcation mode and
the shear modulus L, does not enter into (32) so that, as expected, this result is
identical to that obtained by Stéren and Rice [5]. In the negative p range,
however, principal axes do not remain fixed at bifurcation and the present de-
formation theory leads to results which differ somewhat from those furnished by
the Stéren-Rice deformation theory.

In Fig. 2(a) the theoretical localization-band bifurcation strains are plotted as
“forming limit curves’’, i.e., curves which ilustrate the dependence of the critical
strain €,* on imposed strain ratio. Here, the solid and dashed curves refer to the
deformation theory and flow theory predictions, respectively. Results are shown
for a strain hardening exponent N = .22, typical of certain steels and aluminum
alloys {4, 14], and atso N = .50 which is representative of brass {15].

In the biaxial tension range (p = 0) only deformation theory predicts bifurca-
tion, as mentioned ecarlier, and the corresponding necking strains are given by
(32). However, Hill’s flow theory formula (31} does predict localized necking in
the negative p range. In this range, the forming limit curves of Fig. 2(a) obtained
from (28) with the present version of deformation theory are observed to lie
below Hill’s curve, vet above the curves furnished by the Stéren-Rice deforma-
tion theory [5]. The discrepancy between the two deformation theories increases
with increasing strain-hardening exponent N. Nevertheless, the discrepancy even
for N = 0.50 is not very large, and thus the choice of which deformation theory
to use may not be critical in this application.

The critical angle ¥* minimizing the bifurcation strains €,* are plotted in Fig.
2(b) for strain ratios varying from plane strain (p = 0) to uniaxial tension (p =
—3¥. According to flow theory this angle, given by (30), only depends on p. With
deformation theory the critical orientation also depends on N, and the curves for
¥ are above Hill’s curve. The present version of deformation theory gives
values of ¢* which are between (30) and the predictions of Stéren and Rice [5],
and fairly close to the latter results for smaller V.

(32)

€

LONG-WAVELENGTH (M-K) ANALYSIS

In order to assess the effects of geometric nonuniformities on localized necking
behavior, the ‘‘long-wavelength’® approximation discussed in Part I will be ap-
plied. Consistent with the bifurcation analysis of the preceding section, our
approach is within the framework of generalized plane stress. The present anal-
ysis is thus along the lines of that introduced by Marciniak and Kuczyfiski [2] for
this problem; however, it is not restricted to the biaxial tension range (p = 0, ¢
= () and both flow theory and deformation theory are employed.

We consider a sheet having a nonuniformity in the form of a groove or band
which is 1n1t1ally inclined at an angle § (Fig. 3). The thickness along the minimum
sectio the groove is denoted by A(z), with an initial value k(0). In applying
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2 Origing} Bond Current Band h(t)  hgit)

QOrientation Orientotion

Fig. 3. Conventions for long-wavelength analysis.

the long-wavelength approximation it is tacitly assumed that the band width-to-
thickness ratio is large. The region outside the band, referred to as the ‘‘uniform”
section, has thickness h,(f) with an initial value #,(0). The initial geometric
nonuniformity is defined as follows

_ hy(0) = A(O) _
= 7.0) =0 (33)

Throughout the analysis a subscript or superscript ¢ will denote quantities as-
saciated with behavior in the uniform region of the sheet whereas the absence of
this symbol will refer to quantities along the minimum section of the groove.
in addition to the fixed x, — x, reference axes, two other systems of Cartesian
axes are used: the set u, — w. aligned with the initial inclination of the groove
¥, and axes v, — v, coincident with the current orientation of the groove .
As in the localization-band bifurcation analysis, we take the loading imposed
on the edges of the sheet to be such that
€,° o, 1+ 2p

= p = const =
€,° P ’ o 2+p

(34

The x; — x, axes thus represent the principal directions of stress and strain for
the uniform sections of the sheet. From the basic definition (7) of logarithmic
strain, we obtain the following relation for the current groove inclination

iIZtan # = exp[(1 — p)e,°] tan (35
2

tan ¢ =

The rotation of the band during loading is thus
=y (36)

According to the long-wavelength simplification the state of stress over each
cross-section is considered to be uniform. That is, we take the stress and strain
components to be quantities which are averaged through the thickness. With n
and ¢ denoting the normal and tangential directions to the current groove incli-

