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Summary—An exploratory study is carried out of various aspects of the development of
instabilities of traction-free surfaces of statically strained, rate-independent elastic—plastic
solids. Existence of surface instabilities as predicted by either a bifurcation analysis or a
quasi-static, imperfection-growth analysis, is found to be strongly dependent on the type of
constitutive law assumed. In most instances no instabilities are found using the standard
plastic flow law based on a smooth yield surface and isotropic hardening. Instabilities are
predicted when a finite strain deformation theory is assumed. These are documented for a full
range of proportional overall straining histories using a bifurcation analysis. A finite element
analysis employing a corner theory of plasticity is used to study the non-linear growth of the
instabilities starting from small initial surface undulations for the case of plane strain
deformation. Some experimental observations of surface irregularities which may be due to

surface instabilities are reported and discussed.

NOTATION
a, initial depth of cell (Fig. 5)
Cyu instantaneous plastic compliance tensor (3:9)
E,E,E, Young's modulus, tangent modulus and secant modulus
[ specifies non-linear range at vertex (3-12)
g hydrostatic part of the stress-rate (2-2)
k, ky, k; were numbers in eigenmode (2-12-13)
Iy, ! initial and current half-wavelength (Fig. 5)
L, instantaneous moduli
M, elastic compliance tensor (3-9)
power hardening index
s; deviator stress tensor
T. nominal traction vector
u; current displacements
v; velocity components of the eigenmode(2-12)
x; Cartesian coordinates
X parameter increasing with strain level (2-1)
z complex parameter in (A4)
a angle defining fixed strain ratio (2.1)
B angle defined by (A9)
& initial and current wave height (Fig. 5)
8; Kronecker’s delta
n.s Lagrangian strain tensor (3.2)
@ angular measure of stress-rate direction (3.11)
6, 6., 6, angles defining vertex on yield surface
€, overall strain in x,-direction (3.8)
¢; principal logarithmic strains
€ vyield strain
¢é; Eulerian strain-rate tensor
1, .* instantaneous shearing moduli (2.15)
o, effective Mises stress
o; true principal stresses
oo vield stress
o; Jaumann co-rotational rate of the Cauchy stress tensor
7% contravariant components of Kirchhoff stress tensor
¢ angle defined by (A12)
Q) angle defined by (2.13)
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1. INTRODUCTION

The possibility that a plane, tractionless surface of a homogeneously strained solid
loses flatness and develops surface undulations, or waves, was noted by Biot[1] in his
study of the plane strain deformation of non-linearly elastic solids. His bifurcation
analysis of the static deformation of a semi-infinite half-space reveals that the onset of
surface modes occurs at a critical stress, or strain, which depends on the properties of
the solid. Since there are no physical length quantities in the continuum formulation
of the problem, the scale, or wavelength, of the surface mode is undetermined and
may be arbitrarily short or long. The modes decay exponentially beneath the surface
with a wavelength which is of the same order as the surface variation. Similar surface
modes have been found in other plane strain studies by Sawyers[2] for non-linear
elastic solids and by Hill and Hutchinson[3] and Young[4] for a wider range of solids,
including elastic—plastic solids.

In this paper we pursue the subject further by using a bifurcation analysis to
determine conditions for the onset of surface instabilities under more general com-
binations of homogeneous straining. A finite element method is used to study the
non-linear growth of the surface instabilities, starting from an initial slight waviness of
the surface, under conditions of plane strain. It will be noted that the existence of
such instabilities depends strongly on the type of plasticity theory employed. Surface
instabilities are excluded, except possibly at very large strains, in a solid characterized
by a smooth yield surface and isotropic hardening. They do occur at moderately large
strains in a solid characterized by a deformation, or corner, theory of plasticity.

Observations of surface irregularities due to straining will be reported and dis-
cussed. We will also speculate about the possible role of surface instabilities in the
development of surface roughness.

2. BIFURCATION ANALYSIS OF SURFACE INSTABILITIES ON A HALF-SPACE
Let the undeformed semi-infinite half-space occupy the region x, <0 where x; (i = 1, 3) are set of fixed
Cartesian axes. The material of the half-space is taken to be an incompressible, rate-independent solid which is
initially isotropic, or at least orthotropic with respect to the x; axes. )
The fundamental straining history from which bifurcation occurs is prescribed to be a history of uniform
proportional straining with principal axes x;, With ¢ as the principal logarithmic strains, the fundamental
history is prescribed by

e=Xcosa, a=Xsina, €=—¢—¢€ 2.1

where a is fixed and X is increased monotonically from zero. The principal axes of stress are also the
x;-axes for the fundamental solution and the true principal stresses are denoted by o; with o, =0 since the
surface is traction-free. Without loss in generality, the free surface in the deformed fundamental state is
taken coincident with x, = 0.

