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Constitutive relations are derived for an incompressible, isotropic power-law matrix material containing a dilute concentra-
tion of spherical voids. The derivation is made for a nonlinearly viscous material used to characterize steady creep. However,
the theory applies equally well to small strain nonlinear elasticity (deformation theory), and an extension to a rate-independent
flow theory is also discussed. The starting point and key element in the formulation is the potential function for an isolated
spherical void in an infinite block of power-law material. Approximate, but accurate, representations for this potential function
are given. The overall constitutive relation governing the behavior of the dilutely voided solid is obtained simply and directly
using the void potential. An assessment of the range of validity of the dilute concentration results is obtained using numerical
solutions to the problem of a spherical void centered in a sphere of finite radius made of the power-law material. The potential
function is also given for a dilute concentration of aligned penny-shaped cracks in the same power-law material.

1. Synopsis of results

The matrix material is an incompressible nonlinearly viscous material frequently used as a prototype to
characterize steady creep. In simple tension the strain-rate and stress are related by the power-law formula

é=a(o/ay)", (1.1)
where a and o, are a reference strain-rate and stress. For multiaxial states of stress define a potential of the
stress by

$(0) = (aoy/(n+1))(0,/0,)""" (1.2)
so that the strain-rate is
¢, = 30/30, = a(0./0,)""'s, /0y, (1.3)

where s is the stress deviator and o, = (3s,,5,,)"/* is the effective stress. *

In Section 2 we consider a representative macroscopic block of material of volume V containing
traction-free voids and subject to macroscopic, or overall, stress 2. The macroscopic potential is related to
the distribution of the local potential by

®(2)= V”/V ¢ dv, (1.4)

where V), denotes the portions of ¥ occupied by the matrix material. The macroscopic strain-rate is given
by
E =09/0%, . (1.5)
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For a dilute concentration of spherical voids with volume fraction p, the macroscopic potential is given by
D =¢(Z)+pd(2). (1.6)

Here @, is an appropriately defined change in potential caused by the introduction of an isclated spherical
void in an infinite block of the matrix material which is subject to remote stress 2.

The problem of the isolated spherical void in the infinite block of material is taken up in Section 3. By
isotropy, @, depends only on the three invariants of 2. Let the remote effective stress invariant be defined
as

1/2
2. =(38,8,) " (1.7)

where S is the deviator of £, and let the remote mean stress invariant be
2 =52 (1.8)

We will argue that the dependence of @, on the third invariant is relatively minor compared to its
dependence on =, and 2, and the dependence on the third invariant will be neglected. Then, because @, is
homogeneous of degree n + 1 in 2, one can write

(X, n), (1.9)

n+1

P, = aoO(Ee/oO)
where
X=2_/2, (1.10)

is the measure of stress triaxiality. Previously published results for an isolated spherical void, together with
some newly reported results, are used to arrive at an approximation to f(X, n) for n ranging from 1 to cc.

By (1.5) and (1.6) the macroscopic strain-rate derived from (1.9) for the dilutely voided material is given
in terms of the macroscopic stress £ by

. s N\S, 33N\, of 1{ZN\"af
=3, Z= ES | Z= - XL+ == =
E,. a( ) ap{z(oo) o ((n+1)f Xax) 3(00) 8X6’f , (1.11)

J 2
Oy Oy

where 8, ; 1s the Kronecker delta. Some implications of (1.11) are discussed in Section 4, where it is also
discussed in relation to McMeeking’s (1982) work on dilutely voided nonlinear materials. In particular,
extension of the results to rate-independent plastic solids described by flow (incremental) theory will be
discussed.

In Section 5, a sphere of the matrix material of finite radius with a centered spherical void is employed
as a model macroscopic material element with a non-dilute void volume fraction p. Numerical results are
presented for this problem for the case of axisymmetric uniform tractions derived from = and applied on
the outer boundary. These results are used to gain some insight into the range of validity of the dilute
approximation and to what extent this range is a function of the material nonlinearity.

Lastly, in Section 6, a potential is given for the power-law material weakened by a dilute concentration
of penny-shaped cracks aligned in the principal axes of overall stress.