. . References pp. 149-150.
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138 J. W. HUTCHINSON, K. W, NEALE

nation (n = v, t = v, ), the equilibrium conditions across the band become

Q
Tt O

(37

ainhy = Oph, alh, = ok or pi p
nn nn

In the uniform section, the normal and shear stress components with respect to
the n — ¢ axes are given by

o, = a,’cos¥P + o,? sin*y

o, sin®f + oy° cos?P (38)

o
ol =(—o,%+ 0,9 sin Pfcos ¢

An effective stress-effective strain law of the type (11) together with the first
of (37) and the definitions

h . h,
“=hig < ThhE et
leads to the following expression (c.f. [14]) for deformation theory
al, /o’ v
Tinl9e" _ (1 _ g (i) exple; — ) (40)
Tan /G-e €g .

where £ is the initial geometric nonuniformity introduced in (33). The same
expression holds for flow theory with €./¢€.” replaced by &€°,
Equation (34) and the basic definition of effective stress yields

agn _ (p+2)cos®P + (2p + 1) sin*P
o’ V31 + p+ pDie

(41)

Furthermore, the incompressibility condition €,% + €,° + €° = 0 and (20} gives

\/g(l + p)

201+ p + p2) €° = —Ce’ (42)

€ =

Note that, since proportional loading occurs in the uniform section, €,° = €° in
this case.

The purpose of the subsequent analysis is to express the remaining quantities
in (40), which correspond to the deformation along the groove, in terms of € (or
€. ). The resulting relationships will of course depend on whether flow theory or
deformation theory is applied. We seek equations relating € to &° {(or €, to ..
From these relationships we can calculate the development of the groove and the
limit strains in the uniform section of the sheet.

J 2 Flow Theory Analysis—In the flow theory analysis the material is assumed to
be rigid-plastic. The constitutive law (1) then becomes
3 de
d €5 & = _E Sy (43)

2 o,
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Using this expression together with the defining equation for o, , one can elimi-

nate ay to find
dey - 3/ T z Ong B
Lo -2 (I} (I 44
dé [' 4 ( . ) a. )

where the appropriate sign depends on the orientation of the band.
From the compatibility condition

dey = def {45)
the relation
del = de,’ sin? + de,® cos™fp - {46)
and equations (34), (37), (38) and (44), it follows after a lengthy but straightforward
calculation that
o 29102
‘Z" = ;—H [1 - B (‘ig) ] 47)

where for the range —4 < p =< 1 considered here the root &,, > 0 has been
chosen. Here, in a form similar to that in [14],

a V3
R
_ 3sin®¥ + p cos)? '
B= 41+ p+ pH (48)

. 2y 142
H:{1+[ 2(p—1)SlﬂllJCOS!Il‘ ]}
{p +2)cos?y + (2p + 1} sinP

Substitution of (41), (42) and (47) into the equilibrium equation (40} together with
(48) then gives

= o) 29 —1/2 - L
(1-B— G)‘”H[l - B(de) ] =(1 - a(ei) exp(Ce® + €;)  (49)

de
where
{p — 1)? sin® cos®
G= (50}
(1+p+p?%
From (43) and (45)-(47), the following expression is obtained
de; A de\* 1" deé°
Fr ﬁ[* B(dé)] D 1)
with

N V3(sin*y + p cos®)

4(1 + p + p2yt 62)
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A straightforward incremental solution of (49) and (51) determines the groove
deformation & in terms of the prescribed uniform deformation &°. In the numerical
solution, the strain ratio p and initial groove angle ¥ are initially specified. The
current groove orientation i is updated at each increment using (35). For the
case ¢ = s = 0, equations (49) and (51) reduce to those given by Marciniak et
al [14].

J2 Deformation Theory Analysis—In the deformation theory analysis the total
form (10) of the constitutive law is employed together with the principal axes
techniques referred to previously. Alternatively, an incremental formulation along
lines just given for flow theory could be developed, but we prefer to take full
advantage of the total form of the deformation theory.
We first describe the deformation in the groove with respect to the w, — o
axes (Fig. 3) as follows
= L + it

p1 = By + Yiae (53)

Bz = Tty + Plig
Here, and in the following, a bar denotes the initial coordinates of a material
point whereas an un-barred coordinate refers to its current position. For the

uniform deformation (34),
Xy = AOxy, Xy = Ry%Xy (54)

which, when referred to the w, — w, axes, becomes
pr = (A1 cos®d + Ny sin®Pie; — (A, — Xy sin b cos Pie

