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Two examples illustrate the propagation of instability modes under quasi-static,
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steady-state conditions. The first is the inflation of a long cylindrical party balloon

in which a bulge propagates down the length of the balloon. The second is the
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collapse of a long pipe under external pressure as a result of buckle propagation. In
each example, there is a substantial barrier to the initiation of the instability mode,
Once initiated, however, the mode will not arrest if the pressure is in excess of the

quasi-static, steady-State propagation pressure. It is this critical pressure that is
determined in this paper for each of the two examples.

1 Introduction

While not a problem of great technological importance, the
inflation of a common cylindrical party balloon provides a
good illustration of the phenomenon of the propagation of an
instability. If one were to record the pressure in the balloon as
a function of its volume during the inflation process, one
would obtain a record such as that shown in Fig. 1. A bulge
first starts to form when the peak pressure is attained. 1t
forms and localizes at some section with an initial weakness or
at one of the ends of the balloon due to local nonuniformity.
With continued inflation, the pressure falls to a constant level
as the bulge slowly propagates along the balloon. During the
steady-state portion of the inflation process the radii of the
bulged and unbulged sections do not change, as depicted in
Fig. 1. The transition front between these two sections simply
propagates, or translates, into the unbulged section. This is a
quasi-static process in that air mass (essentially volume), and
not pressure, is prescribed to increase at a slow rate. A
photograph of a partially inflated cylindrical balloon in the
steady-state phase of the inflation process is shown in Fig. 2.
Our analysis will focus on the critical pressure p* associated
with quasi-static, steady-state bulge propagation and on the
states on either side of the transition.

The balloon problem is analogous in several respects to the
second problem we will consider, which is the collapse of a
long cylindrical shell, or pipe, due to the propagation of a
buckle along its length. This problem is of some importance in
connection with the collapse of undersea pipelines. We ad-
dress the problem of the external pressure p* required to
propagate a buckle down the pipe under steady, quasi-static
conditions. This critical pressure is especially significant since
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at any pressure below p*, buckles cannot propagate, while at
any prescribed pressure above p*, the buckle once initiated
will run dynamically, collapsing the entire length of pipe.

2 Steady-State Bulge Propagation Along a Cylindrical
Balloon

To gain a qualitative understanding of the origin of the
initial bulging process and the subsequent quasi-static bulge
propagation along a cylindrical party balloon, one need only
consider the relation of pressure to change of volume for a
cylindrical section of the balloon. Consider purely cylindrical
membrane deformations of a section such that at any pressure
p the shape is always cylindrical with current radius R and
thickness t. The circumferential stress is o, = pR/f and the
axial stress is ¢, = pR/(2f). The qualitative form of the curve
of pressure as a function of volume for a cylindrical section of
balloon that has unit volume in the undeformed state is shown
in Fig. 3. The volume change results from axial as well as
circumferential stretch. It will be assumed that the balloon is
inflated under isothermal conditions, and that the pressure-
volume relation in Fig. 3 for purely cylindrical deformations
corresponds to isothermal deformation of the balloon rubber.
A curve calculated using a constitutive law for an actual
rubber will be displayed later.

The initial bulging is a consequence of the local peak in the
curve of pressure against volume for purely cylindrical
deformations. The qualitative argument for initial bulge
formation parallels that of Considére for necking of metal
bars in tension. One section, which is slightly weaker than the
rest of the balloon, attains the peak first and then bulges
under falling pressure while the remainder of the balloon
‘‘unloads’’ without bulging. The bulge has localized in the
manner described in general terms by Tvergaard and
Needleman [1]. However, unlike tensile necking in common
metals and many other problems involving localized in-
stability modes, the bulge starts to spread as inflation is
continued. Spreading, or propagation, is associated with the
upturn in the curve of pressure versus volume for the cylin-
drical section. The increasing resistance of a bulged section to
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further volume expansion terminates the localization process
and forces the bulge to propagate laterally into the neigh-
boring section.

