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ABSTRACT
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INTRODUCTION

Singularity fields associated with near-tip behavior of solutions to crack problems
have played a central role in the development of fracture mechanics. Linear
elastic fracture mechanics employs the stress intensity factor K which measures
the intensity of the singular stress and strain fields obtained from linear
elasticity theory. For nearly all materials to which linear fracture mechanics is
applied, nonlinear effects such as plasticity, creep or even nonlinear elasticity
intervene near the tip to invalidate the assumptions of linear elasticity theory.
Nevertheless, under certain restrictive conditions the stress intensity factor
still uniquely measures, or controls, the near-tip behavior of the material, and
this is the basis of linear elastic fracture mechanics. The effort to understand
and document these restrictive conditions was an important part of the development
of the subject.

More recent progress in nonlinear fracture mechanics has close parallels to earlier
developments in the linear theory. The J-integral is the measure of the singularity
fields from the small strain deformation theory of plasticity. Here, too, this
description of an elastic-plastic material breaks down sufficiently near the tip

due to effects not modeled by deformation theory such as strongly nonproportional
plastic deformations, finite strain effects or micro-voiding and cracking. While
use of J 1is not restricted to small scale yielding at the tip, use 1s subject to

a number of restrictive conditions imposed to ensure that J controls near-tip
behavior in a unique way. The process of detailing these restrictions is still
underway, and we will outline the current status of this effort.
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It has only recently become clear that under rather restrictive conditions, also
reviewed here, J controls near-tip behavior under moderate and large scale
vielding even in the presence of small amounts of crack growth. When these
conditions are met, the resistance curve approcach (based on an experimentally
measured relation between J and crack advance) can be used to analyze the
stability of limited amounts of crack growth. This extended use of J 1is of
considerable practical significance since the materials for which nonlinear
fracture mechanics is most applicable tend to display fairly substantial tearing
resistance. In other words, appreciable increases in J above the value at which
crack growth starts are possible with only small amounts of accompanying crach
advance. Under these circumstances, the importance of the initiation of crack
growth, per se, becomes secondary to the point at which a small amount of crack
advance becomes unstable.

While it seems reasonably certain that the J-resistance curve approach will have
an important range of applications, it is equally clear that fairly severe
restrictions on its use will have to be invoked, including limitations to small
amounts of crack growth. At the present moment these restrictions are poorly
understood. This reason alone provides impetus for more fundamental studies of
quasi-static crack growth employing near-tip stress and strain fields coupled with
basic laws governing material separation. It 1s also expected that a more
fundamental understanding of quasi-static crack growth will reveal how material
parameters such as vield stress, hardening, inclusion size and spacing, among
others, influence tearing resistance. In problem areas such as creep cracking,
where even more variables must be taken into account, an understanding of near-tip
behavior becomes almost essential.

The review which follows will concentrate on developments taking place since ICF4.
It will start with a discussion of conditions for applicability of J to
stationary and growing cracks under moderate and large scale vielding conditions.
We will then turn to recent work on the characterization of near-tip stress and
strain fields for growing cracks, including efforts to predict tearing resistance.
The importance of strain hardening will be emphasized, and it will be noted that
the status of near-tip fields for growing cracks in hardening materials is
uncertain. The survey ends with a discussion of singular fields which have just
been discovered for cracks growing in an elastic creeping material. This review
will not cover recent advances in finite strain studies of near-tip fields of
cracks in nonlinear elastic solids. Work in this area has been surveyed by
ternberg (1979).

CONDITIONS FOR J-DOMINANCE AND J-CONTROLLED GROWTH

Stationary Cracks under Monotonic Loading

The J-integral (Rice, 1968) is a measure of intensity of the field at the tip of a
crack in a material modeled by the small strain deformation theory of plasticity.
Specifically, consider a strain hardening material for which the nonlinear
(plastic) part of the strain € is given in terms of the uniaxial stress c¢ by
the power-law relation

n
s:/&:O ~ a(o/oo) for £ >> € (1)

where % 1s the yield stress and € " OO/E where E 1is Young's modulus. In

this case, the so-called HRR singularity field (Hutchinson, 1968; Rice and
Rosengren, 1968 is specified by
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where r and 6 are planar-polar coordinates centered at the tip with 8

measured from the line ahead of the crack. The dimensionless €-variations, 5ij 5
gij and ﬁi , depend on the symmetry of the field and on whether plane strain or
plane stress holds as the tip is approached, as does the normalizing constant In