- , - - (53)
e = —(A% — A% sin $cos P, + (A sin® + Ao cos®t,
Compatibility of deformation on @, = 0 then leads to the following *‘matching™
conditions

¢ = A, °sin?P + A,° cosiy
Y= _()\.10 - Azo) sin t-,bCOS af

(From (35), (36} and (56) it follows that ¥/ ¢ = —tan P as expected. Furthermore
it can be shown, by describing the‘groove and uniform deformations in terms of
the current v, — v, reference axes, that (56) is equivalent to (45) where the
Eulerian strain rates €, are matched along the current groove orientation.)

For the uniform deformation the principal directions of stress and strain are
the x, — x, axes. However, from (53) the deformation-gradient matrix A(A; =
du; /34 ) for the groove behavior is

d vyl .
A= 57
5 57
Since the Eulerian strain ellipsoid is coaxial with the principal axes of the left
Cauchy-Green matrix AAT, the orientation # of these axes relative to the u, —

(56)

in o

5
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1, reference system is given by
2(8n + y9)
&>+ ) — (* + ¢%)
The orientation with respect to the current », — v, axes is, from (36) or Fig. 3
0=8- @ (59)

Now, the principal stretches A, A, for the groove deformation are related to
the principal values e, , e, of Green’s strain matrix e as follows

€y = 3N 2 - 1), €y = %()Lzz - 1) (60)

tan 20 = (58)

where

e=HATA - I) (61)
and I denotes the unit matrix. In view of (57) and these relations, the principal
stretches are

M £yt + g7 = ] ()

_ L sz
2 \/i [(6
with
R = {[(8% + 9?) — (y* + %) + 43y + P}

From the constitutive law (10), the incompressibility constraint A, A,A; = 1 and
the plane stress approximation o3 = 0 the principal values of Cauchy stress
become

2o
a, = = ~=In(AEAg)
Je
5 63)
a,
Ty = _'““‘e_ln()llhzz)
3 e,
As mentioned previously, the principal directions of this stress tensor must
coincide with those of the Eulerian strain tensor for an isotropic material. A
straightforward transformation of (63) therefore provides the required stress com-
ponents with respect to the current groove axes:

Tpp = %[(0-1 + 0'2) + (0'1 - 0'2)003 26]
Tt = $(o; — 05)sin 20 (64)
Ty = é[(o-l + 0'2) - (0'1 - 02 } coOs 29]

From the above expressions and the third of (37), we obtain the relation

sin261n ();—1) =3MY (65)

2
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142 J. W. HUTCHINSON, K. W. NEALE
in which
_ ol _ {p — 1) sin Yrcos (66)
otn  (p+2)cos*y +(2p + 1) sin’*d
and
Ay
Y =In{AAy) +§cos28In ~ 67)
2

Furthermore, the equilibrium equation (40) becomes

. N
(p+ 2 costy+ (2p+ Dsin®y (1 - £) (fL) exp(Cee"); (68)

V31 + p + pt ArAs
where, according to the basic definition of effective strain

-2
V3

For a prescribed strain ratio p, initial groove inclination ¢, and uniform defor-
mation &°, the corresponding groove deformation described by (53) is determined
from (65) and (68) together with the matching conditions (56) for ¢ and 7. The
unknown parameters 8 and 7 enter implicitly into (65) and (68) through the
expressions (58) for the principal directions of stress, (62) for the principal
stretches, (69) for the effective strain and (35)-(36) for the band rotation ®. A
Newton-Raphson technique applied to these equations provides the numerical
solution of €, for given €.°. For convenience, we determined the derivatives
required in this method numerically.

For the case § = 0, the above analysis implies that ® = y =7 = ¢ = 0.
Furthermore,

€.°

[(nA)2+ In Ay dnAp + (In Ay)THe (69

€e

Ay =8, Ay = = A,° (70)

Equation (65) is thus identically satisfied and (68) reduces to

o 2 102 N
(1 — By [1 - B (E—) ] =(1-8 (:—“) exp(Ce,® + e5) (71

€e

which is similar in form to the result (49) obtained in the flow theory analysis for
i = 0. Here, the expression for €; becomes [c.f. (51) for s = 0]

c .o\ F1 €0
—3=—A[1—B(L)] -D= (72)
€e €e €e

where A, B, C and D are now constants given by (48), (42) and (52) with ¢ = 0.