2. Potentials for voided nonlinearly viscous materials
Derivations of constitutive behavior of heterogeneous nonlinear materials based on the use of potentials

have the advantage that one works with scalar, not tensor, functions. The advantages become particularly
evident when approximations must be made, as will be illustrated below.
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Following techniques developed by Hill (1967) for dealing with heterogeneous materials, we consider as
a representative macroscopic volume element a block of material with volume V consisting of traction-free
voids or micro-cracks embedded in an incompressible nonlinearly viscous matrix material. The matrix
material is characterized by a potential of the stress, ¢(o), such that the strain-rate is given by

€, =0¢/d0; . (2.1)

The power-law potential (1.2) characterizes one such material. The region occupied by the matrix material
1s denoted by V,,, while the voids and cracks occupy the region of V' denoted by V..

Throughout this article lower case symbols will be used for local stresses, strain-rates, velocities and
potentials, which are functions of position in the matrix material. Upper case symbols will be used to
represent the corresponding macroscopic quantities. Let 4 denote the outer surface of the block. Let
uniform tractions X, n; be prescribed over A4, where n is the outward unit normal to 4 and X is the
macroscopic stress whose components do not vary over the surface of the macroscopic block of material.
With v as the velocity resulting from the uniform tractions, the macroscopic strain-rate is defined in the

standard way in terms of velocities on the surface of V' by
E,.j=%V*1f(v,n,+vjn,)dA. (2.2)
y .

To derive the relation between the macroscopic and local potentials (Rice, 1970; Hutchinson, 1983),
note that

E,d3, = V*lfAu,.nj dZ, d4 = V*‘fAu,nj do, dd=V""[ ¢ do, dV'= V”'/‘V do dv. (2.3)
M

VM
Here, use has been made of (i) the traction condition on A, (ii) equilibrium, (ii1) the condition that the voids
or cracks are traction-free, and (iv) equation (2.1). It follows from the fact that (2.3) holds for arbitrary dZ
that macroscopic potential @ is given by (1.4) and that the macroscopic strain-rate can be derived from it
by (1.5).

Now let us restrict our attention to a block with a dilute concentration of voids with volume fraction
p=V,/V. If the field induced in the matrix material by each void falls off sufficiently sharply from the
void, the voids can be regarded as isolated and non-interacting. In this case the change in macroscopic
potential due to the presence of each void can be summed independently using the potential change
calculated for an isolated void in an infinite matrix. Suppose, in addition, that the voids are spherical. Let
@ (3) denote the change in potential defined below due to the introduction of a spherical void in an
infinite block of the matrix material subject to 2 at infinity. Then, assuming conditions for non-interaction
are met, the macroscopic potential is given by (1.6). A similar argument can be applied to construct the
potential for a material containing a dilute level of similarly shaped, aligned cracks.

3. Potential for an isolated void in an infinite matrix
3.1. Relation between potential and minimum principle for the boundary value problem

An arbitrarily shaped void occupies the region ¥V, in an infinite block of material which is subject to
remote stress 2 at infinity. The relevant potential function for the void is the change in ¢ dV due to
introduction of the void (normalized by its volume), i.e.,

0.(2)= | [ (6(a)=0(2) V= Vio(2)), (3.1)
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where ¢ denotes the stress field in the region V), outside the void. From dimensional considerations, @, is
independent of the volume of the void. The strain-rate quantity 9@, /9%, can be thought of as the
strain-rate contribution from an isolated void of unit volume to the overall strain-rate. In particular,
d®, /0% is the volume expansion-rate of the void.

There is a close and important connection between @, and the minimum principle for the velocities for
the isolated void problem as stated by Budiansky, Hutchinson and Slutsky (1982). With E as the remote
strain-rate associated with X, let

U,.=E,»jxj+ui* and é,j=E,.j+é;"j (3.2)
with ¥, = 3(v}, + v};) so that the additional starred velocities and strain-rates vanish at infinity. Among all
additional velocity fields decaying sufficiently rapidly at infinity, the actual field minimizes the functional

P(e*)= [ (w(é)—w(E)—Z..é’.")dV—/;Z.-n.u* dda. (3.3)

ijsig ij" i
VM

Here, n is the unit normal to the void surface A, pointing into Vyy, and w =0,,¢, — ¢ is the companion
potential function of the strain-rates which provides the stress according to o, = 9w /9¢, . Using manipula-

tions similar to those described by Budiansky et al. (1982), one can show that
Pminzllv{_¢v+w(E)}’ (34)

where P, denotes the minimum value of P evaluated using the exact solution.
3.2. Spherical void in power-law material (1.2) subject to axisymmetric remote stresses