In the fundamental state, we consider incrementally linear behaviour in the form

* , .
g;= L,'mEu + g8,~,- (Gpp = 0) (2.2)
where o is the Jaumann co-rotational rate of the Cauchy stress, €; is the Eulerian strain-rate and &y is the

Kronecker delta. Incompressibility requires é,, =0 and g is the hydrostatic part of the stress-rate. The
instantaneous moduli in (2.2) are assumed to satisfy the indicial symmetries

Li/u = Lﬁu = Ly = Luy. 23)
For an elastic~plastic solid the plastic loading moduli, as opposed to the elastic unloading moduli, are
pertinent in the bifurcation analysis[5] and these are understood to enter in (2.2).
Three constitutive models which will be used in the study are now given.
J, flow theory

Using the x;-axes as reference, let o; be the Cauchy (true) stress, s; be the deviator stress and
a. =V (3s;5,/2) be the effective stress. Then,

2
L= 3 ElLy —(E - E))sso.™” Q4

where E is Young’s modulus, E, is the tangent modulus of the uniaxial true stress—logarithmic strain at o,
and

1 1
I,‘,'u = i (8,-*8” + 8.18,") - 3 8,'[8”. (2.5)
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J, deformation theory

Two versions of a finite strain deformation theory of plasticity will be used. One is a true hyperelastic
non-linear elasticity and the other is a hypoelastic (path-dependent) relation. When the principal axes of
strain do not rotate relative to the material, both versions coincide and relate the principal components of
strain and stress deviator by

£,~=§ES,~ (l=1,3) (26)
where E; is the secant modulus of the uniaxial true stress-logarithmic strain curve at o,. In the non-linear
elastic version of J, deformation theory[6], the material is taken to be isotropic and incompressible with
(2.6) as the defining relation between principal strains and stresses whether or not the principal axes of
strain rotate with respect to the material. This completely specifies the material. With the aid of Hill's[7]
general formulas for the instantaneous shearing moduli of non-linear isotropic elastic solids, one can show
that in the principal x;-axes of the fundamental state

2
L = 3 E Qs — (E, — E))sysua. 2 + Quu QN

The last term in (2.7) shares the indicial symmetries of (2.3); only its “shearing” components are non-zero in
principal axes. These are

Qu= % E.[(e)— e coth (e, — ) — 1]
Qui= % E,[(e; — ;) coth (¢, — €3) — 1]
Q= % E,l(e;— €;) coth (e;— €3) — 1] 2.8)

where coth is the hyperbolic cotangent.
The Storen-Rice[8] version of J, deformation theory does not include Q in (2.7). That is, they take

2
L= 3 E Iy —(E, - E)sysuo.™ 2.9)

which leads to path-dependence when the principal axes of strain rotate relative to the material and (2.9) is
therefore hypoelastic. Since Qi212, Q313 and Qs in (2.8) are inhérently non-negative, the instantaneous
shearing moduli Ly, etc. in (2.7) are generally larger (and never smaller) than their counterparts in (2.9).

All three of the above relations give rise to the same fundamental solution for the stresses under the
proportional straining history (2.1)

o =0,
2 .
02=3 E,2cos a +sina)X,
o= % E,(cos a +2sin &)X (2.10)
where
l . 12
oJE, =(2IV3)X (1 +5sin Za) . 2.11)

The bifurcation analysis is given in the Appendix. In this section the results of that analysis are
summarized and illustrated. At the traction-free surface the velocity components (i.e. displacement
increments) of the eigenmode are

v; = v,° cos (k,x,) €08 (k3x3)

v, = 0,7 sin (kyxp) cos (kyx3)

v3 = ;0 €Os (K;X,) sin (k3x3) 2.12)
where k, and k; are wavenumbers which set the scales of the surface variations. The ratios of the amplitude

factors v?, one to another, are fixed in a given mode. The bifurcation condition depends only on the relative
proportions of k, and k; and not on their magnitudes and thus it is convenient to write

ky=kcos{l and k;=ksin} (2.13)

where k is positive and, without loss in generality, 0 < () < #/2. For a given history of straining (2.1), the
critical mode corresponds to that value of (1 associated with bifurcation at the lowest value of X. As seen in
the Appendix, the characteristic length of the exponential decay of the eigenmode beneath the surface is
proportional to k.

An important specialization of the family of modes (2.12) is to either k3 =0 (2 =0) or k,=0 (2 = 7/2),
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corresponding to an incremental plane strain mode (e.g. with k; =0, v; =0 and the variation of v, and v, is
independent of x,). The incremental plane strain problem has been treated in considerable detail by Hill and
Hutchinson[3] and Young[4]. It will be seen that the critical mode is an incremental plane strain field over a
significant portion of the range of a. Furthermore, the bifurcation condition can be expressed in closed
form for these cases. We now give the results for the incremental plane strain mode for the case k; =0
(©2 = 0); the case k, =0 is obtained by a trivial conversion.