Condition for Steady-State Propagation. As discussed in
the Introduction and as depicted in Fig. 1, the inflation
process soon reaches a steady state in which the pressure is
constant and the radii of the bulged and unbulged sections do
not change. The transition front between these two sections
attains a fixed shape which simply translates along the
balloon engulfing the unbulged section. We will be concerned
with steady-state inflation under a sufficiently slow rate of air
injection such that inertial effects are negligible. This is quasi-
static bulge propagation in which the advance of the tran-
sition front is controlled by the rate of air injection.
Depending on the properties of the balloon material and on its
length, the initial bulging process may occur dynamically,
under a prescribed mass of air, with the bulging section
growing at the expense of the remainder of the balloon.

The equation determining the quasi-static propagation
pressure p* under steady-state conditions follows immediately
from the energy balance requirement that the work done by p*
must equal the change of strain energy stored in the balloon in
any advance of the transition front.

Let ¥V, and V[, denote the volumes of cylindrical sections,
each with unit undeformed volume, associated with states U
and D far ahead of and far behind, respectively, the tran-
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Fig. 3 p(V) for purely cylindrical deformation of a cylindrical segment
of unit initial volume. Quasi-static, steady-state propagation condition
requires ®{ = Rp.

sition. Because the shape of the transition is fixed, the change
in volume of the balloon when the transition front shifts
forward to engulf a new section that has unit undeformed
volume is precisely Vp—Vy, and the work done by the
pressure is p*(Vp — V). This work of the pressure is equal to
the work, AW, done on a section of unit undeformed volume
as it passes from state U to state D through the transition, i.e.,

p*(Vp—Vy)=aW 0]

Now, for a rubberlike material for which a strain energy
function is assumed to exist (under the assumed isothermal
conditions), AW is independent of the details of the defor-
mation history in the transition and depends only on the end
states D and U. In particular, we may calculate AW using
purely cylindrical deformations to connect states D and U.
Doing so, we note that

V

D
AW=S p(V)dV @)
Yu

where p(V) denotes the relation of pressure to volume for
purely cylindrical deformations of a section of unit un-
deformed volume, such as that depicted in Fig. 3. Thus, from

(1) and (2), the equation for the pressure p* for quasi-static,
steady-state bulge propagation is
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Equation (3) has the simple graphical solution indicated in
Fig. 3. By (3), the equality of the rectangular area p*(Vp—
V) with the area under the curve p( V) between ¥V, and Vp is
equivalent to the condition that the areas of the two lobes, ®,
and ®,, be equal. In the literature of phase transitions, this
graphical solution involving conjugate thermodynamical
variables is known as Maxwell’s condition for two coexisting
phases [2]. For the balloon, equation (3) is the condition that a
transition between bulged and unbulged sections exist whether
the transition is stationary or whether it is propagating quasi-
statically under inflation or deflation.

The quasi-static propagation pressure p* is less than the
local peak pressure p,,, a cylindrical segment can support by
about a factor of two, which will be shown in the following
example. In other words, it takes a substantially larger
pressure to initiate a bulge than to propagate it, as depicted in
Fig. 1, and as experienced by anyone familiar with blowing up
party balloons. The relevance of the Maxwell construction to
other instability propagation problems has been noted in [3,
4]. Characteristic of the general class of phenomena is a
substantial barrier to the initiation of the instability mode.
Once initiated, the mode encounters less resistance and
spreads at reduced load.