Budiansky et al. (1982) generated approximate but accurate solutions for a spherical void in the
power-law material (1.2) under general axisymmetric remote stress states. The solution process was based
on the minimum principle (3.3). Although only results for the dilatation-rate of the void were reported,
values of P, were computed as well. Here we will make use of separate sets of results applicable at high
and low stress triaxialities (i.e., high and low ratios of mean to effective remote stresses) to develop
expressions for @, in the corresponding ranges of triaxialities. The results for axisymmetric remote stress
states are generalized to arbitrary stress states in Section 3.3.

With x, as the axis of symmetry, the axisymmetric remote stresses are prescribed according to

033, > 233 =S, o>, =T, 0 >2,=T. (3.5)
Let

3,=33,=3(8S+2T) and Z=5-T (3.6)

so that the remote effective stress is given by
2. =13 (3.7)

For axisymmetric remote stress states, all dependence of @, on % can be expressed using 2 and %,
since they are linear combinations of S and T. Furthermore, because @, is even and homogeneous of degree
n+1in X, @, can be written quite generally as

D, = acy(Z./0,)" " f(x,n), (3.8)
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where f is dimensionless. Here,
x=3_/% (3.9)

is a nondimensional measure of the triaxiality of the axisymmetric remote stresses. ' The dilatation-rate of
the void is related to f by

V, 30, _ (2 \"'3 o
__azm""(o_o) v (3.10)

%

v

Then, noting that the remote strain-rate is given by
é33_’EE"‘(Ee/"o)ni12/"0 (3.11)

one can introduce a normalized dilatation-rate as

§
7= %(x,n). (3.12)

3.2.1. High triaxiality approximation, |x| > 1

The high triaxiality approximation for the normalized dilatation-rate derived by Budiansky et al. (1982)
is, in their notation,

1V, , (3 "

Ev=5m{2|—:|—~6(n,m)} , (313)
where m = sign(x) and

—G(n,m)=(n—1)[n+g(m)]/n* (3.14)
with

g(1)=0.4319 and g(-1)=0.4031. (3.15)

In the limit # = o0, corresponding to a rigid-perfectly plastic material, this expression reduces to the results
of Rice and Tracey (1969),

v 0.850 exp{3x for x > 0,
l—!:{ p(3x] (3.16)

EV, —-0.826 exp{ —3x} forx <0,
For n =1, (3.13) reduces to the exact result. When multiplied by E, it also gives the exact result for ¥,
for purely hydrostatic loading (i.e., =0, 2 #0) for all n. For all n>1, (3.13) gives an excellent
approximation for |x|> 2 and is even fairly good for |x| as small unity, as can be seen in Fig. 5.1(b) of the

paper by Budiansky et al. (1982).
By (3.12), the behavior of f for large |x| consistent with (3.13) is

r=fulxm) = A (3 -6 m) (3.17)

where, as before, m = sign(x).

! The distinction between x in (3.9) and X in (1.10) is deliberate. It is not true, in general, that the axisymmetric results can be
represented by (1.9), although later it will be argued that they are well approximated by (1.9).
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Fig. 1. f(x, n) for axisymmetric remote stresses in the low triaxiality range.

3.2.2. Low triaxiality approximation, |x| < 1
The function f(x, n) is plotted in Fig. 1 for x in the range |x| < 3 for five n-values in the range from 1 to
oo. Forn=1,

flx,1)=73+ix%, (3.18)

which is exact for all x. The numerical values of f for n > 1 were obtained from (3.4) using the numerical
results for P .. of Budiansky et al. (1982).