For a hardening material with n finite, (2) and (3) imply a unique relation
between the stress and strain fields sufficiently near the tip and J within the
context of the small strain deformation theory. Let R denote the size, or
roughly the radius, of the region at the crack tip within which the singular
fields, (2} and (3), provide a good approximation to the full solution based on
the small strain deformation theory. Thus, R measures the zone of dominance of
the singular fields. It depends on whether plane strain or plane stress is
assumed, on load, on strain hardening and on configuration. Some estimates of R
for specific examples will be given below.

For J to be a meaningful unique measure of near-tip behavior it is essential
that the region of incipient material separation (the fracture process zone) and
the region in which finite strain effects become important be contained well
within the zone of dominance measured by R . 1In most ductile metals the fracture
process zone is roughly the same size as the finite strain region near the blunted
tip of the crack. Finite element solutions for plane strain, Mode I in small
scale yielding by McMeeking (1977) have shown that finite strain effects are only
important within a radius of about 2 or 3 times the crack tip opening displacement

ét . Outside this radius there is little difference between the predictions of

small strain theory and finite strain theory. Assuming the fracture process zone
is also within this radius, it follows that for Mode I in plane strain the zone
of dominance of the J-fields must satisfy (approximately)

R > 38 (5)

if J 1is to be a unique measure of crack-tip behavior under monotonic loading.

The relationship between an effective definition for ét and J from the

singularity field (4) has been provided by Shih (1979) for both plane strain and
plane stress in the form of curves for d(ueo,n) where

_ J
ét = d(ueo,n) EE (6)

In plane strain with light to moderate strain hardening
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Assuming (7) holds, the condition (5) for J-dominance can be restated as
(approximately)

J
> —_
R>1.8 = (8)

0

Linear elastic fracture mechanics is premised on the assumption of small scale
yielding, which can also be considered as the basic reference for nonlinear
fracture mechanics. In small scale yielding under Mode I, plane strain conditions,
the maximum extent of the plastic zone from the tip occurs at roughly #70° from
the line ahead of the crack and for materials with n>3 1is given approximately
by .15J/(00€0) . Thus, by comparison with (8), it can be seen that the maximum

extent of the plastic zone in small scale yielding is more than 25 times the

minimum necessary dominant zone size for a typical yield strain of €y = .003

Numerical analyses of the small scale yielding problem (Tracey, 1976; McMeeking,
1977) do indeed verify that the J-dominance condition (8) for the HRR-fields is
satisfied for all n , including n-+= corresponding to the elastic-perfectly
plastic limit.

Under large scale yielding conditions the size of the zone of dominance R 1is a
strong function of geometric configuration and also of strain hardening in certain
cases. In the limit of perfect plasticity (n-+=) the near-tip stresses and
strains are not uniquely related to J , or any other single parameter, independent
of configuration when large scale yielding occurs as emphasized by McClintock
(1971). At one extreme where plastic flow is sufficiently constrained, the stress
field at the tip of a Mode I plane strain crack is the well known Prandtl field
with its high level of triaxial tension ahead of the tip. This is the field that
prevails at the tip in small scale yielding and it is also the limit of the HRR
fields (2) as n-+= . For geometries for which this high triaxiality is
maintained, there is good reason to assume that J should adequately correlate
the near-tip behavior of one such configuration with another and with small scale
yielding. There is numerical and experimental evidence that plane strain
configurations such as the edge-cracked strip in bending, the deeply double edge-
cracked strip in tension and the standard compact tension specimen each maintains
this high triaxaility level at the tip even under fully plastic conditions whether
the material strain hardens or not.

In the case of the deeply-notched strip in bending (or the compact tension
specimen) under fully plastic yielding, one can argue that the zone of dominance

R must be some fraction of the length of the yielded ligament b , independent of
loading. Numerical studies of Shih and German (1979) indicate that (approximately)

ne

R = .07b (9)
for the fully yielded bend-type specimen. This result is not strongly dependent
on strain hardening. Combining (9) with condition (8) for J-dominance gives

R (10)
%

This constraint on ligament size has been previously established for this type of
configuration by testing specimens with varying ligament size. Note that (10) can
also be interpreted as the requirement that b exceed about 40 times the crack
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opening displacement. Since the crack opening displacement at the initiation of
growth in a tough steel can be, typically, .2 mm, the minimum ligament size for
such a material with this specimen-type is about 1 cm.

