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Abstract—The mechanics of the delamination and spalling of compressed films or coatings has
been analyzed using a combination of fracture mechanics and post-buckling theory. It is
demonstrated that the delamination of pre-compressed films only occurs if the film buckles,
whereupon a stress intensification develops at the buckle perimeter. The associated stress intensity
depends on the magnitude of the prestress and the film thickness. Conversely, the delamination
of indented coatings occurs without buckling and the stress intensity in this instance depends on
the indentation volume, the film thickness and the radius of the delamination. Preliminary attempts
have also been made to predict critical spall conditions, following the incidence of buckling.

1. INTRODUCTION

Surface layers subject to substantial residual compression exist in many technological
situations. Specifically, films and coatings formed by vapor deposition, sputtering, etc.
often develop residual stress during the deposition process itself[1-4]. Additional residual
stress may be induced during cooling, when a thermal expansion mismatch exists between
the film and the substrate[5, 6]. Oxidation layers formed by inward diffusion of oxygen
(e.g. ALO, on Ni-Cr-Al alloys) also exhibit compression[7, 8], and processes such as
machining[9], wear[10] and shot peening generate a residually stressed plastic deformation
layer.

Thin layers containing such large residual compressions are susceptible to
delamination[11] and spalling[12, 13]. An example[14] is depicted in Fig. 1(a). The initial
delamination process occurs by crack extension along a plane parallel to the surface,
generally at the film/substrate interface (Fig. 1). Spalling involves the subsequent propa-
gation of the crack through the film. Usually, the crack extension proceeds by brittle
rupture mechanisms[14]1. The spalling should thus be characterized by comparative values
of the brittle fracture resistance of the interface and the residual crack driving force. Some
fundamental features of the crack driving force, pertinent to both delamination and
spalling, are considered in the present paper, based on film buckling concepts. Related
work has been published (13, 16] on delamination buckling in composite laminated plates,
also with emphasis on the interaction between the crack driving force and the buckling
behavior of the delaminated region. In fact, one particular result presented within
duplicates an earlier result[135].

A similar interface cracking phenomenon accompanies localized plastic indentation of
coatings[14] (Fig. 1b). The cracking, in this instance, is associated with the residual
compression induced by plastic penetration of the indenter. The interface crack extension
induced by controlled indentation of the coating (e. g. using a Vicker’s indenter) has been
proposed as a simple test for evaluating the adherence of thin coatings[17, 18]. However,
quantification of the test requires that an expression for the crack driving force be derived
in terms of the identation volume and the film thickness, hardness and modulus. A crack

tDuctile growth may be involved in the delamination that accompanies the wear process in metals[10].

455




456 A. G. Evans and J. W. HUTCHINSON

-film

-substrate

—In0

~Si

Fig. 1. Scanning electron micrographs of delaminated layers of ZnO on Si: (a) A buckled
as-deposited thin film, (b) interface cracking and separation of a thin film induced by indentation.

driving force expression pertinent to this problem is also developed in the present paper
and evaluated elsewhere [14].

The buckling problem pertinent to the present set of applications concerns a single
interface crack, parallel to the free surface, of sufficient size that the material above the
crack can buckle. An alternative buckling situation [19], germane to other applications,
envisions many small cracks parallel to the free surface, which lower the overall stress
needed to induce a surface buckling mode.

2. THE ENERGY RELEASE RATE FOR DELAMINATION

2.1 Uniformly compressed film

In the presence of a small separation (or crack) at the interface between a substrate
and a precompressed thin film, the film is susceptible to bucklng, as seen in Fig. 1(a). An
interface crack parallel to the free surface (Fig. 2a) clearly does not disturb a stress field,
which itself acts parallel to the surface. Hence, a stress concentration at the edge of the
crack is not induced. However, if the film buckles away from the substrate (Fig. 2b) the
resulting separation generates large tensile stresses at the perimeter of the interface crack,
which may induce crack extension. The energy release rate associated with the advance of
a crack across a buckled delaminated area can be evaluated by combining results from
elastic fracture mechanics and the post-buckling theory of plates.