Predictions for a Specific Rubber Material. Ogden [5]
proposed a strain energy density function for incompressible,
isotropic rubberlike materials in the form

3
=Y ulla) 0
i=1
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and where the A, are the three stretches. To fit Treloar’s
isothermal data for rubber, Ogden proposed

o =13, =50, a;=-2.0
with )
n=2.01x10"3y; and p;=-1.59%x10"2y,

where u, is a ground state modulus which will not have to be
specified here. The curve of nondimensional p as a function
of V for purely cylindrical deformations of a cylindrical
segment of this material is shown in Fig. 4. Here R, t,, and
V, denote the values of the radius, thickness, and volume of
the undeformed cylindrical segment. The local peak pressure
is

Dumax =0.504u,15/R, (7
The Maxwell condition (3) for p* and states U and D gives
p*=0.255u,10/R, (8)
and
AN =1.006, \Y=1.125, V,=1.273V, ©
NP =4.484, NP =6.507, V,,=189.8V,

where the one-direction is parallel to the cylindrical axis of the
balloon and the two-direction is along its circumference.
(Note that a logarithmic scale is used for the abscissa in Fig. 4
so that the two lobes formed by the Maxwell line do not have
equal areas in that plot.) The steady-state inflation pressure is
almost exactly one half p,... The measured volume expansion
of the balloon of Fig. 2 in state D is about V', =130V, which
is somewhat less than the prediction (9) for a balloon of
Treloar’s rubber characterized by (4).



Fig.5 Section of one of Kyriakides’ specimens showing the transition
between the buckled and unbuckled regions of the pipe.

3 Buckle Propagation Along a Pipe Subject to Ex-
ternal Pressure

We now direct attention to the problem for the smallest
pressure at which a buckle, once initiated, will propagate the
entire length of a cylindrical shell or pipe. Palmer and Martin
[6] have given one of the early accounts of this phenomenon
as related to the collapse of undersea pipelines, and Mesloh,
Johns, and Sorenson [7] conducted the first systematic ex-
perimental study of the problem using both small and full-
scale specimens. Kyriakides [8] and Kyriakides and Babcock
[9, 10] have carried out the most extensive theoretical and
experimental study of a number of aspects of buckle
propagation and arrest on externally pressurized pipes. The
approach we discuss in the following makes close contact with
the work of Kyriakides and Babcock and, in particular, we
will compare our theoretical predictions for the smallest
propagation pressure to some of their experimental results.

A photograph of one of Kyriakides’ test specimens is shown
in Fig. 5. The section of pipe shown was cut from a much
longer pipe. It displays the three regions of interest: the
collapsed region, the unbuckled region, and the transition. In
conducting the test, a substantial dent was introduced near
one end of the long pipe. The pipe was then subjected to
external pressure in an apparatus consisting of an external
shell surrounding the pipe. Air or water was pumped at a
given rate into the cavity between the pipe and the outer shell.
Under quasi-static propagation of interest here, the buckle
spreads at a rate that is controlled by the (slow) rate of in-
jection of the pressurizing medium. After a brief transient,
the propagating buckle settles down to a steady-state con-
dition in which the transition moves down the pipe under
constant pressure p* leaving a plastically collapsed pipe
behind it.

Buckling and Post-Buckling Behavior of a Ring Under
Plane Strain Deformations. The classical elastic buckling
pressure of an infinitely long cylndrical shell of radius R and
thickness ¢ due to plane strain ring buckling is

4

elastic buckling

/plastlc yielding O

DA, AAp DA

Fig.6 Buckling and post-buckling behavior of a ring undergoing plane
strain deformation. Quasi-static propagation pressure p* is given by
the condition ®4 =®, for a pipe of material characterized by defor-
mation theory.

E ry?
pf_4(1—u2)<R) (10)
where E is Young’s modulus and » is Poisson’s ratio. The
associated hoop stress in the shell at buckling is 6. = —p . R/?
and the axial stress is ¢./2. The pipes that have been tested
have ratios of radius to thickness in the range from about
15-50, roughly corresponding to the range of interest for
undersea pipelines. In this range, the materials of the test
specimens, and of the pipelines themselves, have sufficiently
high-yield stresses such that any perfect pipe would begin to
buckle elastically. That is, the stress state (o., o./2) falls
within the initial yield surface of the pipe material. In the
present study, we will also confine attention to the range of
parameters such that the classical buckling stress of the
perfect pipe is within the elastic limit.