For n > 1, the minimum of f with respect to x occurs at x*(#n) which is slightly less than zero. Denote the
minimum value of f by f*(n) and let k(n) denote the second derivative of f with respect to x at x*. For x in
the neighborhood of x*, we approximate f by the first two nonzero terms in its Taylor series expansion
about x*, i.e.,,

f=filx,n)=f*n)+ix(n)[x - x*(n)]’. (3.19)

Values of f*, k and x* are given in Table 1. These values were determined by fitting (3.19) to the numerical
results on which Fig. 1 is based using values at x =0 and + .
By (3.12), the normalized dilatation-rate predicted from the low triaxiality approximation (3.19) is
1V, .
A =x(n)[x—x*(n)]. (3.20)
This linear dependence is indicated by dashed lines in Fig. 2. The solid line curves in this figure are the
accurate numerical results for the normalized dilatation-rate. > For n > 1, (3.20) departs significantly from
the accurate results only when |x| > 3, and for some purposes (3.20) might be sufficiently accurate for |x| as
large as 3 or even 1. Since uniaxial tension and compression correspond to x = 1, the range of applicability
of the low triaxiality approximation is fairly substantial.

2 The results for x < 0 were not presented by Budiansky et al. (1982). The results in Fig. 2 for the normalized dilatation-rate in the
range 0 < x < } are slightly higher, and more accurate, than those presented in Fig. 5.1(a) of Budiansky et al. (1982). The present
results were calculated using more independent amplitude factors in the minimization process than Budiansky et al. (1982) used.
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Table 1
n f* x* "
0.833 0 2.25
1.5 0.965 —0.019 2.42
1.05 —0.031 2.55
3 1.16 —0.045 271
5 1.26 —0.058 2.88
10 1.35 —-0.070 3.06
- 1.46 —0.083 3.30

3.3. Approximations to f for arbitrary remote stresses

Our aim in this section is to give approximate formulas for the void potential @, which apply for
arbitrary remote stress states. Formulas will be given for both high and low stress triaxialities. In addition,
an interpolation formula will be suggested which applies for all stresses.

With 2 as the remote stress and § as its deviator, introduce the remote effective stress X by (1.7), the

remote mean stress invariant 3, by (1.8), and let = = (S;,5;,5,,)'/* be the third invariant. Let

X=3_/%, and Y=X/%,. (3.21)

Since the dependence of @, on 3 is isotropic and homogeneous of degree n + 1, @, must have the general
form

n+1

D, =a0,(2,/0,)" f(X,Y,n). (3.22)

We will neglect the dependence on Y in (3.22) and approximate @, by (1.9). That f has some
Y-dependence is evident from the fact that f(x, rn) for axisymmetric remote stress is not strictly even in x
when n > 1. Only if f(x, n) were even in x would it be possible to exactly reproduce the axisymmetric

1%
E Vy
-8 -6 -4
14
//
/// +-2
Z
43
L,

Fig. 2. Normalized dilatation-rate of the isolated void in the infinite block subject to axisymmetric remote stresses in the low
triaxiality range. Selid line curves obtained from full numerical analysis, Dashed line from low triaxiality approximation (3.20).
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results using a Y-independent @, . > However, the asymmetry of the axisymmetric results with respect to x is
small. For example, in (3.16) it can be seen that the two normalized dilatation-rates at corresponding values
of |x| differ by less than 3% in the limit » — oo, and the discrepancy is even less for finite # in the high
triaxiality range. Also, the value x* at which the minimum of f occurs, where the dilatation-rate changes
sign, is only slightly displaced from zero for n > 1.

3.3.1. High triaxiality approximation, | X|> 1
Based on (3.17) we take

n {3|X|

106my = fu(xom = (B G ) (3.230)

wherelG(n, 1) is given by (3.14). (Of course, G(n, —1) éould equally well have been used.) In the limit
n — oo this becomes

f=fu(X, 00)=0.567 exp{ 3| X|}. (3.23b)

3.3.2. Low triaxiality approximation, | X| <1
We eliminate the slight asymmetry of f with respect to x in (3.19) by setting x* = 0 and take

f(X,n)=f (X, n)=f*(n)+3x(n) X2, (3.24)
where f* and « are still given by the values in Table 1. Eq. (3.24) is exact for all X when n = 1.
3.3.3. Interpolation approximation for all X

The following formula for f approaches f;; for large | X|, while for small | X| it approximates f, with a
relative error of | X|*:

n 3X n+1
R H,Tl —G(n, 1)} , (3.25)
where
L x n n+1 _ 3 n 1 9 n—1
o =f*- n+1(_G) » 6= _5(_0) and 03_7"_5(_0) > (326)

For n =1, the interpolation formula reduces to the exact result. The normalized dilatation-rate from (3.25)
is

v, of . 3731XI L\
E—ax—2c3X+s1gn(X)[2{ P G} + ¢, (3.27)

where E, is the remote effective strain-rate (3E,,E,;)'/%. The normalized dilatation-rate from (3.27) is
compared with the corresponding high and low triaxiality approximations from (3.23) and (3.24) in Fig. 3
for n= 3.