The first configuration considered is a circular delamination of radius a, as depicted
in Fig. 3. A biaxial compression g, is assumed to exist in the film prior to buckling.
Interface delamination in the absence of buckling does not cause redistribution of stress
or energy release. However, when the delaminated region buckles away from the substrate,
there is a release in energy with crack advance which can be determined from the difference,
oU, between the elastic strain energy stored in the buckled and unbuckled configurations.
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Fig. 2. A schematic showing (a) an interface crack without film buckling and (b) the tensile stress
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Fig. 3. A schematic illustrating the source of the prestress, o,, and the resultant stress, g, in the

buckled configuration.
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Specifically, since the change in the energy difference with crack length is equivalent to the
total energy release during crack growth, the energy release rate (per unit length of crack
edge) attributed to the buckled, delaminated film is[20];

4 = (1/2na)(déU /da). 0

The energy difference U can be estimated by modeling the delaminated region as a
clamped circular plate of radius ¢, as indicated in Fig. 3. This representation is valid if
the crack radius, a, is large compared with the film thickness ¢. Furthermore, by
dimensional considerations, it is possible to show that the strain energy change in the
substrate, as a result of the stress redistribution due to buckling, is on the order of
al(oy — 0)1]*/ E, while the energy change in the buckled plate is on the order of a (o, — o )*at/E.
Thus contribution of the substrate to the strain energy change is on the order of z/a
times that from the buckled portion of the film, and it will be neglected. Similarly, the
radial deflection of the substrate, where it joins the buckled film at r = a, is of the order
t/a times the misfit, éa, of the film, given below. Thus, the deflection of the substrate due
to buckling of the film will also be neglected.

To carry out the calculation for U, imagine, as in Fig. 3, that the delaminated region
has been separated from its surroundings. In this process, the radius expands due to relief
of the biaxial compression, g,, by

da=(1—v)oua/E 2)

where v is Poisson’s ratio and E is Young’s modulus. The elastic energy stored in the
buckled plate is then equal to the work done by the edge load to force the plate back to
an edge radius, g, by assuming that its edge is constrained against rotation. Denoting the
compressive edge stress (averaged through the thickness) by o, so that the edge load
(force/unit length) is o1, the plate will undergo buckling if ¢ exceeds the critical buckling
stress for a clamped circular plate[21]

o= [KE/(12(1 —v)](t[a) 3)
where k = 14.68. The associated critical inward radial displacement is
A, = [k/(12(1 + v))]t/a. @

A plot of relative edge stress o /o, against the relative inward radial displacement of
the edge A/A, is shown in Fig. 4. In this plot, the unbuckled branch of the solution has
a slope of unity, while the initial slope (at ¢ = ¢,) of the post-buckled branch is

a=(141.207(1 +v))~! %)

(o =0.383 for v = 1/3). This reduction in slope is typical of plate buckling problems. The
initial post-buckling slope for a clamped circular plate does not appear to have been
previously published. It has been obtained by a slight extension of the calculation by
Thompson and Hunt[22]. The full post-buckling response is not available. Nevertheless,
experience with other plate buckling problems suggests that the slope does not depart
significantly from its initial value, a, until substantial buckling deflections (on the order
of several plate thicknesses) are attained. For present purposes the post-buckling response
in Fig. 4 will be regarded as linear, with slope o.

The strain energy difference between the unbuckled and buckled states can now be
obtained from the area difference between the two load-defection curves (the shaded area
in Fig. 4). Specifically, by requiring that A = éa and using the critical stress in eqn (3), the
total energy difference (when o, > ¢,) becomes

U =n(l —v)(1 —a)ta* (e, — 6.)"/E. 6)
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Fig. 4. A plot of the relative edge stress as a function of displacement, for a clamped circular plate,
showing the energy release, 6U, that accompanies buckling.

The energy release rate deduced from eqns (1) and (6) is thus
9 =(-v)(1 —a)(os’ —a)/E. (7

When the elastic properties of the layer and the substrate are different, the singular
stress field at the crack tip is more complex than the standard r ~'? field associated with
isotropic, homogeneous materials. In the following, for simplicity, any effects stemming
from large moduli differences between layer and substrate are ignored so that standard
stress intensity factors can be used. (Of course, much of our discussion could equally well
be predicated on %.) Conditions at the interface crack involve a combination of opening
(Mode I) and shearing (Mode II). Consequently, with the premise that the elastic
properties of the system permit the use of a stress intensity factor, K, an effective value
may be defined as

K=K} + K= E9/(1 — v, ¥
and hence, eqn (7) can be re-expressed as,
K/(00/1) = [(1 = a)/(1 + )] = (a /ooy ©)

As seen in Fig. 5, when the residual stress g, 2 30,, K is closely approximated by the
asymptote

R/(0/1) = [(1 — a)/(1 + )]~ (10)

Some related results for the case where the substrate is thin, with application to the
delamination buckling of composite plates, have been reported previously[16].