At the other extreme are configurations, such as the center-cracked strip in plane
strain tension, which lose the high triaxial state of stress ahead of the crack
tip under fully plastic vielding. Accordingly, the near-tip fracture environment
cannot be correlated with high triaxiality cases. The zone of dominance R of
the HRR field goes to zero with zero strain hardening (n—+<«) for the fully
plastic center-cracked strip under tension. Even in the presence of moderate
strain hardening R will tend to be very small. Numerical studies of the fuilwv
vielded center-cracked strip by McMeeking and Parks (1979) and Shih and German
(1979} indicate that (very approximately) R=.0lb and

b > 200

-

Q
=) Ib
P
=

when n=10 , where b 1is again the uncracked ligament length. This constraint
severely restricts the use of J to correlate the large scale yielding of this
type of configuration with the others mentioned above.

Suggestions have been made that two parameters -- J and a measure of near-tip
triaxiality -- might suffice to characterize the full range of near-tip fracture
environments, but nothing substantive along these lines has yet appeared. Most
effort has been invested in tests on configurations which maintain the high crack-
tip triaxiality associated with J-dominance since these conditions appear to be

the most critical in that they lead to crack initiation and advance at the lowest
levels of J for a given material, although some unpublished experiments by

F. A. McClintock indicate that this may not always be the case. Further discussicn
of the issues related to J-dominance can be found in a recent article by Parks
(1980).

Quasi-Statically Growing Cracks under Monotonic Loading

Paris and coworkers (1979) and Turner (1979) have applied J to analyze small
amounts of quasi-static crack growth and to determine the point at which the quas:i-
static advance becomes dvnamically unstable. The approach is analogous to the
K-resistance curve analysis developed many years ago and includes the K-based
analysis as a special case in the limit of small scale yielding. The rationale

for using the deformation theory J to analyze quasi-static crack growth relies

on the substantial tearing resistance of most ductile materials. Once crack
advance has been initiated, additional advance requires positive increments of J
The resistance of the material to tearing is determined experimentally in the form
of the J-resistance curve, JR(Aa) , where Aa 1is the amount of crack advance.

Some of the toughes

t pressure vessel steels require a doubling of J above the
initiation value, J

Ic to advance the crack one or two millimeters, and J-values

as much as 10 times JIc have been measured with standard plane strain test

specimens. In what follows, it is useful to introduce the material-based length
quantity D corresponding to the amount of crack advance needed to double J

above JIC . Estimated from the initial slope of the resistance curve, D 1s

given by

1 _1_{(”_*?] -
D JIC da c ’
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Hutchinson and Paris (1979) have discussed conditions which must be met for J-
controlled growth. The conditions for dominance for the stationary crack
mentioned in the previous subsection still apply. Additional restrictions must
also be satisfied to ensure that the J-field (e.g. the HRR field) dominates
behavior outside the immediate vicinity of the crack tip where elastic unloading
and strongly nonproportional plastic deformations occur. These latter effects

are not modeled by the deformation theory on which J is based. One restriction
is that the amount of crack advance should not exceed the zone of dominance of the
crack tip singularity field, i.e.

ha < R (13)

The second condition is less obvious. It guarantees that the zone of
nonproportional plastic deformation is smaller than R and it takes the form

D <R (1%)

For a fully yielded, bend-type configuration under plane strain for which {9)
applies, conditions (13) and (14) become

%? < .07 (15)
and
dJ
39—{355} > 14 (16)
Ic c

The above should only be regarded as estimates. Test results do indicate that J-
controlled growth tends to break down when (15) is exceeded (Shih, Delorenzi and
Andrews, 1979), while (16) may overly restrict b

The ability to analyze the stability of small amounts of crack growth using the
resistance curve approach is of considerable importance for tough materials since

large increases of J above JIc are possible, as has already been emphasized.