For an incremental plane strain deformation in the x; — x, plane, (2.2) specializes to

= * .. .
01— 0 =2u*(é,— €n), 013 =2pép, € + € =0 2.14)
where
4u*=Lyy+Lyn—2Lyn, p = L. (2.15)

Here the notation of Refs. [3,4] has been used for the two instantaneous shearing moduli, i for shearing
parallel to the 1-2 axes and u* for shearing parallel to axes at 45° to the 1-2 axes. Note also that 4u* is the
tangent modulus governing a plane strain increment of tension parallel to either of the axes. Bifurcation in
the surface mode (£ = 0) occurs when the following condition is first met (Ref. [3], eqn 6.5; Ref. [4], eqn

5.28)
O _ 4% (28— az)
e 1+4#, \/(2u+0'2 . (2.16)

As already mentioned, the scale of the mode as determined by k, is arbitrary.
For a solid characterized by J, flow theory (2.4), u = E/3 is the elastic shear modulus and

u* % [E —~(E- E,)(cos a+1sin a)z (1 +Lin 2a)_l]. @17

2 2
For a#0 or a# m, (2.16) implies that the bifurcation stress for the incremental plane strain mode is on the
order of E and thus essentially unattainable in standard polycrystalline metals. For a =0 or a =,
utr= % E,. When p* <y, (2.16) can be replaced by
7222V 2uu*) 2.18)
which gives o, =(2/3)VVQEE,) for a =0 or a = 7. Even in this case, the bifurcation stress or strain is

essentially unattainable unless the hardening level is unusually low.
For the first version of J, deformation theory (2.7),

2 -1
ut =-31- [E, —(E. —E,)(cos « +%sin a) (1 +% sin 2a) ] @.19)
w= % E. (€, — €;) coth (¢; — €,). (2.20)

Numerical results will be presented for a material characterized by a pure power law in uniaxial tension, i.e.
o = KeV. 2.2

For this material the bifurcation condition (2.16) can be reduced to the following expression for X

{X[l—e“x]=2—%(1—N){2(1+%sin2a)_l (222

where ¢ =2 cos a + sin a. The bifurcation condition for the other possible incremental plane strain mode
(ky =10 and Q = 7/2) is obtained simply by taking = cos a + 2 sin « in (2.22).

The modulus u* is still given by (2.19) according to the hypoelastic version (2.9) of deformation theory
but u = E,/3, which is smaller than (2.20). Also for this relation the bifurcation condition (2.16) can be
reduced to an expression for X, but here only the condition for plane strain deformations (a =0 or a = 7,

Q = 0) will be given. It is
(1= 252)"2] _
e;[l (1 e, =N 2.23)

while the corresponding result for the true deformation theory from (2.22) is

&[l-e)=N. 2.249)

Curves computed from (2.23) and (2.24) showing the bifurcation strain ¢, in plane strain tension and
compression are shown in Fig. 1. (The critical mode is the incremental plane strain mode with @ =0 when
a =0 or a = m, as will be seen below.) The curve for the hypoelastic material terminates at €; =1/2 and
N = 1/2 since the material ceases to be elliptic at larger strains. Surface bifurcations precede the onset of
shear band formation in the hypoelastic material only when N < 1/2 in plane strain tension. For the true
deformation theory, surface bifurcations precede the onset of shear bands over the entire range of N
considered here in plane strain, as will be discussed further below.
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FiG. 1. Bifurcation strain in plane strain tension or compression as function of hardening
index N. Curve from true deformation theory is from (2.24) and curve for hypoelastic version

is from (2.23).
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In the remainder of this section we present numerical results for the true deformation theory (2.7) which
deforms in uniaxial tension according to (2.21). The analysis on which the numerical results are based is
given in the Appendix. The lowest bifurcation strain for any a can be obtained for N = 0-1 from Fig. 2 and
for N =0-5 from Fig. 3. Proportional straining, with a fixed in (2.1), corresponds to progressing along a
radial line in Figs. 2 and 3 making an angle a with the €,-axis, where X is the distance from the origin. For a
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F1G. 2. Critical strains for surface bifurcations for N =0-1.
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FiG. 3. Critical strains for surface bifurcations for N = 0-5. Outer curve marks onset of shear
bands.

given «, bifurcation first occurs at the strains where the inner curve is intersected. The curves are
symmetric about a 45° line through the origin and thus only one half of the figure is shown. Similar plots are
used to represent limit strains in sheet metal forming, where they are called forming limit diagrams. In fact,
the shapes of the surface bifurcation curves in Figs. 2 and 3 are remarkably similar to the shapes of the
forming limit curves in the relevant range where both principal stresses are positive (i.e. —266°<a <
116-6°).