3 Npte that X = x for § > T and X = — x for § < T. Thus for axisymmetric states, the magnitudes of x and X are equal but their signs
may differ.
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Fig. 3. Illustration of the interpolation formula (3.27).

4. Constitutive relations for various dilutely voided power-law solids
4.1. Power-law creeping solid

The potential for the power-law creeping solid in the presence of a dilute concentration of spherical
voids, p, is given by (1.6) where our approximation for @, is specified by (1.9) with f given by one of (3.23),
(3.24) or (3.25) depending on the range of X. The creep-rate is given in terms of the macroscopic stress by
(1.11). The creep-rate derived from the high triaxiality approximation (3.23a) is

- 2\ Sy )3 " Sy L.
Eij=%a(~—) —+POI(—) {W—G} %(—nG)E—B+%mgn(X)8,.j , (4.1)

) ) )

while the result derived from the low triaxiality approximation (3.24) is

. n—1 Si . E n Si .
E,j=§a(f—;) ooj +pa(o—:) {3[(n+1)f*+§x(n—1)X2]E—:+%KX8U.}. (4.2)
In either range of triaxiality, inspection of these formulas reveals that the contribution due to the voids to
the deviatoric part of the strain-rate is much larger than the dilatational part when » is large. (By (3.14),
—nG = (n— 11 + (0.4319/n)], so that in either range the deviatoric contribution is of order »n times the
dilatational part when » is large.)

McMeeking (1982) has derived an expression for the power-law solid containing a dilute concentration
of spherical voids under high triaxiality stress conditions. His derivation does not employ the scalar
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potential but instead deals directly with tensor equations. His procedure requires, in effect, a separate
evaluation of the deviatoric and dilatational parts of the strain-rate. For the dilatational part he too makes
use of the results of Budiansky et al. (1982). The present results are in essential agreement with
McMeeking’s result for that part. McMeeking’s evaluation of the deviatoric part requires knowledge of the
shape change of the void, which he also took from the work of Budiansky et al. (1982). This part of the
calculation appears to be the most difficult to perform accurately, and at sufficiently large X his formula
gives a deviatoric contribution with the incorrect sign. The great advantage of the present approach based
on the scalar potential is that the deviatoric and dilatational contributions are generated together from the
basic relation (1.5). Approximations are only made on the scalar potential function and not at the level
involving tensor functions where approximations are generally more difficult to access.

4.2. Deformation theory solid

Suppose the matrix material is a small strain, rate-independent J, deformation theory solid with a
power-law tensile relation

e=a(o/oo)" (4.3)
and a multiaxial relation
€ij= %a(oe/ao)nilsij/a()' (44)

Because of the simple correspondence between a creeping material and a small strain, rate-independent
deformation theory solid, the strain potential of the power-law deformation theory solid with a dilute
concentration of spherical voids is still given @ in (1.6). The overall strain is given by

E, =30/0%,, (4.5)

so that all the previous formulas apply to the voided deformation theory solid if E is replaced by E.

Approximate ways for including the effect of a strain contribution which is linear in the stress, as for a
matrix material with a Ramberg-Osgood stress—strain curve, are readily generated. The simplest is to
regard the power-law contribution as the ‘ plastic-part’ and add to it the corresponding linear contribution.
These possibilities will not be pursued here.

4.3. Rate-independent, flow theory solid

In this section we give the constitutive relation for a small strain, power-law flow theory (incremental)
solid which coincides with the deformation theory solid (4.5) when the overall stressing is proportional, i.e.,
when X =A% where A is increased monotonically. The solid can be regarded as rigid-plastic or,
alternatively, the expression for the strain increments given below can be regarded as the plastic part of the
strain increments. When the void volume concentration p is zero, the solid (i.e., the matrix material) is the
incompressible power-law material characterized by (4.3) in simple tension, by (4.4) for proportional
multiaxial stressing, and by J, flow theory for arbitrary stressing histories.