The method is semi-empirical in that it is based on experimentally measured
resistance data. While this approach may be less fundamental than one might wish
from a scientific standpoint, the use of experimentally determined resistance data
is a strength of the method from the vantage point of engineering application. At
the same time, however, the method is quite limited. A more fundamental approach
using a near-tip failure criterion is needed to deal with more extensive crack
growth and with materials and configurations for which J-controlled growth does
not pertain.

GROWING CRACKS: NEAR-TIP FIELDS AND STABLE CRACK ADVANCE IN ELASTIC-
PERFECTLY PLASTIC SOLIDS

The main progress in the analysis of near-tip fields of growing cracks has been
for elastic-perfectly plastic materials and our discussion will start with this
work, first for Mode III and then for Mode I in plane strain.

Mode III

McClintock (1958) and McClintock and Irwin (1965) were the first to demonstrate
that the source of stable crack growth is due to the nature of plastic flow. They
analyzed the quasi-static growth of a crack in an elastic-perfectly plastic
material with elastic shear modulus G , shearing yield stress T and shearing
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vield strain Y0= TO/G . They considered Mode 111 deformations (anti-plane shear)

under small scale vielding conditions and took the yield surface to be the Mises
surface, which is identical to the Tresca surface in anti-plane shear. By
imposing a simple near-tip failure criterion on the solution, they were able to
predict the tearing resistance curve of the material for small scale yielding.

In a general increment of crack advance involving both an increase in crack length
da and an increase in the extent of the plastic zone ahead of the tip, drp ,

the increment in the shear strain dy a distance r directly ahead of the tip in
the plastic zone is

dv = yor—ldrp + yor_1[1+ ln(rp/r)]da (17)

When no crack advance has occurred the strain ahead of the tip in the plastic zone
from (17) 1is

Y = Y0<rp/r) (1&)

where the plastic zone size is rp= (Z/ﬂ)J/(TOYO) in small scale yielding. After

extensive crack advance (i.e. more than several times the plastic zone size) the
crack tip field reaches a steady-state in which the field appears unchanging to an
observer moving with the tip. In the steady-state limit dr_=0 and (17) can be
integrated to give P

Yy = y0[1+ Qn(rp/r)-télnz(rp/r)] (19)

A numerical analysis of the steady-state problem by Chitaley and McClintock (1971)
gives essentially the same plastic zone size rpE (2/ﬂ)J(T0y0) as in the

stationary problem. Thus, comparison of (18) and (19) reveals a much stronger
strain singularity for the stationary crack than for the steadily growing crack.
This is a consequence of the irreversible nature of plastic flow. More
specifically, it 1s a result of resistance to plastic flow experienced by a
material element when the deformation involves changing relative proportions of
the stress components (nonproportional stressing), as occurs when the advancing
tip passes over or under a material element.

McClintock and Irwin (1965) imposed the condition that the initiation of growth
and continued advance of the crack requires attainment of a critical shear strain
Y. @ distance Ty ahead of the tip in the plastic zone. The quantities T and

T, should be regarded as parameters which (hopefully) can be chosen to fit

experimental data rather than precise measures of actual failure parameters. With
Jc denoting the value of J at initiation of growth and Jss the value required

for steady-state growth, one finds from (18) and (19)
exp(v2x-1-1]} (20)

where )= YC/YO . For A=1, JSS= Jc ; for A=10 , JSS= 2.9Jc ; and for X=30

Jss= 26.6Jc . The potential for stable crack growth in a ductile material is

considerable.
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Equation (17), together with the fracture criterion, can be used to predict the
entire resistance curve in small scale yielding assuming rpE (Z/F)J/(TOYO)

Here we will only record the initial slope of the resistance curve for the first
increment of crack advance expressed in terms of Paris's nondimensional tearing
modulus appropriate for Mode III shearing:

—3} =30 -1-2n ) (21)
o}

giving T=0 for A=1, T=10.5 for X=10, and T=40.2 for X=30 . The
material-based length parameter (12) corresponding to the crack advance for a
doubling of J above JC is given by