PLANE STRAINCASE (p = 0)

Before proceeding to results for a wider range of p-values, we shall first
consider separately the plane strain case (p = 0). Here, ¢ = ¢ = 0 and the
deformation and flow theory predictions coincide.
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The critical bifurcation strain obtained from the localization-band formulas 3n
or 32)is

Gl* EEI"'=N (73)
Furthermore, the parameters in the foregoing long-wavelength (M-K) analysis
take on the following values: B = D = G = 0, H=land A = C = \/3_5/2.
Equations (51) or (72) give ¢; = —\/I':ee /2 as expected, and the expressions 49)
and (71) reduce to

(€1 exp(—¢€,?) = (1 — &)e," exp(—¢,) 74

This result is identical to the relation obtained in [16] for the corresponding
problem of an axisymmetric bar under uniaxial tension with €, identified as the
axial strain.

A direct numerical solution of the transcendental equation (74) furnishes the
typical resuits shown in Fig. 4, where curves of €,/€,° are plotted against €,%/
N for an initial geometric nonuniformity £ = .005. The solid dots on these curves
indicate the maximum value of €,°, which, from (74), is given by

iex (a7 1} =1 — guw 75)
oo (5 )] |

This value is attained when the strain in the groove satisfies €, = N and the
corresponding x,-load component applied to the sheet reaches a maximum. Fur-
thermore, the classical result (73) is retrieved from (75) when the imperfection &
= 0. The dashed portion of each curve in Fig. 4 is also obtained from (74), but
is no longer strictly valid since elastic unloading should occur in the uniform

5
o8k N=01 0.4
&y 1y
by
L4+ \
\
1.6
PLANE STRAIN(p=0)
2 €=.005
ol—1_ ¢ 1 1 v o4 4 1y ]
0.5 0 1.0
&
N

Fig. 4. Development of ratio of strain in neck 1 to strain outside neck ¢,°as a function
of €,% N for plane strain.
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144 J. W. HUTCHINSON, K. W. NEALE

region but has not been taken into account. The important point, however, is
that €,” given by (75) does correctly give the maximum value of the strain
attained in the uniform part of the sheet in the long-wavelength approximation.
We therefore refer to this limiting value of uniform strain as the “*limit” strain or
critical strain for localized necking as it represents the state where the defor-
mation becomes concentrated in the groove while the remainder of the sheet
begins to unload. This criterion, which in general is equivalent to de%de = 0 (or
de,/de, = 0} has been discussed in [14, 16]. It will also serve as our definition
of critical strain for the other values of strain ratio p.

In Fig. 5 the critical strains (75) are plotted against the initial imperfection £
for strain-hardening exponent values N = 0.1 and 0.4. The dashed curves shown
here correspond to the asymptotic result from (75) for small ¢

“’ 76

N = 7 (76}

It is clear from this expression and Fig. 5 that a small amount of geometric

nonuniformity £ substantially reduces the critical strain for necking. This type of

behavior has received considerable atiention in connection with the elastic and

elastic-plastic buckling of structures, and is characteristic of structures which are

referred to as imperfection-sensitive. In fact, the \/E—type dependence indicated
in (76) typifies some of the most imperfection-sensitive shell structures [17].

We emphasize again that flow theory and deformation theory give identical

results for this case, so imperfection-sensitivity here is not the anomalous im-

PLANE STRAIN(p=0}

L] NUMERICAL RESULTS (75}
- — — —ASYMPTOTIC FORMULA (76)
<
i1 1 L I D R B
o] 005 a1

;i- Fig. 5. Imperfection-sensitivity of limit strain €,” outside neck.
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perfection-sensitivity associated with simple flow theory when the bifurcation
predictions of the flow theory are greatly in excess of those for deformation
theory, as will be seen to be the case when p > 0.

RESULTS AND DISCUSSION FOR FULL RANGE OF p

The long-wavelength analysis was applied to generate numerical results for
strain ratios varying from p = —} to 1, corresponding to uniaxial and equibiaxial
tension, respectively. For p < 0, various initial band orientations ¢ were consid-
ered in the long-wavelength analysis to determine the angle which produced the
minimum limit strain. For p =0, the critical angle is such that the band is aligned
in the x,-direction, i.e., normal to the direction of maximum principal strain €,°.