The outer curve in each figure shows the limit of the elliptic region for the material. Outside that curve
localized deformation in shear bands becomes possible, as will be discussed further below.

Along the dashed segment AB in Figs. 2 and 3 the critical surface mode is the incremental plane strain
mode with =0 given by (2.22). Along CD the critical mode is the other incremental plane strain mode
with deformation increments confined to the x;-x; plane (2 = #/2). On the segment BC the critical mode is
not an incremental plane strain field but corresponds to some  in the open range 0 <} < #/2. In Fig. 3 for
N =-5, Q varied monotonically on the branch BC from 3 =50° at B to 1 =26°at C. In Fig. 2for N=-1,Q
varied from about 55° at B to 35° at C'. On the segment C'C between a =136° and a = 147°, surface
bifurcations did not occur within 99% of the value of X associated with the ellipticity limit.

States A and D, corresponding to equibiaxial tension and compression, respectively, are special in that
the bifurcation condition is simultaneously satisfied for both incremental plane strain modes, } =0 and
Q = 7/2. In fact, all modes, 0 <} < 7/2, are simultaneously available in these states, as has been shown by
Bassani, et al.[9].

States of uniaxial tension in the 3-direction lie along the radial line & = 116-6° in Figs. 2 and 3, while
uniaxial compression in the 2-direction corresponds to the line a = 153-4°. The critical uniaxial strain for
surface instabilities is plotted as a function of N in Fig. 4. In tension, (o3 > 0, o, = 0) the critical mode has
Q=47 for N->0 and Q decreasing monotonically to 29° for N = 1. In compression (0, <0, o3=0) the
critical mode is an incremental plane strain mode with =0,

As mentioned above, the outer curve in Figs. 2 and 3 marks the point in a proportional straining history
where shear bands may first emerge. A more extensive study of the onset of shear bands in the J,
deformation theory solid (2:7) will be presented elsewhere. Here we note without proof that, for the
examples in Figs. 2 and 3, the condition for the onset of shear bands is

se=af1-20-M (22 |[accomac-n+3a-m (42)] 2.25)

where Ao is the maximum principal stress difference and Ae is the maximum principal strain difference.
The shear bands occur on a plane whose normal and shearing direction lie in the plane of the maximum
principal stress difference.

3. NON-LINEAR GROWTH OF INITIAL SURFACE IMPERFECTIONS IN PLANE STRAIN

In this section a numerical analysis of the plane strain growth of a small initial surface irregularity is
carried out. Prior to any straining the material of the half-space is homogeneous but the traction-free
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F16. 4. Critical uniaxial strain for surface bifurcations in uniaxial tension or compression
parallel to surface.

surface is displaced vertically from the plane x, =0 by

h= % 8 cos (mxyfly) G.1)

as shown in Fig. 5. The initial half-wavelength of the imperfection I, sets the scale of the subsequent
deformation. For calculation purposes we choose a cell extending from crest to trough as shown in Fig. 5.
The initial width and average depth of the cell are , and a,. The aspect ratio ao/l is taken to be sufficiently
large such that the non-uniform deformation is confined to the upper portion of the cell, mimicking the
infinitely deep half-space.

A Lagrangian formulation of finite strain theory is used with the Cartesian axes x, (a=1,2) as
reference. Displacements, u,(x;, x,) and u; =0, of material points are measured from their positions in the
undeformed body and the Lagrangian strain tensor is

1 1
Nap = ’2' (ua,a + ug_,,) + i u,,,,,p.,,‘e. - (3.2)

Along the bottom of the cell we impose displacement increments such that the vertical displacement
remains zero and the horizontal displacement is a uniform stretch, i.e.

;=0 and w,= (’ ;olo)xz on Xx,=-—dp. 3.3

Thus, I is the deformed width of the cell, and increments of ! (or of //l, in a non-dimensional formulation)
are prescribed in the calculations. The upper surface of the cell is traction-free, while the lateral faces are
free of shearing tractions by symmetry. On the lateral faces,

=0 and T,=0 on x,=0 (34
w=I1-1 and T,;=0 on x;=1I, 3.5

where T, is the nominal traction vector referred to the x, axes.
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Ao ___bl___- R -
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r
Undeformed cell Deformed cell

F1G. 5. Schematic views of cell used in numerical calculations.
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The numerical solution is obtained by a linear incremental method[10-13] based on finite element
solutions of the variational equilibrium equation

L {7°B8Mgp + TP, ,0u, g} dA =0 (3.6)

where 7% are the contravariant-components of the Kirchhoff stress referred to the deformed base vectors
and 7 are the increments of those components. The finite element grid consists of quadrilaterals, each
built up from four triangular elements with linear displacement fields. The grid size is varied continuously in
the x,-direction so that the elements are smallest near the surface. A grid of 8 x 20 quadrilaterials was used
in most computations.