A

D= sT1-mx

(’,")
[ -

For large X , D 1is essentially rC and even for *=3 D 1is only about twice

T
C

Mode [, Plane Strain

Rice and Sorensen (1978) and Rice, Drugan and Sham (1980) have approached the

Mode I, plane strain crack growth problem in the same spirit as was described for
the Mode III problem. The analysis of the Mode I problem is considerably more
difficult, however, and more reliance on numerical work 1s necessary. Furthermore,
a sensible near-tip fracture criterion is less obvious in Mode I plane strain since
the most intense stress conditions are ahead of the tip while the straining is most
intense above and below the tip according to the small strain formulation. Rice
and coworkers used the crack opening displacement § a given distance r_ behind
the tip as an integrated measure of the near-tip intensity. ¢

Another feature which somewhat complicates the elastic-perfectly plastic Mode I
analysis is the fact that there is a difference between the stationary and growing
near-tip stress fields in Mode I, while in Mode III the stress state in the
important region ahead of the tip is the same in both cases. The near-tip field
for the advancing crack in an elastic-perfectly plastic solid in Mode I, plane
strain has been worked out independently by Slepyan (1974), by Rice, Drugan and
Sham (1980), and by Gao (1980). Fortunately for fracture analysts, the near-tip
stress field for the growing crack is not radically different from the Prandtl
field at the tip of the stationary crack. The main difference is the existence
of two wedge regions of elastic unloading extending from about 115° to 1637 above
and below the tip. OQOutside this elastic unloading wedge the stresses are within
a few percent of those of the Prandtl field.

The approach of Rice and coworkers applies to large scale yielding as long as the
high triaxiality of the Prandtl field and that of the modified Prandtl field is
maintained. Here we will limit discussion to small scale yielding situations.
The material is elastic-perfectly plastic with Young's modulus E , tensile yield
stress OO , Poisson's ratio of .3 and a Mises yield surface. The increment in

crack opening displacement a small distance r behind the tip is related to
simultaneous increments in J and a by

o r '
#=a.g Yy, gn[—o] (23a)
OO E T
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where

L8]
wl

a= .65 , B=35.08 and r, = (23b)

Q

m
O o

A numerical solution for the growing crack was used to obtain « and the
numerical coefficient .23 in the expression for T, by a fit to (23a), while B

was derived from the modified Prandtl field. The length quantity T is slightly
larger than the small scale yielding plastic zone size.

For the stationary crack (23) gives

€ = /G (23)
0
independent of sufficiently small r . At steady-state when di=0 , (I3
integrates to
) T
3w, LTl (0] ’
§ = 2 —r(l+ &nl— (25
£ LT}

Imposition of the fracture condition &=1¢ at r=7r1_ using {24} and (25)
permits one to solve for the ratio

L 1';“ exp(.197)) (26a)
c
where now
6c E
B a =i o (26b)
¢ 0

As 1n the case of Mode III, (23) permits the calculation of the entire small scale
vielding resistance curve. The initial nondimensional slope of the resistance
curve is

(dJ N .
1= BRI - 155 708 an(L96n) (27)
2\da |
o) c
0
and the amount of crack advance needed to double J above ch from (12) is
A
D =T *=5708 W(.060 (28)
If » is regarded as a parameter to be chosen to fit experimental data for the
initial tearing modulus (27), then for moderately tough tc tough materials A
would fall in the range from about 20 to 150 corresponding to T-values between
about 7 and 200 which have been tabulated by Paris and coworkers (1979). For 1o
this same range of X , JSS/JIC from (26a) varies from about 3 to more than 10 ,

For high T , D= T, as in Mode III.

From the above it is seen that extensive stable crack growth is to be expected
under plane strain conditions in ductile metals. Rice and coworkers have also
discussed the relation between growth under small scale yielding to that under
large scale yielding for some special cornfigurations. For elastic-perfectly
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plastic materials under large scale yielding they find that J-controlled growth is
never strictly achieved. However, for sufficiently high tearing resistance they
find rather minimal configurational dependence.