The effect of the initial geometric nonuniformity £ on the limit strain €, is
depicted in Fig. 6 for p = —4, 0, 1 and N = .22. Again, solid curves represent
deformation theory results and dashed lines refer to flow theory. As discussed
in the previous Section, the plane strain (p = 0) results here coincide for both
theories and exhibit the type of imperfection-sensitivity characterized by (76).
The necking strains for uniaxial tension (p = —3}) and equibiaxial tension (p = 1)
are also seen to be reduced considerably in the presence of a small geometric
nonuniformity. For the uniaxial tension case, the predicted flow theory limit
strains are somewhat higher and slightly more imperfection-sensitive than the
corresponding deformation theory necking strains.

The discrepancy between the two theories is more drastic for the equibiaxial
tension case. Here, there is an enormous imperfection-sensitivity associated with
flow theory as the bifurcation analysis in this case predicts an infinite necking
strain for £ = 0. Moreover, these flow theory limit strains continue to diminish

ox
El
1o N=.22
i
\ DEFORMATION THEORY
0.8l \\ —~—— — FLOW THEORY
N
~
061 S
-
T
S
\ T~
0.4 T~ p-
S _ p=1
Q ~ 172
02 E g
0
0 [ _ 1 1 |
.005 .01 015 .020

3

Fig. 6. Comparisons of imperfection-sensitivity of limit strain outside neck for defor-
mation theory and flow theory for three states.
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146 J. W. HUTCHINSON, K. W. NEALE

substantially as £ increases beyond the value .01. On the other hand, the defor-
mation theory critical strains for p = 1 do not show this severe sensitivity to the
assumed value of £ since a finite bifurcation strain (£ = 0) exists according to
this theory. In contrast to the flow theory results, these limit strains are rather
insensitive to variations in £ within the range .01-.02.

Figs. 7(a} and 7(b) illustrate the manner in which the limit strain ¢,” varies
with the initial groove orientation ¢ and current groove inclination §* at necking.
These results correspond to a strip under uniaxial tension (p = —4) with N =
.22 and inifial imperfections & = .01, .001. In these figures the numerical values
¥p* and §-* denote the initial orientations, calculated from (35), that would align
with the current critical angles ,* and ¢,.* predicted by the bifurcation analyses.
Here, subscripts D and F refer to deformation and flow theory, respectively.

The results shown in these figures indicate that the flow theory limit strains
are very sensitive to variations in ¢ and ¢*, whereas the deformation theory
necking strains are relatively insensitive. It can also be seen from these curves
that, as the initial imperfection decreases, the angles ¢ and ¢ which minimize
€, approach their corresponding values at bifurcation and, even for imperfec-

£ N=22,p=-1/2
Tosr Deformation Theory
— —— Flow Theory
0.6+ N
N
AN £ =001 & =001
- ~ ~ o =
0.4 > ol ol
Q2+
(a}
1 1 | | I | ]
) 02 0.4 06 Firad)
—%_ *_
Elo‘,:)g \IJD = 4647, \(JD-.69]2
Aelun - _
ll"F =.3504, 4':'%6'! 53
o6l !
Vo
oy §=.000 £=.00
04 N m o
. s ie; .
a2
(b}
L i 1 1 1 1

1
0 2 04 Q6 08 1.0 1.2
0 Y(rad)

Fig. 7. Limit strain outside neck €,* as a function of necking band orientation for two
plasticity theories: (a) in terms of initial orientation angle W, (b) in terms of final orientation
angle r*.(Numerical values of ¢* give corresponding values from bifurcation analysis.)
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tions as large as £ = .01 the critical values of ¢ and ¢ from the bifurcation
analyses give reasonable estimates for the minimum limit strain.

Forming limit curves, similar to those depicted in Fig. 2, are plotted in Fig. 8
for an imperfection level ¢ = .01 and for strain hardening constants N = .22,
.50. In the negative p range, the shapes of the forming limit curves strongly
resemble the related bifurcation limit curves of Fig. 2(a). A similar strong resem-
blance is also evident in the positive p range for the deformation theory resulis.
Consequently, the effect of an initial imperfection in these cases is to essentially
just shift the forming limit curves downwards.