To construct the constitutive relation for the dilutely voided solid we take the overall yield condition in
the current state as

®(Z) = const., (4.6)

where @ is again given by (1.6). If the yield condition is currently met, the condition for continued yielding
is (09/92, j.)i‘,. ;> 0, where now the overdot denotes an incremental change and not necessarily the
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4. Constitutive relations for various dilutely voided power-law solids
4.1. Power-law creeping solid

The potential for the power-law creeping solid in the presence of a dilute concentration of spherical
voids, p, is given by (1.6) where our approximation for @, is specified by (1.9) with f given by one of (3.23),
(3.24) or (3.25) depending on the range of X. The creep-rate is given in terms of the macroscopic stress by
(1.11). The creep-rate derived from the high triaxiality approximation (3.23a) is

. s, "7ISU. 3, n 31X n S,.j _
E,.,=;a(—) —+pa(—) {7’7—0} H(-nG) g + §sign(X)3, |, (4.1)

9y 9y 9y

while the result derived from the low triaxiality approximation (3.24) is

, 2 \Sy 2\
E,.j=%a(—e) 2 +pa(o_e) {g[(n+1)f*+;x(n—1)xz]
0

+ %xXSU-}. (4.2)
)

S,
z.
In either range of triaxiality, inspection of these formulas reveals that the contribution due to the voids to
the deviatoric part of the strain-rate is much larger than the dilatational part when » is large. (By (3.14),
—nG = (n— 1)1+ (0.4319/n)], so that in either range the deviatoric contribution is of order n times the
dilatational part when # is large.)

McMeeking (1982) has derived an expression for the power-law solid containing a dilute concentration
of spherical voids under high triaxiality stress conditions. His derivation does not employ the scalar




50 J.M. Duva, J.W. Hutchinson / Voided nonlinear materials

potential but instead deals directly with tensor equations. His procedure requires, in effect, a separate
evaluation of the deviatoric and dilatational parts of the strain-rate. For the dilatational part he too makes
use of the results of Budiansky et al. (1982). The present results are in essential agreement with
McMeeking’s result for that part. McMeeking’s evaluation of the deviatoric part requires knowledge of the
shape change of the void, which he also took from the work of Budiansky et al. (1982). This part of the
calculation appears to be the most difficult to perform accurately, and at sufficiently large X his formula
gives a deviatoric contribution with the incorrect sign. The great advantage of the present approach based
on the scalar potential is that the deviatoric and dilatational contributions are generated together from the
basic relation (1.5). Approximations are only made on the scalar potential function and not at the level
involving tensor functions where approximations are generally more difficult to access.

4.2. Deformation theory solid

Suppose the matrix material is a small strain, rate-independent J, deformation theory solid with a
power-law tensile relation

e=a(o/0y)" (4.3)

and a multiaxial relation

n—1
€lj = %a(oe/"o) sij/OO' (44)

Because of the simple correspondence between a creeping material and a small strain, rate-independent
deformation theory solid, the strain potential of the power-law deformation theory solid with a dilute
concentration of spherical voids is still given @ in (1.6). The overall strain is given by

E, =30/0%, (4.5)

so that all the previous formulas apply to the voided deformation theory solid if Eis replaced by E.

Approximate ways for including the effect of a strain contribution which is linear in the stress, as for a
matrix material with a Ramberg-Osgood stress—strain curve, are readily generated. The simplest is to
regard the power-law contribution as the ‘plastic-part’ and add to it the corresponding linear contribution.
These possibilities will not be pursued here.

4.3. Rate-independent, flow theory solid

In this section we give the constitutive relation for a small strain, power-law flow theory (incremental)
solid which coincides with the deformation theory solid (4.5) when the overall stressing is proportional, i.e.,
when ¥ =AZX° where A is increased monotonically. The solid can be regarded as rigid-plastic or,
alternatively, the expression for the strain increments given below can be regarded as the plastic part of the
strain increments. When the void volume concentration p is zero, the solid (i.e., the matrix material) is the
incompressible power-law material characterized by (4.3) in simple tension, by (4.4) for proportional
multiaxial stressing, and by J, flow theory for arbitrary stressing histories.