The possibility of the exceptionally large ratios JSS/JIc from (26a) or from (20)

as reflected by the exponential dependence on X raises the question of the
sensitivity of these predictions to the material model on which they are based.
This exponential dependence comes about because of the logarithmic dependence on
r in the terms associated with crack advance in (17) and (23a), and these terms,
in turn, are tied to the elastic-perfectly plastic solid with the smooth Mises
yield surface. Effects of strain hardening and vield surface corner formation on
steady-state crack growth have been investigated using a specialized finite
element procedure by Dean and Hutchinson (1980) and Parks, Lam and McMeeking
(1981j, and these effects will be discussed in the next section. Numerical
studies of the steady-state problem have been carried out recently by a number of
investigators. In addition to the two studies just mentioned, Nguven and
Rahimian (1980) considered a semi-infinite crack propagating steadily in an
elastic-perfectly plastic strip of constant width, and Andersson (1974) analyzed
the small scale yielding, Mode I plane stress problem, as well as the Mode 111
problem. Douglas, Freund and Parks (1981) considered dynmamic steady-state growth
in Mode III small scale yielding in an elastic-perfectly plastic material by
taking into account inertial resistance to motion. They present results for the
effect of crack tip speed on the plastic zone, the strains ahead of the tip, and
the crack opening displacement. Aboudi and Achenbach (1980) investigated the
transient approach to steady-state in Mode III for a crack running dynamically in
a visco-plastic work-hardening material.

GROWING CRACKS: NEAR-TIP FIELDS AND STABLE CRACK ADVANCE IN HARDENING
SOLIDS

Numerical Studies of Steady-State Crack Growth in Hardening Solids

Dean and Hutchinson (1980) considered Mode I, plane strain steady crack growth in
a material with a Mises yield surface on a piecewise power-hardening tensile
stress-strain curve of the form

i

€/e (0/0y) g<a

0 0 (29)
_ n
= (O/OO) g > aq,
where € " GO/E . They numerically calculated the crack opening displacement
S§(r) behind the tip. By imposing the growth condition S(rc)= fc on the steady-
state solution and on the stationary problem (24), they calculated JSS_/JIc for

10<%X<35 for n=3, 10 and © , where XA 1is defined by (26b). The results for
the elastically-perfectly plastic solid (n=®) are essentially identical to
(26a), while the results for the hardening solids are greatly reduced below (26a]}.
For example, for =30 , JSS/JIC= 13.5 for n=w , while this same ratio is

approximately 7 for =10 and 3.5 for n=3 . The trends indicate even
greater divergence for larger A , with similar trends in Mode III. Strain
hardening appears to be of major importance in the prediction of crack advance
using a near-tip criterion. Resistance curve predictions based on elastic-
perfectly plastic calculations may well be highly unconservative.

In Mode III the effect of corner development on the yield surface of the solid did
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not appear to be nearly as influential as strain hardening. However, Parks, Lam
and McMeeking (1981) found more noticeable differences in Mode 1 plane strain
between the solution for the corner theory and the corresponding solution for the
Mises solid. In particular, the level of triaxiality attained ahead of the tip
for the corner theory is well below that associated with the smooth vield surface,
i.e. with the Prandtl field. No attempt has yet been made to quantitatively assess
the effect of this difference on stable crack growth.

The near-tip fracture criteria which have been used in the above mentioned studies
are crude and, at best, can be expected to only approximately provide a measure of
criticality of the complicated fracture processes taking place near the tip of the
crack. The strain distribution at the tip of the growing crack is very different

from that for the stationary crack, and this may mean that no such single criterion
using a critical intensity such as Y. oT dc at T, should be expected to give

a unified criterion for both initiation and continuation of crack advance. A more
direct coupling of details of the fracture process and the near-tip continuur
theory stress and strain fields may be essential. Thus, it remains to be seen

if it will be possible to reproduce experimentally determined resistance curves
using a single criterion such as that described above. A first attempt along
these lines by Hermann and Rice (1980) on a high strength steel having qu/JcE 2
does hold out promise for this approach. -

Singular Fields for Steady-State Crack Growth in Hardening Solids

Further development of the approach surveved above will require descriptions of
the singularity fields for cracks growing in strain hardening materials. At
present our knowledge of these fields is incomplete. Results as general as (17)
or (23a) for the elastic-perfectly plastic transient problem are not available for
strain hardening solids, although some results for the steady-state problem have
been found and these will now be discussed.