An analogous result can be derived for a two-dimensional buckled region of film, which
has a width 2a in one direction and is infinite in extent in the other. If g, is now the uniaxial
compressive prestress acting perpendicular to the long direction, the effective stress
intensity factor is found to be

K/(0/1) =120 = v)] (1 — a,/ao)(1 + 3o /ap)]'” (11
where now the critical stress is

o.=[m’E/(12(1 —v?)))(t/a)’. (12)
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Fig. 5. The variation in stress intensity factor with prestress for a buckled precompressed film.

In this case, the initial post-buckling slope « is that of a wide column, which is very small,
~ t/a. It has been taken to be zero in the derivation of eqn (11). In slightly different form,
eqn (11) coincides with an earlier result, derived for laminates[15].

2.2 Indentation induced compression

Indentations in the surface of brittle solids invariably induce residual stresses[17].
Additionally, in the absence of plastic pile-up, a condition that obtains for most brittle
materials,[23-25], and when the indentation induced plastic deformation is confined to the
film, the film can be considered subject to dilatation dictated by the indentation volume,
V,. Consequently, when the interface contains a crack of radius, a, and the film is regarded
as a clamped circular plate as modeled in Fig. 6(a), the displacement, A, that must be
imposed at the plate edge to “offset” the dilatation, is given by

A = Vy/Q2mat). (13)

The corresponding biaxial compressive stress induced in the unbuckled configuration is
thus

o,= EAJ[(1 —v)al= EVy/[2r(1 — v)ta?). (14)
It has again been assumed that a > ¢, since the complicated stress distribution within a

radius of several thicknesses from the indentation has been ignored. The indentation
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Fig. 6. A schematic showing the stress development attributed to indentation of a thin film,
followed by interface fracture.
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mduced stress g, then depends on the radius, a, of the interface crack, even in the absence
of buckling. Consequently, by invoking the critical buckling stress given by eqn (3), the
buckling condition can be specified in terms of a critical indentation volume,

Ve = mkt*[6(1 +v)]. (15)

If, in the presence of a crack, the strain energy induced by indentation is assumed to
reside exclusively in the region above the crack, the strain energy in the unbuckled plate
is given by

U = nata,A (16)
and thus the energy release rate for crack advance is

g=_.L <‘3—U> = EV@/an*(1 —v)a't. 17

2na \ da

The near tip behavior of the unbuckied film should be predominantly Mode II so that
g~ (1 -v)K/E, or

B} V,E
K11= = 0g AV .
2 /1+v(1 —v)ai/t oo/ 1N+ (%)

The incidence of buckling for V, > V", reduces the stored strain energy (Fig. 7) to

U = rato, Al — (1 — a)(1 — Vi/Vo)] (19)
and, hence, the total effective stress intensity factor, K2 = K}? + K%, becomes

V,E
K =
2n /1 +v(l — v)az\/; [

Comparison with eqn (18) indicates that buckling reduces the stress-intensity at the crack
tip (for corresponding crack radii and when ¥V, » V() to an amount,

K=ok, (21)

1= = a)(I = Ve V)] (20)

Furthermore, estimation of the components K; and K, in the buckled state (Appendix)

s
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a

Fig. 7. A schematic illustrating the reduction in strain energy that accompanies crack advance Aa
in a buckled, indented thin film.
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indicates that for V> V°,

K/Ky=/(1—a)e. 22)

Observations[14] indicate that contact between the film and substrate is often retained
immediately beneath the indentation. The existence of a centrally located contact restricts
the buckling, otherwise the model of Fig. 3 is applicable. The critical buckling stress
associated with the axisymmetric mode of a clamped circular plate constrained to have zero
deflection at its center is still given by eqn (3) but now, k = 42.67.1 The post-buckling slope
a has not been determined for this case, but it is expected to be similar to that for the
unconstrained circular plate.

3. SPALLING

The approach to spalling of a buckled region, presented within, is intended to provide
insight into the parametric dependence of the process. The application of detailed crack
branching analyses is not considered. Some related results[26], with primary application
to spalling and rocks, illustrate the behavior of cracks under compressive loading when
the cracks are not quite parallel to the free surface.