The flow theory results in Fig. 8 for p =0 are representative of the original M-
K [14] analysis, where an initial nonuniformity was postulated to describe local-
ized necking. In this biaxial tension range, the flow theory curve for N = .22
rises much more steeply with increasing p than the corresponding deformation
theory curve. Furthermore, for N = .50 the flow theory curve also rises fairly
steeply, whereas the deformation theory forming limit curve falls slightly as p
increases.

Although it is difficult at this stage to make quantitative comparisons between
theory and experiment, we shall nevertheless comment on the trends predicted
in Fig. 8 and related test data. It must be emphasized, however, that many factors
such as strain-rate sensitivity, anisotropy and nonhomogeneous straining may be
pertinent in an experiment and that such effects have not been accounted for in

-
—
-
—
-
-
-
P ~_ p=1
-~
-
-
. -
-
-~
-~
-~
-
£=0
Deformation Theory
————Flow Theory
I 1 j 1 1 ! 1 1 1 i

-04 -03 -02 -0l o o1 02 03 04 05 06
0%

Ea

Fig. 8. Comparison of forming limit curves from two plasticity theories at two strain
hardening levels for an imperfection ¢ = .01.
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148 J. W. HUTCHINSON, K. W. NEALE

the present analysis. Furthermore, the testing technique undoubtedly has an
important effect on the experimentally-determined forming limit curve [18].

First we note that, in the negative p range, it is generally accepted that Hili's
predicted curve (31) describes the trend of experiments for materials having lower
N-values (~.25) [19-21]. In this case the flow theory and deformation theory
predictions of Figs. 5 and 8 do not differ substantiaily. However, for materials
with higher N-values (~.50) the discrepancy between the two plasticity theories
becomes more pronounced. It is in this range that Painter and Pearce [21] have
reported a poor agreement between Hill's curve and test results. In fact, the
shape of their experimental curve for brass is very similar to the deformation
theory curve in Fig. 8.

Another case where the results of both plasticity theories differ is in the
prediction of the band angle at necking (Fig. 7) for a strip under uniaxial tension
(p = —%). We simply observe here that, in view of the relative insensitivity of
limit strain to variations in groove orientation with deformation theory, this
theory would tend to better accommodate any experimental results for which the
groove angle may be sufficiently different from the bifurcation prediction. How-
ever, available experimental evidence in this respect appears at present to be
inconclusive.

In the biaxial tension range (p = 0), forming limit curves for reasonably
isotropic metals with lower N-values (<.25) have been reported in [4, 18-22].
The experimental trend for these materials is such that the limit strain €,”
increases as p varies from plane strain to equibiaxial tension. This is in accord-
ance with both theoretical curves in Fig. 8 for N = .22. However, the rate of
increase observed experimentally tends to be Iess than that described by the flow
theory curve and more representative of the deformation theory predictions. The
reported forming limit curves for higher N-values (>>.50) lend further support to
the predictions of deformation theory. In this case the results of Azrin and
Backofen [4] for brass and stainless steel, as well as those of Painter and Pearce
{21} for brass, show a limit curve which is virtually horizontal or decreases
slightly with increasing biaxiality. Only the deformation theory predictions in
Figs. 5 and 8 for N = .50 indicate this tendency. Even by incorporating other
characteristic values of & in the analysis, it is doubtful that flow theory can
adequately predict this trend.

Throughout our analysis, the quantity ¢ defined by (33) is referred to as a
geometric nonuniformity. However, as discussed in [14], a material nonhomo>
geneity can easily be accommodated in the analysis. For example, if the constant
K in (11) has values K° and K in the uniform section and groove, respectively,
then in (40) and the subsequent analysis we need only replace & by a new
parameter

_ K )
§=1—F(1—§) ' 7
which incorporates both material inhomogeneity and g'eometric‘ nonuniformity.