Kyriakides and Babcock [8-10} and Kyriakides and Arikan
[11] have emphasized the relevance of the post-buckling
behavior of a circular ring to the understanding of the buckle
propagation problem, and the ring behavior is central to our
approach as well. A schematic curve of pressure, p, as a
function of reduction in cross-sectional area, AA, is shown in
Fig. 6 for a perfect, infinitely long cylindrical shell un-
dergoing ring buckling. This is a plane-strain ring mode in
that the deformation is independent of the axial coordinate
and the axial component of strain associated with bending is
Zero.

Buckling starts when the pressure attains p., as already
described. Ovalization proceeds under a very slight rise in
pressure until plastic yielding starts at the regions of highest
curvature change. Once yielding starts, the pressure carrying
capacity falls precipitously. As ovalization progresses, most
of the deformation becomes confined to four ‘‘hinges’’ at the
guarter points of the ring and the pressure falls more slowly.
Then, when the area reduction has reached about 75 percent
of the original cross-sectional area, touching of two opposite
quarter points occurs, as depicted in Fig. 6. Touching braces
the ring and immediately results in a substantial stiffening so
that the pressure again increases very rapidly with relatively
little additional area reduction [11].

Touching and the attendant rise in pressure is ¢rucial to the
work balance relation, and therefore some further

Transactions of the ASME



background to its occurrence is now given. In the original
tests of Kyriakides and Babcock the importance of touching,
per se, was not obvious and no effort was made to ascertain
whether or not it occurred in the limit of quasi-static
propagation. In the unloaded state the opposite walls of the
collapsed section are definitely not in contact, but no con-
clusion can be drawn from this observation since elastic
spring back always occurs. We are grateful to Kyriakides for
conducting further tests on two additional specimens under
quasi-static test conditions. In these tests he determined
unambiguously that touching does occur in the collapsed
section of the pipe behind the transition (private com-
munication).

Deformation Theory Analysis of Quasi-Static, Steady-State
Buckle Propagation. A second crucial aspect in our approach
is the idealized material model we adopt. We characterize the
material by the deformation theory of plasticity, which is a
small-strain, nonlinearly elastic constitutive relation. In the
steady-state buckle propagation problem elastic unloading is
not an important feature. Almost every material point in the
pipe experiences a monotonic plastic loading history as the
transition fronts sweeps by it. In the quasi-static propagation
limit, the transition between the collapsed and uncollapsed
sections of the pipe is very gradually occurring over about 10
pipe diameters [8]. To a rough approximation, any short
cylindrical segment of the pipe experiences a deformation
history similar to the ring deformation depicted in Fig. 6. In
addition to circumferential bending associated with the ring

deformation, some axial bending along with in-plane
p
p 2 c
-~ X
v *10
20
1.6

straining must occur in the transition. In other words,
although the stress history of any material point may involve
monotonic loading, it is not a strictly proportional stressing
history. By invoking deformation theory, we will be
neglecting any path-dependent effects associated with the
nonproportional stressing that occurs in the transition.

Now consider the work balance for steady-state
propagation under quasi-static conditions at pressure p*. By
making the same simple arguments used in the balloon
problem, one arrives at the work balance relation

P(AAp—AA ) =AW (1)
Here, AA;, and AA,, denote area reductions associated with
segments far behind and far ahead of the transition, and AW
is the stress work absorbed by each ring segment of unit length
as it is engulfed by the transition deforming it from state U to
state D. For a pipe of deformation theory material, states D
and U are plane-strain ring solutions. Furthermore, because
of the path independence of deformation theory, AW may be
determined using the ring solution even though each ring
segment departs from the plane-strain ring behavior in the
transition. The stress work difference, AW, is just the work
done on the plane strain ring in deforming it from state U to
state D, i.e.,

aAdp
AW"—'S p(AAd)dAA (12)
ady

where p(AA4) denotes the relation of pressure to area
reduction for the ring under plane strain deformations. Thus,
the equation for p* is

(a)

Fig.7(a) R/t=14.3
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Fig.7 Curves of p(AA) for cylindrical segments of two pipes in the test
series. In each case, Y/E =0.0042 and n = 30.

adp
p'(AAD~AAU)=§MUp(AA)dAA (13)

with the same graphical interpretation as in the balloon
problem, as indicated in Fig. 6.