Calculations were performed for two constitutive laws; J, flow theory and J, corner theory.

J, flow theory calculations

The formulation for finite strain J, flow theory has been described and used elsewhere[10-13] and thus
only a curtailed description need be given here. The material is characterized by isotropic hardening based
on the J, (or o,) invariant. For an incompressible material the incremental constitutive law is (2.4) with an
appended elastic unloading branch. Conversion of the stresses and moduli to their appropriate com-
ponents in the deformed base vector system has been described previously [10-13].

To avoid the numerical difficulties associated with plane strain calculations for incompressible materials,
we have employed an elastically compressible material with a Poisson’s ratio » = 1/3 in all calculation. It is
expected that the numerical results will be essentially identical to those for an incompressible material in
the large plastic strain range in which the present phenomena occur. The true stress-logarithmic strain curve
of the material in uniaxial tension is taken as
oloy= el €< eo}
oloy=(eleg)N €> € 37

where o, = Ee,.

It was noted earlier that bifurcation strains were exceptionally large for a solid characterized by J, flow
theory. It is therefore of interest to see if the non-linear growth of the initial surface waviness can result in
significant surface undulations as the solid is strained. The example in Fig. 6 is for a material with N = 0.1
and € = ao/ E = 0-005 and for an initial waveheight to half-wavelength ratio 8y/l, = 0-004. The upper plot
shows the history of 8/ly as a function of the overall imposed strain

€, =In (/1) (3.8

The lower plot shows the ratio of the maximum principal strain component ¢,,, = €, at the bottom of the
trough on the surface to ¢,. Calculations were made using a mesh with 8 x40 quadrilaterals for a/l, = 20
since the decay length for the flow theory is large compared to I Fig. 6 shows rather little growth of the
initial waviness and of the maximum strain at least for overall strains less than about unity. The early
behaviour is essentially the same as for the J, corner theory discussed below.

0.02 v T v T v

b/t o 1
WL

0.01

1.10 T v v T T
[ =€
Emax’€a f max - “2 .
1051 4

1.00 * ! * ! *

F1G. 6. Growth of initial waviness as function of overall tensile strain ¢, for J, flow theory
with € =0-005 and N =0-1.

J, corner theory calculations

The instantaneous moduli from a deformation theory model the instantaneous moduli of an elastic-
plastic solid which develops a corner, or vertex, at the loading point on the yield surface when the stress
increments are nearly proportional. Bifurcations in an elastic-plastic solid characterized by a corner does
take place in such a way that nearly proportional stressing occurs everywhere[5), and this is the
justification for use of deformation theory moduli in bifurcation calculations for elastic—plastic solids. But
deformation theory cannot continue to represent an elastic—plastic solid in the post-bifurcation response in
most applications, including the present, since strong deviations from proportional stressing almost always
occur.
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Recently, a phenomenological corner theory of plasticity, called J, corner theory, was proposed by
Christoffersen and Hutchinson[14]. That theory is constructed such that the instantaneous moduli coincide
with those of J, deformation theory (in either form) for nearly proportional loading increments and increase
smoothly until they coincide with the elastic moduli for stress increments directed along or within the
corner of the yield surface. Thus the bifurcation predictions from J, corner theory are precisely the same as
those from the corresponding version of J, deformation theory.

Let L? denote the instantaneous moduli from either version of the J, deformation theory, (2.7) or (2.9),
but including elastic compressibility so that 3,,- = L% €y. Let the compliances MP be the inverse of L® and let
A be the elastic compliances. The “plastic part” of the strain-rate from deformation theory is

x
€4 = Cijoy where Cju =M O — Mijer- 3.9

Thus, C is the instantaneous plastic compliance tensor from deformation theory. In J, corner theory the
yield surface in the neighborhood of the loading point is a cone in stress-space with axis

Aii = sij(Cmnpqsmnqu)_”z (3 10)

where s; is the current stress deviator. The positive angular measure 9 of the stress-rate from the cone axis,
and thus from proportional loading, is defined by

* * *
cos § = C,«,-u/\;,«s,,,(C,,.,.pq J,,,,.Spq)_llz. (3,11)
A stress-rate potential is defined by

1

W=2

* K 1 x %
Moo + 3 (O Ciyoijou (3.12)
and the total strain-rate is obtained from it by

* * £ *
&= aW/a oy = (0* W30 yd010) B 3.13)

This leads to incremental compliances and moduli which depend on 6, i.e.

&= Mjk((e);'u (3.149)
and
g’ii = Lij(8)éu (3.15)

where L is the inverse of M.