The incidence of spalling requires that the delamination crack deflect upward toward
the coating. The stresses at the tip of the delamination should encourage such deflections
after buckling has initiated. The details of the crack tip stress field needed to predict the
spalling trajectory have not been calculated, but some important insights into the incidence
of spalling can be derived by, again, regarding the buckled region as a clamped circular
plate. In the following, the component of strain in the radial direction ¢, at the bottom
edge of the buckled plate is calculated. This component exhibits the largest tension in the
buckled configuration and is expected to precipitate the spall.

The vertical deflection of the buckled plate is given by[22],

w = w[0.287 + 0.713 J(3.83r/a)] (23)
where W is the deflection at the center, r is the distance from the center of the buckle, and J;

is the Bessel function of the first kind, of order zero. Post-buckling theory provides the
relation between the average edge stress ¢ and the deflection at the center as[22]

olo.=1+b(W/t)? @24
where terms of order (w/t)* have been neglected and » = 0.205. In the buckled state
glo,— 1 =a(gy/o,— 1) 25
where « is given by eqn (5). Thus,
W/t =[(a/b)(oo/o. — DI (26)
The radial strain due to bending at the bottom periphery of the plate ( = a) is given by
e = (1/2)(d*w /dr?) = 2.10Ww¢ [a? 27N
when v = 1/3. Combining eqns (26) and (27) gives
e'=287(t/a)* (o,/0,— 1) (28a)
or, by combining with eqn (3), with & = 14.68
¢! =2.09(c /E)(0y/a, — D) (28b)

1This result for k has been obtained by the authors using an exact analysis of the buckling problem. We have
been unable to locate this solution in the standard literature.
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Superimposed on the bending strains are the strains due to middle surface stretching.
The circumferential stretching strain at the periphery is, ¢, = —a(1 — v)/E, while the
radial stress, g, = —a. These two results can be used to determine the radial component
of the middle surface stretching strain,

¢ =—0(1—v)/E+v(l —v)o,/E. (29)
The resulting radial strain at the bottom periphery of the plate is
e =¢"+¢". (30)

It is recalled from eqn (9) that the effective stress intensity factor increases mono-
tonically to the asymptote, eqn (10), as the delamination radius increases (for a fixed
prestress o,). At the same time, ¢, increases to a peak tensile value and then decreases with
further increase in a. Hence, if spalling is to occur, it is most likely at a delamination radius
in the vicinity of the peak in ¢. This peak may be obtained by noting that ¢, can be
expressed entirely in terms of g, and g, using the a-dependence of o, in eqn (3). Then,
it can be readily shown that the peak value of ¢, for fixed o, with v = 1/3, is given by;

¢,* = 5.660,/FE (31a)
attained when
(a/0)* = 1.92(E/ay)". (31b)

The magnitudes of this critical aspect ratio for typical residual stress levels (100-500 MPa)
are in the range, 20-50. The critical aspect ratio is interpreted as the relative delamination
length at which spalling is most likely to occur and should thus, represent the characteristic
shape of spalled films.

4. COMPARISON WITH EXPERIMENT

Ample reference can be found to the existence of delamination and spalling in
precompressed surface films. However, the authors are not aware of systematic studies that
explicitly address this important phenomenon. It is hoped that the present analysis will
assist in the design of the critical experiments needed to quantify the incidence of both
delamination and eventual spalling.

Indentation induced delamination, or lateral cracking, has been subject to preliminary
measurements[27] suitable for initial comparison with the present analysis. The com-
parison is facilitated by re-expressing the indentation volume in terms of the indentation
load, P[17],

V ~ (P/H)Y*cot ¥ (32)

where H is the hardness and W is the angle of the indenter. Then, noting that cracking
occurs at the base of the plastic zone[27] and hence, that

t ~(P/H)*(E/H)'?cot'* ¥ (33)
the delamination radius can be deduced from eqn (18) as,

P8(E/H)Y® cots2 @
a=4

KI2HE (34)

where 1 is a material independent constant and K, is the fracture toughness of the material.
Lateral fracture data obtained for several materials[27] conform closely with eqn (34), as
shown in Fig. 8, such that 2 =0.17.
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Fig. 8. Lateral fracture data[l17] plotted according to the scheme suggested by the buckling
analysis, showing conformance with the prediction of this analysis.

5. DISCUSSION

The analysis presented in the preceding sections describes the growth phase of the
delamination of compressed surface films and their eventual spallation. The process that
initiates the interface separation has not been given explicit consideration. This deficiency
is of least concern for the indentation problem, wherein the crack driving force increases
as the delamination radius decreases and hence, initiation occurs quite readily. However,
initiation represents a substantial additional issue in uniformly, precompressed films.