To construct the constitutive relation for the dilutely voided solid we take the overall yield condition in
the current state as

®(X) = const., (4.6)

where @ is again given by (1.6). If the yield condition is currently met, the condition for continued yielding
is (00/02,,)2,,> 0, where now the overdot denotes an incremental change and not necessarily the
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time-rate of change. It is readily verified that the following incremental relation, which satisfies normality,
coincides with the deformation theory for all proportional stress histories:

n 1 3d ad |
3 (4.7)

Ei=arieas, a3,

At this point it is of interest to relate the present predictions for the power-hardening solid to the
corresponding predictions from Gurson’s (1977) theory specialized to the same matrix hardening law. If we
focus on the increment of dilatation in the range of high stress triaxiality, then the present theory from (4.7)
gives

. . X !

E,, = 1ok, mgn(X){—%;' - G} , (4.8)
where f has been taken as in (3.23a). Here, it is assumed that E, = an(Z,/s,)" (£,/0,) is not zero, and
terms of order p® have dropped in arriving at (4.8) from (4.7). The corresponding result from Gurson’s

theory when specialized to a dilute concentration of voids is, in the present notation,
E, =3pE. sinh(3X). (4.9)

Except for the lead coefficient 3 rather than 1.70, this result is what one obtains from the suggested
approximation of Rice and Tracey (1969) based on their analysis of an isolated spherical void in a perfectly
plastic matrix. The strain-hardening characteristics of the matrix do not enter into this expression for the
Gurson material in the dilute limit, except indirectly through the dependence of £, on Z,. The correspond-
ing expression (4.8) from the present theory has a strong n-dependence. In the limit n = oo corresponding
to perfect plasticity, (4.8) becomes

E,,=0.850pE, sign( X) exp{3| X|}, (4.10)

and, except for the 12% difference in the lead numerical coefficient, this agrees reasonably closely with (4.9)
for | X| = 1. McMeeking (1982) has also discussed the dilutely voided, perfectly plastic material and has
shown that his formulation is in general agreement with the dilute limit of the Gurson model insofar as the
dilatation is concerned. However, the rate of growth of the voids in the strain hardening material may be
substantially less than what is predicted by (4.9). For example, when X =2 and r = 5, the dilatation-rate
from (4.8) is less than one half the prediction of the Gurson theory (4.9). More extensive comparisons can
be inferred from Fig. 5.1 of Budiansky et al. (1982).

Based on the above observations, it does appear that the Gurson model will substantially overestimate
the dilatational component of the strain, and presumably the additional deviatoric component as well, in a
dilutely voided solid with moderate strain hardening. Of course, the Gurson model was formulated to deal
with void volume concentrations which may exceed dilute levels. It is possible that at non-dilute void
concentrations there may be some compensation for the effect of strain hardening.

Tvergaard (1981) has attempted to improve the accuracy of the Gurson model by adjusting certain of its
numerical coefficients so that the model more accurately reproduces detailed calculations for a voided
material. He found that the adjusted coefficients do depend on the strain-hardening exponent, but no
systematic study of this dependence was made. There appears to be room for further improvement in the
Gurson model with respect to the way strain-hardening has been incorporated. Improvement along these
lines is likely to be important since one of the major uses of the model is in the study of plastic flow
localization. Such instability processes depend rather sensitively on strain hardening,.
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5. A finite shell model for non-dilute void concentrations

As a model voided material, consider a thick spherical shell with inner radius a and outer radius b made
of the power-law viscous material (1.1)-(1.3). The surface of the void at r = a is traction-free and uniform
axisymmetric tractions are imposed over the outer surface at r = b. Specifically, with 2 denoting the stress
tensor specified in terms of S and T in (3.5), the tractions imposed on the outer surface of the shell model
are X, ,n, where a is the unit outward normal to the surface. The stress X is regarded as the macroscopic
stress carried by the model material. The void volume fraction is p = (a/b)>.

As in the analysis of the isolated void in the infinite block under axisymmetric loading, we define x as in
(3.9) and we continue to define £ as a reference strain-rate as in (3.11). The normalized dilatation-rate of
the spherical shell model is defined as (V/V)/E where V = %nb> is the current volume of the voided
material element. Previously the volume of the void itself, V,, was used to define the normalized
dilatation-rate. Of course, V' = V,, since the shell material is incompressible. Thus, (V/V)/E = p(V,/V,)/E.
For the power-law material, this normalized dilatation-rate has the functional form

%TI; — F(x, p, n). (5.1)
In the dilute limit, as p becomes small, (5.1) necessarily reduces to the result obtainable from (3.12) for the
isolated void in the infinite block, i.e.,
%%—»p%(x,n) asp—0, (5.2)

Numerical calculations of F(x, p, n) have been carried out using a Rayleigh—Ritz procedure similar to
that used and detailed by Budiansky et al. (1982). In the present calculations the minimum principle for
finite regions was used and more Ritz functions were needed to achieve accuracy comparable to that for the
infinite problem.