With 6, as the cone angle in stress-rate space, elastic unloading occurs for 8. < 6 < 7 and f(8) =0. The
total loading range is specified by 8 < 6, with f(8)1 so that within this range corner theory coincides with
deformation theory. In other words, L is the tensor of deformation theory moduli for 8 < 6, and L is the
tensor of elastic unloading moduli for 6, < ¢ <. In the transition region, 8,<6 <#4,, f(8) is chosen to
smoothly merge the deformation theory moduli with the elastic moduli in a way which ensures convexity of
the incremental relation. Further details, including the specification of f(8), are given in the Appendix, along
with a brief discussion of implementation of the theory in the finite element scheme.

The numerical results shown in Figs. 7 and 8 were obtained using the corner theory based on the true
deformation theory moduli (2.7). The theory was fit to the same tensile stress—strain curve (3.7) used for the
J, flow theory calculations with € = 0-005 and » = 1/3. Here the aspect ratio ao/l, =4 was sufficiently large
to eliminate interaction of the free surface and the bottom of the cell. For plane strain tension in Fig. 7 with
N =0-1, the bifurcation strain of the perfect half-space is €, = 0-25, while in Fig. 8 for compression it is
€, = —0-20. Shown is the growth of 6/l; and €., = €, at the bottom of the trough normalized by ¢, in (3.8)
for two levels of initial waviness, &/ly=0-0004 and 0-004. For the smaller imperfection the waveheight
grows relatively little until the overall strain is approximately the bifurcation strain of the perfect half-space
and then it grows rapidly with increasing overall strain. In the case of the larger imperfection the waves
show noticeable amplification at lower levels of overall straining.

Fig. 9 displays a comparison of predictions from the two versions of the corner theory, one based on
(2.7) and the other on (2.9), for N = 0-2 and 8,/l, = 0-0004 in plane strain tension. The respective bifurcation
strains for the perfect case are ¢, =0-38 and 0-35. The curves are shifted by an amount which is
approximately equal to the difference between the bifurcation strains and are otherwise similar. In each
case the stressing is essentially proportional (except in the very early stages when the elastic and plastic
strains are of comparable magnitude) until the overall strain attains the respective bifurcation strain.
Complete elastic unloading (i.e. 8 > 6,) is not observed at any point in the body even after the upturn in the
growth of the surface wave. However a region in which the material response has entered the “non-linear”
range 6, < 0 < 6, starts pointwise when the overall strain is about the bifurcation strain and spreads into the
body.

In summary, it appears that a solid characterized by a smooth yield surface and isotropic hardening is
not susceptible to surface instabilities within the range of strains investigated here, while a solid modelled
by a yield surface which develops a corner is susceptible. To an extent the situation is parallel to that of
necking in thin sheets under biaxial tensile stretching. A thin sheet characterized by deformation theory
does undergo bifurcations at strains which are in at least qualitative agreement with experiments{8]. A
perfect sheet of material characterized by J, flow theory does not undergo necking bifurcations when both
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Fi6. 8. Growth of initial waviness as function of overall compressive strain ¢, for J, corner
theory with ¢, = 0:005 and N =0-1.

principal in-plane strains are tensile. However, a non-linear growth analysis of an initially imperfect sheet
does predict necking when J, flow theory is used, although at strains which are substantially larger than
those observed experimentally. The same non-linear growth analysis using a kinematic hardening charac-
terization of the vield surface predicts overall necking strains which are reasonably close to the defor-
mation theory predictions[15]. The high curvature of the kinematic hardening yield surface of a hardening
material at moderately large strains, by comparison to the low curvature of the isotropic hardening surface,
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Fic. 9. Comparison of predictions for two versions of corner theory based on (a) the true
deformation theory and (b) the hypoelastic deformation theory. In both cases e; = 0-005 and
N =0-2,

is not far removed from a corner. It would be of considerable interest to repeat the analysis of Fig. 6 using
kinematic hardening theory and thus to determine whether surface instabilities are only associated with
cornered yield surfaces. As in other necking-like phenomena, one expects material rate-dependence to have
a very strong influence on the growth of surface waves.

4. OBSERVATIONS OF SURFACE INSTABILITIES

A few bend tests have been made in the laboratory to observe surface roughness that develops on
aluminum bars. The surfaces of the bar are in a state of either plane strain tension or compression away
from the edges, to a good approximation. The gradient of strain through the bar limits the wavelength of
any surface mode to be small compared to the thickness.

The commercial aluminum bar used for these experiments has the cross-sectional dimensions 40x
15 mm. In a uniaxial tensile test Young’s modulus and the yield stress for this material are found as
E =66000 MPa and oo/E =0-0038 and the response can be approximated as power hardening with
N =0-04. The average grain diameter inside the bar is approximately 70-100 um. At the surface one or two
layers of grains are larger, with dimensions around 350400 wm in the longitudinal direction, 140-170 um
along the width and 70-100 m in the normal direction.