Initiation of an interface separation is contingent upon the existence of a normal tensile
stress or a shear stress at the interface. Normal tensions and shears do not develop at
planar interfaces between precompressed films and their substrates. Hence, the delami-
nation of such interfaces requires a preexistent separation. Contaminated surfaces can, of
course, be a source of initial separation when the films are formed by deposition processes.
However, the magnitude of the initial separation required to generate a substantial
delamination, and subsequent spalling, depends upon the specific origin of the film
compression. When the film forms under compression (i.e. during deposition), it is evident
from eqn (3) that film buckling initiates immediately (¢ & 0) at all initial separations, Then,
as the film thickness increases, only the larger initial separations satisfy the buckling
requirements. The driving force for delamination at the remaining buckled sections, and
its variation with film thickness, can be derived from eqns (9) and (3) as,

K [1—a]n kE  (1\]”
S [ )

~
>

The trend in driving force, depicted in Fig. 9, indicates the existence of a maximum, K

given by;
%4 1/4 1— I— 1277172
Go \/; kE 301 + v)Y
Equating K to the critical value for the interface, K/, a critical initial separation radius,
a,., can be derived from eqn (36) as;

KN(KEN®[ 3 [T
(@) ) T ] o7
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Fig. 9. The variation in stress intensity with film thickness for an initial separation of radius, a.

such that delamination will occur at initial separations with radii > a,. The delamination
occurs at a critical film thickness

t, = 2aja,(l — v¥)/kE]'". (39)

Inserting typical values for the material properties (o,=3 x 10® Pa, E =3 x 10" Pa,
K/ =10°Pa \/r;) indicates that a,~ 12 um and 1, = 0.2 um. However, it should also be
recognized that the specific values of 4, and ¢, are very sensitive to variations in the residual
stress and the adherence.

The preceding mode of delamination does not pertain to films that generate residual
compression during cooling (due to thermal expansion mismatch), nor is it likely to apply
to films formed by oxidation, in which the interface translates during film growth and
encompasses previously formed separations. In these instances, the initiation of interface
separations (in the absence of interface defects of adequate size) requires the existence of
normal tensions or shear stresses at the interface. The role of the stresses at such interfaces
in the delamination process will be considered in a subsequent publication.

6. CONCLUSION

Analysis of precompressed films has revealed that such films are only susceptible to
delamination, and eventual spalling, once film buckling has initiated. A buckling criterion
must, therefore, be first satisfied before spallation can occur. After buckling, a stress
intensification develops at the perimeter of the delamination. The stress intensity depends
on the magnitude of the prestress, 6,, and the film thickness, ¢, such that a critical value
of the quantity, ao\ﬂ, must be exceeded before the delamination can propagate and cause
spallation.

The indentation of thin films induces a spatially varying prestress and a stress
intensification in the absence of buckling. The stress intensity varies directly with the
indentation volume and inversely with the delamination radius and film thickness. In this
instance, buckling reduces the stress initiation by about a factor of two. However, eventual
spalling is, in all cases, contingent upon buckling and the development of in-plane tensile
stress concentration within the film. Preliminary considerations pertinent to spalling
conditions, predicated on the magnitude of the buckling stress in the buckled film, indicate
that spalling is most likely to occur at a critical value of the ratio of the delamination radius
to the film thickness.
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APPENDIX

Estimation of mode I and I stress intensity factors for buckled delamination resulting from indentation
The post-buckling Mode II component of the crack driving force, K%, in the indentation problem is given
approximately by eqn (18) with the precompression, g, replaced by the edge thrust, (Fig. 3), such that

Kyxa /il /1+v. (A1)

Hence, noting eqn (13), and using the same post-buckling relation, as before,

0 =0,—(1 =)o [Ve/Ve — 1]. (A2)
Furthermore, since,
ooy = ViV, (A3)
we obtain,
ST+ VK an/t =[1 + (1 = a)(V Vo~ DI (Ada)

which reduces for Vy» V© to

ST+ VKyon/t = a. (Adb)

Now, by combining eqns (8), (20) and (A4a) the Mode [ stress intensity factor is
1/2
1+ VK o/t = {(1 —a) = Ve Vol2— (2 —a) 1 = Vs Vo)]} (A5a)

which reduces for V,» V, to,

V1K Plon/t = Ja(1 — ). (ASb)

The ratio of the stress intensity factor is given by eqn (22) when V> V.