It has been suggested [23] that, whereas realistic levéls of geometric imperfection
do not appear sufficient to bring the flow theory trends in line with experiments,
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it might be possible to justify using higher values of £ by appealing to material
nonhomogeneities and thereby gain better agreement. For the purpose of discus-
sion of this point suppose that £ = .01 and & = 0, corresponding to a geometrically
perfect sheet with a one percent variation in the material parameter K. From
(I1), this implies a one percent difference in stress at any given strain level. It is
unlikely that pre-existing nonhomogeneous work hardening levels alone could
account for substantially larger stress differences than this at the higher strain
levels associated with necking. On the other hand, pre-existing variations in
structural metallurgical properties might justify use of substantially larger values
of &

In summary, we are led to tentatively conclude that it is unlikely that a flow
theory, based on a smooth yield surface, can be used to adequately predict
localized necking in the range p > 0. This has disturbing implications for the
numerical analysis of sheet metal forming. The study in the present paper was
restricted to cases in which the overall straining was proportional (l.e., €% =
pe€,°) so that, in the uniform sections of the sheet, deformation theory and flow
theory give identical predictions. In extensions to forming histories which are
distinctly nonproportional, it is clear that a deformation theory will not adequately
characterize behavior in the uniform sections and consequently cannot be reliably
used under such circumstances to analyze necking. It appears to us doubtful
whether either the deformation theory or the flow theory used here would be an
adequate constitative law for incorporation in a numerical program for the com-
bined analyses of overall stretching and localized necking under general overall
histories.
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DISCUSSION

S. Nemat-Nasser (Northwestern University)

One thing I was wondering if you’d like to make a comment on. The approach
is essentially macroscopic which is certainly what one expects to have eventually,
but it seems to me that microstructure must play quite a significant role in the
whole process, and I did not see you emphasizing that.

Hutchinson

Hopefully, the role of the microstructure is reflected by the macroscopic law.
More complex constitutive laws may be used than what I have discussed here.
As an example, recently Needleman and one of his graduate students at Brown
University have used a phenomenological characterization of the effect of void
growth on yield behavior. So that is a microstructural effect which they have
incorporated in the yield surface behavior. I think there will be some discussions
on this tomorrow when Jim Rice talks. Now I might also add that when I said
you could not use flow theory with a smooth yield surface, I did not mean to rule

out that by doing something such as this one indeed might get around the problems
associated with a smooth vield surface.

A. K. Ghosh (Rockwell International)

I have the following comment. You tended to reject the flow theory on the
basis of the fact that it predicts too high a limit strain on the positive (g > 0
side. Now professor Marciniak has made measurements of fracture strain for a
number of materials, and I have done some of that type of work as well. It seems
that near the balanced biaxial end of the forming limit diagram you do have
fracture influencing formability, and even though flow theory predicts a high
limit, flow will be terminated by fracture. So, I feel that the fact that the fracture
limit comes down into the balanced biaxial end may be the controlling factor.
Therefore, there is no arbitrary reason to throw out flow theory.

SHEET NECKING il

That’s one point,
with respect to the
Hill's new vield crit
up on the positive
uniaxial strength. 1t
be wrong.

Hutchinson

Based on both M
that, for example v
which suggests that
and, therefore, you
iments were showii
for this new 3-par
pendence but the f
ay, over gy. Now, |
generally speaking
biaxial Tegion, whi

Ghosh

1 am thinking ©
goes with its X =
which has an X le

Hutchinson

Well, maybe M

P. B. Mellor (Uni

I’d just like to
in fact Hill’s new
Marciniak-Kuczy
matically at bala
ever assumed. W
are plenty of voi
density changes
making is to inc
down.

Hutchinsoen

And you are !




VEALE

roach
ually,
n the

law.
cre.
own
void
1ave
ions
said
rule

ems

the
- 0)
o a
‘qms
ave
igh
ure
or.

SHEET NECKING II 151

That’s one point, and the second point—I didn’t quite understand one aspect
with respect to the calculations. You have shown the m effect (parameter in
Hill's new yield criterion): for biaxial strength less than uniaxial the FLD goes
up on the positive side, and it comes down for biaxial strength greater than
uniaxial strength. I thought the experimental evidence was to the contrary. [ may
be wrong.

Hutchinson

Based on both Miyauchi’s paper and that of Mellor, my understanding was
that, for example with Mellor's material, he was seeing relatively low r values
which suggests that if you used Hill's old formula the biaxial yield stress was low
and, therefore, you get more strengthening in that biaxial region. But the exper-
iments were showing the opposite. Well, that’s consistent with the trends I show
for this new 3-parameter yield surface. It essentially decouples their interde-
pendence but the predominant effect is the effect of m, that is to say the ratio of
o, over o,. Now, I asked Dr. Miyauchi just after lunch and he also verified that,
generally speaking, when his X-parameter decreases you get more strain in the
biaxial region, which is consistent.