The tests are made both for the original surface of the bar and for a bar with 1 mm material machined
off the surface, so that the new surface has the small grain size characteristic of the inside of the bar.
Machining is made in the longitudinal direction of the bar so that the machining traces will not interact with
the surface waves predicted by the theory. In the tests it is quite clear that a larger grain size gives more
roughness (i.e. larger § but not necessarily larger 8//) and that the roughness increases with increasing
strain, as has been observed by previous authors (e.g. Kienzle[16]). The point of main interest in the
present investigation is however not as much the grainy appearance of the deformed surface as the
tendency to form waves perpendicular to the principal direction of stretching or compression.

The stretched surface shown in Fig. 10(a) is the original surface of the bar, whereas in Fig. 10(b) 1 mm
of material has been machined off; in each case the surface has experienced an overall strain level of about
0-3-0-5. In both cases there is a pattern corresponding to grain size, but the main wavelength in Fig. 10(a) is
about 2-3 grain sizes and in Fig. 10(b) about 6-8 grain sizes superposed on the fine pattern. The orientation
of the waves is that of the predicted incremental plane strain mode. Fig. 10(c) shows the original surface
stretched somewhat further than in Fig. 10(a). It is seen that the large strains at the very bottom of the wave
troughs lead to shear fracture that propagates deep into the bar.

Hahn and Rosenfield[17] have observed surface irregularities in plane strain tension which they label as
superbands. These bands run perpendicular to the maximum tensile direction and are about one grain in
width and many grains long. Micro-cracks were observed to develop at the bottom of the bands and to grow
into a shear fracture running along the band, similar to what is seen in Fig. 10(c).

The wavelength to be expected in the present tests is set by the initial imperfections present in the bar,
assuming they are very small compared to the thickness. Wavelengths comparable with a few grain sizes
seem natural, as the major effective imperfection is probably represented by the grains. On the compressive
side the patterns were similar but not quite as distinct, particularly in the case of original large grained
surface. Wrinkles on the compression side of bent bars have also been observed[18, 19] for steel specimens.

A very nice wave pattern appeared on some specimens of Larsson[20] during an experimental
investigation of the instability of closed-ended thick-walled cylinders under internal pressure. Here the
axisymmetric state of deformation bifurcates into an eccentric shape and during the final collapse the tube
bulges out in one region with considerable extra straining until fracture occurs. The state of deformation is
again approXimately plane strain tension in the circumferential direction, at least before substantial bulging
occurs. Fig. 11 shows that surface waves parallel with the tube axis have developed in the highly strained
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region, where final fracture has occurred. The waves with a wavelength of about 0-25 mm appear only in the
highly strained region and are clearly perpendicular to the direction of machining and in the direction
predicted by the theory. The tube of Fig. 11 is one of a number of aluminum specimens on which waves
appeared in all cases, whereas no waves were observed on a similar series of copper specimens[20]. The
aluminum alloy employed has a strain hardening exponent N =0-1 and the copper has N = 0-33.

Initial surface roughness develops as a consequence of heterogoneous deformation at the scale of the
crystalline grains. We speculate that, once the critical conditions have been met for surface instabilities to
grow, the roughness tends to become more correlated, consistent with the critical surface mode, and begins
to develop more rapidly. There is some evidence that surface roughness on thin sheets under biaxial
straining does start to grow rather dramatically (outside the neck region) after an initial period of relatively
slow development[21].
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APPENDIX

Bifurcation analysis

In the x;-axes introduced in Section 2 with (2.2) specifying the incremental relation, the non-zero moduli
are Lyyy1, Lyn, Lasas, Litzzy Lisss Laass, Ligias Lisgs and Ly, together with the components related to these by
the indicial symmetries (2.3). Equilibrium requires ‘

'iij.i =0 (=13 (AD)

where ri; is the nominal stress-rate. Using the relation between the Jaumann-rate of Cauchy stress and the
nominal stress-rate, one can show that (A1) can be rewritten as

Gt +8i=0 (v,, =0) (A2)
for j=1,3 where

1 1 1 1
Cija = Lija + 3 oudyj — 3 oubii — 3 ouby — 3 o8 (A3)

Equation (A2) admits solutions of the form

v, = A,e* cos (k;x;) cos (k3x3)
vy = A,e* sin (kyxy) cos (ksxy)
vy = Aze™ cos (kyx,) sin (k3xy)
g = Ge™ cos (kyx,) cos (k3x3) (A4)
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(a)

(b)