Plots of the normalized dilatation-rate (5.1) as a function of p are given in Fig. 4 forn =1 and n =5 for
a low triaxiality level x = %, uniaxial tension, and a higher triaxiality level x = 2. The dilute approximation
(5.2) with a linear p-dependence is also shown. The dilute approximation is fairly accurate over the entire
range of p shown for the linear material, n = 1. However, the dilute approximation already significantly
underestimates the normalized dilatation-rate of the finite sphere model for the nonlinear material with
n =15 at a void volume fraction of p = 0.01, and by p = 0.02 the discrepancy is about 50%. The interaction
effect, to the extent it is modeled by the finite sphere model, is much stronger for the nonlinear material
than the linear material. This is especially evident under hydrostatic loading with S = T. Then, from
Budiansky et al. (1982),

"[l+np1/"+ 1. (5.3)

LAEEP sign<s>(§,;{o—i ) [1- ] "= %pasign(S)(%(o—i
Under hydrostatic loading the lowest order correction to the dilute approximation from (5.3) is not linear
in p but of order p/”. A void volume fraction of p =103 already increases the dilatation-rate by almost
30% above the dilute prediction when n = 3.

Based on analytical considerations, we expect that the lowest order correction to the dilute approxima-
tion will be linear in p for overall stress states which are not purely hydrostatic. Nevertheless, the finite
sphere model does illustrate the fact that interaction among the voids and departures from the dilute
approximation must be expected at void volume fractions as small as one percent in the strongly nonlinear
materials. While this clearly places a severe limit on the applicability of the dilute approximation, it does
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Fig. 4. Comparison of normalized dilatation-rate for finite sphere model with predictions based on dilute approximation. (a) Low
triaxiality example, x = 1. (b) High triaxiality example, x = 2.

not eliminate its usefulness altogether. Some of the most important flow localization phenomena precipi-
tated by void nucleation and growth set in at low void volume fractions, often in the range of p between
103 and 102

6. Potential for power-law material with a dilute concentration of aligned penny-shaped cracks

For completeness we reproduce some related results from Hutchinson (1983) for the constitutive
behavior of the power-law material (1.2) weakened by a dilute concentration of aligned penny-shaped
cracks. The cracks are all taken to be perpendicular to the x; axis and attention is limited to overall stress
states X which are axisymmetric with respect to this axis and which are again characterized by § and 7 in
(3.5).

An approximate formula for the potential change resulting from the introduction of an isolated
penny-shaped crack of radius a (aligned perpendicular to the x, axis) in an infinite block of material
subject to remote axisymmetric stress X is

() = dac,a®(1+3/n)""*(2,/0,)" " (8/2.) . (6.1)

Here, @, is conveniently defined as [, (¢(0)—¢(2)) dV. This formula is exact for » = 1, and, as discussed
by Hutchinson (1983), is highly accurate for all » for |S/X,|< 2. It becomes inaccurate in the high
triaxiality range for S/2_ larger than about 3 or 4.
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The potential for the dilutely cracked material is

é)"+l{l+p 21)2} (6.2)

% €

ao,
n+1

where, from (6.1), the crack density parameter is
p=4a’N(n+1)(1+3/n)""", (6.3)
where N is the number of cracks of radius @ per unit volume. The strain-rate from (1.5) is

. S N\"[(38 3(n—-1)S,;( sV 2 S
AR EE R v A b AR | 6
where m,, = §,,8,5.

The expression for the strain-rate (6.4) is limited to axisymmetric stress states since (6.1) is derived under
that restriction. While (6.4) is anisotropic as it stands, its application to creep-constrained grain boundary
cavitation of polycrystalline materials (Hutchinson, 1983) assumed that the penny-shaped microcracks
always appear perpendicular to the maximum principle stress S. With this interpretation the material

characterized by (6.4) is isotropic.
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