Comparison With Some Experiments. We have carried out
accurate calculations of p* for some pipes of AL-6061-T6 for
which Kyriakides [8] reported quasi-static buckle propagation
pressures. The yield stresses of the pipes in the test series
ranged from Y =280 to 370 MPa. We selected eight pipes for
which the unijaxial stress-strain curves were available with Y
being in the range from 286 to 296 MPa. The uniaxial curves
given in [8] were closely approximated by the formula

oo 1))

where E=6.9 x 10*MPa, with Y/E=0.0042 and n=30 or
with Y/E =0.0043 and n =28,

The pipes varied in radius to thickness from 14.3-47.4 and,
as already mentioned, a perfect version of each would begin
buckling in the elastic range. Some of the details of the
calculation of the relation p(AA) for the plane-strain ring
problem are described in the Appendix. Two examples are
shown in Fig. 7 for the pipes in the series with the largest and
smallest values of R/t. The elastic contraction of the ring
prior to buckling is so small that almost no reduction of area
shows up in Fig. 7 before the peak is attained. To facilitate the
numerical calculation of p(AA), a very small initial im-
perfection was introduced in the form of an initial ovalization
of the ring amounting to an additional radius difference of
0.005 times the ring thickness. For this reason, the peak value

(14
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Fig. 8 Comparison of theoretical prediction for p* (solid line) with
experimental results of [8] (solid points)
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Table 1

(experimental) (theoretical)

R(mm) Hmm) R/t *(MPa) p*(MPa) Y(MPa)
12.7 0.889 14.3 1.68 1.29¢ 290
19.1 1.245 15.3 1.55 1.15% 297
14.3 0.914 15.6 1.23 1.11% 297
12.7 0.509 25.0 0.441 0.4317 290
19.1 0.737 25.9 0.395 0.3942 290
17.5 0.508 34.4 0.227 0.207° 297
25.4 0.559 45.5 0.121 0.110° 293
34.9 0.737 47.4 0.103 0.101° 286

2Calculated with Y/E =0.0042 and n =30
b Calculated with Y/E=0.0043 and n =28

or
o
p .51
c

| |

1

|
o 10 20

40

30
R/t

Fig.9 p*/p. forvarious initial yleld strains ¢y for n = 10.

of p does not quite attain p.. The error in p* associated with
the introduction of the imperfection is very small, as can
readily be estimated.

Touching occurs at A4 =0.75xR*. We did not compute
p(AA) beyond touching. For simplicity, we took the relation
to have a vertical slope once touching occurred. This neglects
a small contribution to the area of the lobe below the Maxwell
line. The theoretical prediction for p* determined from (13) is
shown in each of the plots of Fig. 7 along with the ex-
perimental value.

The comparison between theory and experimental data for
the eight pipes is graphed in Fig. 8. The theoretical curve in
this figure was determined using Y7E =0.0042 and n =30, but
essentially identical results are obtained using Y/E=0.0043
and n=28. Numerical data for the eight shells are given in
Table 1. Except for the two pipes with the smallest values of
R/t, the theoretical prediction for p* underestimated the
experimental propagation pressure by no more than 10
percent, and for three of the pipes the prediction is within 2
percent. The theoretical predictions for the two pipes with the
smallest values of R/t underestimate the experimental
propagation pressures by about 25 percent.

The results of a limited parameter study are presented in
Figs. 9 and 10 in the form of curves of p*/p, versus R/t for
various values of ¢; and n. The uniaxial stress-strain curve in
each case was the Ramberg-Osgood relation

e/eg=0/09+(3/7)o/060)" (15)

where ¢; =0,/E. The predictions for p* are more sensitive
than one might first suppose to the parameters characterizing
the uniaxial stress-strain curve. For this reason, we have not
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attempted to make further comparisons with additional
experimental results in [8] since detailed uniaxial material
data were not available for the other test specimens. In this
connection, it is almost certainly the uniaxial data associated
with the circumferential direction that is relevant when the
pipe material displays appreciable anisotropy.