©

F1G. 10. Stretched surfaces on bent aluminum bars. (a) Original surfaces. b) Surface obtained
by machining off 1 mm material. (c) Original surface stretched to fracture.
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Fic. 11. Surface wave pattern in highly strained region on pressurized aluminum cylinder
(Larsson[20]).
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where the k’s were introduced in (2.12) and (2.13), z may be complex, and the A; and G may also be complex.
Here and below, physical quantities are given by the real part of a complex expression. Incompressibility
requires

A]Zk + A2kz + A;k] =0 (AS)

Substitution of (Ad) into (A2) using (AS) to eliminate A, leads to three homogeneous equations for A,k,,
Ask; and G. The requirement that the determinant of the system of equations vanish gives a cubic equation
for 22, i.e. :

2+ diz*+dyzt+d;=0. (A6)

The coefficients d; are real; they depend on the ¢y and on Q but not on k. The expressions for d; are
somewhat lengthy, but easily derived, and will not be listed.

In the elliptic range there are three roots z of (A6) with positive real part; denote them by z; (i = 1,3). At
least one of the roots is real. The other two are either real or are complex conjugates of one another,
depending on the ¢, and on (.

Let A;;, (j = 1,3) and G, be a solution to the homogeneous equations (A2) and (A5) associated with z;.
These are assumed to be normalized in some convenient fashion. The eigenmode is a linear combination of
the three solutions (A4) for which z has a positive real part, i.e.

n

3
2_‘1 ER[A67**1] cos (ksx,) cos (kyx3)

Vi

g g & R[G e cos (kyxz) cos (ksxs) (A7)

where ®[ ] denotes the real part and analogous expressions hold for v, and v;. The conditions for zero
traction-rate on x, = 0 are #); = 0 (j = 1,3) and these reduce to a set of three equations for the & of the form

™M

Hy€=0 (i=13). (A8)

The H; are real and are readily obtained from the previous expressions; they depend implicitly on the
current state (i.e. on X and a) and on ). The eigenvalue equation for a non-trivial solution to (A8) is the
vanishing of the determinant of the 3 X 3 matrix Hj, assuming no two roots z; are equal.

An alternative procedure, which is better suited to numerical work, is to evaluate the symmetric matrix
S where

0 wlky wlky 303
[ dxlf dXzJ. " dX]C,'jHUjv,‘Ul_k = 2| 21 §,§,S,,
) =1 7=

—x ks -

Below the lowest eigenstate, S is positive definite for all 2. The lowest eigenvalue X is associated with that
value of 2 for which S first becomes positive semi-definite, assuming no two roots z; are equal. Fora given a, X
was increased in small steps and the positive definiteness of S was checked at many values of Q over the range
0 < Q < 7/2. The critical value of X for Q = 0or 7/2 is (2.22). An exceptional  where two roots are equal does
not require special treatment since, if it corresponds to the critical mode, S will lose positive definiteness at
slightly higher X for { in a range about the exceptional value.

J, corner theory

The notation for the corner theory used in Section 3 and below is the same as that employed in Ref. [14]
and the reader is referred to that reference for full details of the theory. Here we simply complete the
specification of the function f(9) in the transition range 6, =< 6 < 6..

In stress-space the yield surface cone in the vicinity of the current deviator stress is specified by g = .
where

Ju & \12
cOos B = Ci'¢ (5 S,','S,'i) (A9)
In the present calculations we took
tan B. = — oo(ol— ao’) 1 for %s B.= 37" (A10)

and we limited the cone angle so that it was never sharper than 37/4. Thus, once the strains were well into
the plastic range the cone angle 8. is fixed at 3n/4. The cone angle 6. in stress-rate space is given by[14]

- (-E_NE_\!
tan 6, = Va tan g,, “'(E,q 1)(5 1) (Al1)

where ¢ =1 for the version (2.9) and g = (V/3g,JE,) coth (V30,/E,) when (2.7) is used in plane strain with
compressibility neglected.
The plastic strain-rate vector falls within the range 0 <0 <4, where 6, = 6. — 7/2. The total loading
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range, 0 < § < 6,, was taken to be 6, = 1/26,. The function f(0) is defined by (Ref. [14], Section 2)

-1 =
f(o) = g(d’)[l + 12(4’)]! B(d’) ¢ +arctan (l(‘P)) (AIZ)
where
14) =5 @gld)g™!
and
0= (- oo Goepz (AL3)

The expression for the instantaneous compliances M(#8) in (3.14) are given in Ref. [14]; L(9) is obtained as
its numerical inverse.

The components of the moduli must be transformed to the deformed base vectors in the same manner as
is done in the J, fiow theory calculation. The direction of the stress-rate as measured by 6 should, in
principle, be obtained by iteration at each incremental step. However a simpler scheme proved to be
accurate in which 6 is taken to be the value determined in the previous step. Since small increments are
used in the computation anyway, this scheme leads to small errors and appeared to introduce no numerical
instabilities.