For a linear hardening solid with Young's modulus E and tangent modulus Et

following yields, Amazigo and Hutchinson (1977) have shown that the dominant
singularity fields at the tip of the steadily growing crack are of the form

_ -qx _ -q-1z2 .
oij Aoor oij(e) and eij = Aeor eij(e) (30)

where oo and EO

factor. The strength of the singularity q and the 8-variations are functions of
Et/E and these have been obtained for Mode III and for Mode I in both plane

are the yield stress and strain and A 1is a free amplitude

strain and plane stress. The strength of the singularity g vanishes as Et/E*'O,

corresponding to the elastic-perfectly plastic limit, and q 1increases sharply for
small Et/E , suggesting a strong dependence on strain hardening. Similar features

have been found by Lo and Peirce (1980) in their investigation of the Mode 111
singularity fields for a linear hardening solid which develops a corner at the
loading point of its yield surface.

In solving for the details of the fields (30}, Amazigo and Hutchinson neglected
plastic reloading along the flank behind the crack tip. The reloading zone is of
little consequence in Mode III, but recent work mentioned above on the near-tip
elastic-perfectly plastic behavior in Mode 1 indicates that the reloading zone is
an important feature of the plane strain problem. Thus, the solutions for this
case should be redone to account for reloading before they can be used in any
application,.



2660

Achenbach and Kanninen {1878) have extended the analysis for the linear hardening
material to include inertia. They find that in Mode III the dynamical effects
have rather small influence on the strength of singularity in (30) or on the
Z-variations of the fields. Further work on singularity fields for dynamic crack
growth in elastic-plastic solids has been carried out by Achenbach and Dunavevsky

(1980) and Achenbach, Kanninen and Popelar (1980).

The fields for.a linear hardening material appear to be of limited usefulness for
several reasons. Linear hardening is generally a fairly poor characterization of
actual hardening behavior. Furthermore, in the limit as Et/E-*O , the fields

(30) for the bilinear material do not appear to approach the solution for the
elastic-perfectly plastic solid derived earlier, although this has not been
established with certainty. Closely related is the question of the size of the
region of validity, or dominance, of (30). It is possible, although again not
certain, that the region of dominance of (30) vanishes in the limit of zero strain
hardening.

Singularity fields for a crack growing in a more realistic strain hardening solid
such as power-hardening (29) have been most elusive. However, in work to be
reported at 1CF5 Gao and Hwang (1981) propose a new form for the singularity
fields in a power-hardening solid.

An essential feature of near-tip behavior of an advancing crack is a balance
involving both elastic and plastic strain-rate as the tip is approached. The
plastic strain-rates by themselves are incompatible without an elastic strain-rate
contribution. This is the case for growth in elastic-perfectly plastic solids as
emphasized by Rice (1973). It is also true for the bilinear hardening solutions
and it is the kev to the discovery by Hui and Riedel (1980) of the fields for
creep crack growth discussed in the last section of this paper. By contrast, the
elastic strains play no role in the determination of the dominant singularity
behavior for the stationary crack, as, for example, in the HRR-field. A balance
between elastic and plastic strain-rates also appears to be a feature of the
singularity fields for a crack growing into a power-hardening material. Efforts
to produce singularity fields under the assumption the elastic strain-rates are
asymptotically negligible in the yielded zone have not been successful (Amazigo
and Hutchinson, unpublished work; Gao and Hwang, 1981). With elastic strain-rates
neglected in the yielded zone the equations governing near-tip behavior admit
solutions of the form

= ar'9%, (o) (31)

However, the resulting solutions do not permit one to construct the entire near-
tip field.

Gao and Hwang (1981) considered another possible form for the singular fields
which does involve an interaction between the elastic and plastic strain-rates in
the actively vielding region as the tip is approached. They investigated Mode I,
plane strain and gave most detail for an incompressible material. In their
solution the near-tip expansion for the stresses is of the form

P
Zn 5ﬂ
T

.. =

-1
f.(0) AY TR (1) ) } .
i ioij (8) + [S?.n ?J 533 (6) + ... (32)

where A is the amplitude factor with length dimensions. The exponent p can be
chosen to give the correct balance of elastic and plastic strain-rates in the
compatibility equation; in Mode I it is given by



Assuming the form of the solution to be correct, Gao and Hwang showed that the
~ (6]
0, |
1)
elastic-perfectly plastic limit discussed earlier. Thus, the Gao-Hwang solution
has the desirable feature that the dominant singular stress field approaches the
elastic-perfectly plastic limit uniformly as n becomes large.