Ghosh

I am thinking of steel versus brass. Steel shows a rising forming limit which
goes with its X > 1, brass with a line not rising, independent of strain state,
which has an X less than one.

Hutchinson

Well, maybe Mellor wants to comment on this.

P. B. Mellor (University of Bradford, U.K.}

I'd just like to question as well that on the biaxial tension quadrant, we have
in fact Hill’s new yield criterion for aluminum and for brass. If we put that into
Marciniak-Kuczynski theory, we find that this brings down the limit strain dra-
matically at balanced biaxial tension, by an amount far more than I would have
ever assumed. We find no cause to call for a fracture theory. One knows if there
are plenty of voids then there is going to be fracture. So we have measured the
density changes and we find these to be very, very small. Well, the point I am
making is to incorporate the m value in the M-K theory brings the strains right
down.

Hutchinson

And you are talking about m << 2?7
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Melior

Surely yes. o

Hutchinsen

So that’s completely consistent and you have helped to answer the first of
Ghosh’s questions too. I have no doubt that using Hill’s new yield criterion in
conjunction with the M-K analysis will also lead to the same trends. I am sure
of it. And you can see from Mellor’s comments that the trend is in the right
direction. With respect to your first remark, I am sure there are materials in
biaxial tension which may indeed fracture before significant strain localization
occurs. 1 don’t question it. But, I suspect that that’s not the general case. And
80, if you have to justify the Marciniak analysis based on flow theory and if you
always have to invoke a fracture strain, then you start to worty about the theory.
Can I say just a little bit more? It shouldn’t be a surprise that flow theory
overestimates things. You know, in plastic buckling, where we are not nearly as
far into the plastic range, it has been known for 20 years, that if you use flow
theory, certainly in a bifurcation analysis, you are going to overestimate the
buckling load. All the engineering formulas for plates and shells based on bifur-
cation analysis use deformation theory moduli. Now it is also true, I believe, that
most people think that if you do incorporate imperfection in a buckling calcula-
tion, with flow theory, you certainly do get much more realistic predictions. This
is still somewhat of an open question. The reason, I think, there is so much more
problem in the sheet metal necking is because straining is so much further into
the plastic range. The discrepancies are therefore much greater. Again, I empha-
size that just from a mathematical point of view I think you have strong reason
to question using flow theory with a smooth yield surface, just because there is

such enormous imperfection sensitivity which doesn’t seem to be present in the
data.

Ghosh

Yes, but when you see experimental fracture strain much lower than the
predicted strain, you know the sample has fractured much earlier than. . ..

Hutchinson

Agreed. But are you suggesting that’s the general case?

Ghosh

Well, in the material that you dealt with, certainly brass and A-K steel in the
balanced biaxial end.

Hutchinson
That’s not what Mellor said.
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P. G. Hodge, Jr. (University of Minnesota)

I guess I can quibble about a term here which I am sure you will agree with.
You made the comparison of flow and deformation theory being essentially the
same under proportional loading. In the case of a test being carried out when
you have homogenous stress state, proportional loading and proportional stress-
ing are the same thing. In any application, however, you might have proportional
external loading, but because you have a non-homogenous stress state you may
have highly non-proportional stressing.

Hutchinson

I agree.

J. L. Duncan (McMaster University, Canada)

I'd just like to comment on one point. Given an experimentaily determined
forming limit curve and a Marciniak analysis, it's possible really to choose a
shape for the yield surface that will give you a fit.

Hutchinson

I think you are probably right on that.

Duncan

Except for some degree of difficulty and that is, when the forming limit strain
under plane strain conditions exceeds the strain hardening index value, the N
value in your notation. I wonder whether you can comment on this point, because
I think in all of your diagrams the forming limit strain that you measured was
equal or less than the strain hardening index, N, at the plane strain axis.

Hutchinson

No, that’s not really true. It’s true at the higher N values on the right hand
side of that diagram.

Duncan

I am talking about the plane strain axis, where & = 0.

Hutchinson

Well, then I should say that there is no issue in plane strain, because the
deformation theory and the flow theory coincide in all calculations. But, I think
the answer to your question is, if it’s perfect and if you don’t introduce an
imperfection, then the necking does occur at N. If you introduce an imperfection,
the limit strain is reduced fairly substantially as Neale will discuss tomorrow.