lowest order 6-variation, , is necessarily precisely the same as for the

There are still some technical difficulties with the Gao-Hwang soiution which will
have to be resolved, or at least better understood, before the solution can be
considered to be correct. One difficulty is that the plastic part of the strain-
rate does not vanish as ¢ aprroaches the boundary between plastic loading and
elastic unloading. While this is not necessary for the elastic-perfectly plastic
protlem, it is a requirement when hardening is present. Gao and Hwang suggest
that this condition need not be met asymptotically as the tip is approached. If
they are correct, this may mean that the domain of validity of (32) is very small.
Hopefully, further clarification of this and other details of the Gao-Hwang
solution will soon be forthcoming.

SINGULARITY FIELDS FOR CRACKS IN CREEPING SOLIDS

In uniaxial tension the strain-rate of a power-law creeping solid can be expressed
as

3 v g =
= C/ 3
£ /E + CO(G/CO) (34)

where GO is a reference stress and EO is a reference strain-rate. The

creeping part of (34) is customarily generalized to multiaxial stress states using
the deviatoric stress and the Mises invariant. For a stationary crack in such an
elastic-power-law creeping material, the near-tip fields are again given by the
HRR-singularity (2)-(4) where strain and displacement quantities become strain-
rates and velocities, respectively (with a=1). A body subject to a (quasi-static)
step loading at t=0 undergoes a transient period in which both elastic and creep
strain-rates occur and in which the creep zone at the tip of the crack grows in
size. For short times when the creep zone is small, the amplitude of the HRR field
can be related to the elastic stress intensity factor. After a sufficiently long
hold time, the body approaches a steady situation in which the stresses cease
changing so that the entire straining is then due to creep. Under these limiting
conditions a path independent, J-type integral, now designated by C* , can again
be defined. Landes and Begley {1976) and Nikbin, Webster and Turner (1976) have
been instrumental in developing the experimental approach based on C* . Estimates
of C* for power-law materials are being made available by Kumer and Shih (1980).
Riedel and Rice (1980) and Bassani and McClintock (1980) have studied the transient
problem for the stationary crack and have obtained estimates of the time needed for
the near-tip fields to settle down to steady creep and for the amplitude of the

HRR field in the transient period.

Hui and Riedel (1980) have determined the singularity fields for a growing crack

in the elastic-power-law creeping solid (34). They have presented results for
Mode 111 and Mode I in plane stress and plane strain for steady-state crack growth,
and they have shown that these results apply sufficiently close to the tip under
transient creep cracking. In arriving at their solution, Hui and Riedel show that
when n>3 there must be a balance between elastic and creep strain-rates as the
tip is approached. If one assumes that the elastic strain-rates are negligible
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then the stresses are necessarily just those of the HRR field, but this leads to
a contradiction since the elastic strain-rates derived from the HRR stress field
are more singular than the creep strain-rates derived under this assumption.
Conversely, if it is assumed that the creep strain-rates are negligible as the
tip is approached, then the singular stress field is just the well known elastic
singularity field with the 1//T singularity in stresses. But this assumption
also leads to a contradiction when n>3 since it gives more singular creep-
strain-rates than elastic strain-rates. Hui and Riedel show that equations for
steady-state growth admit separated solutions of the form

1

ayn-l
oij = cn[;i oij(e,n) (35)

for n>3 where a 1is the velocity of the crack tip and < is a dimensional

constant which is fully determined by the singularity analysis. The exponent of
the r-dependence in (35) is the only choice which leads to comparable singularities
in the elastic and plastic strain-rates. For n<3 the near tip stress field is
that of the elastic singularity field and the elastic strain-rates do dominate the
creep strain-rates, as has also been discussed by Hart (1980).

The crack tip velocity a plays the role of the amplitude factor of the near-tip
fields (35) in creep crack growth. Hui and Riedel discuss the fact that in small
scale yielding, for example, this velocity a can be prescribed independently of
the far field stress intensity factor K 1in the theoretical problem. Only when
some criterion for creep crack advancement is imposed on the solution do a and
K become related. Work by Hui (unpublished) indicates that the singular fields
are dominate over approximately one third of the nominal creep zone in Mode I
plane strain small scale yielding.
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