It can be noted in Figs. 9 and 10 that the pipes with the
smallest values of R/t have the smallest ratios of p* to p..
Buckle propagation pressures as low as 1/10 to 1/4 of the
classical ring buckling pressure (10) are seen for pipes with
R/t values in the range from 15-20. Such low buckle
propagation pressures are surprising in light of the fact that
the long cylindrical shell under external pressure is not
normally regarded as very imperfection-sensitive even when
plastic yielding occurs in the post-buckling response. It does
take a substantial dent or blow to initiate a buckle that will
then propagate. A pipe meeting normal tolerances should
have no difficulty supporting pressures that are several times
Dp* as long as they are below p.. However, if substantial dents
or blows are possible, the pressure must be below p* if it is to
be certain that collapse of a full length of pipe will not occur.
The spreading of a buckle due to an initial imperfection is
studied in more detail for a model problem in {3].

Limitations of the Method. There is no question that
deformation theory gives an oversimplified description of the
pipe material for the buckle propagation problem. That the
deformation theory predictions for p* do so well, particularly
for the pipes with the larger values of R/¢, is probably a
consequence of the gradual transition so that the departure
from plane-strain ring behavior is not too marked. In every

7
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case, the deformation theory prediction for p* un-
derestimated the experimental result. This is not surprising
since deformation theory is expected to underestimate the
work absorbed, AW, by each ring segment as it is engulfed by
the transition.

The simple analysis presented here provides the
propagation pressure p* and the states far ahead and behind
the transition but no information about the transition itself.
In the case of the balloon, we have formulated and solved the
axisymmetric membrane problem for the full problem, in-
cluding the transition, and this solution will be reported
elsewhere, along with' some results related to the energy
associated with the transition. The corresponding problem for
the pipe is much harder even when deformation theory is
invoked.

We have made some attempts to base the calculation of p*
on an incremental theory of plasticity, but only with limited
success at this stage. When deformation theory is abandoned
and material path dependence is accounted for, the behavior
in the transition must be analyzed. The appropriate shell
problem is incomparably more difficult than the ring problem
on which the deformation theory analysis is based. Never-
theless, at some level of approximation, it will probably be
necessary to incorporate the effect of the material path
dependence to improve on the present method for estimating
p*. Furthermore, if it is desired to predict the relation between
the steady-state velocity of propagation at pressures above p*,
it will almost certainly be necessary to improve on the
material model. As reported in [8], the transition is sharper in
the dynamic problem than it is in the quasi-static one, and this
makes it more likely that path-dependent effects are im-
portant in the transition.
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APPENDIX
Numerical Scheme for Ring Analysis

The method used to generate the relation p(AA) shown in
Fig. 7 is similar in many respects to the method employed in
{10}]. In the present study, for convenience, we did not enforce
inextensionality, although the extensionality is not expected to
have much effect on p*. Furthermore, we constrained the ring
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Fig. 11

Sign conventions for the ring analysis

deformations to be plane strain with zero axial component of
strain, consistent with the fact that the ring segment is part of
a long cylindrical shell.

The equilibrium equations for a ring in the deformed state
are

dM/ds+S=0
dS/ds—kF=p
dF/ds+«8=0

where M, S, and F are the moment, resultant transverse shear
stress, and resultant stretching stress with the sign conventions
shown in Fig. 11. The curvature in the current state is x(s)
and the distance along the ring midsurface is s. With w and v
as the displacement increments normal and tangent,
respectively, to the current middle surface, the increments of
rotation, strain and curvature are

(16)

d=dw/ds— v
é=do/ds+ kw an
k=d/ds

With s; as the stress deviator, g, = (3s;5;/2)'/? as the
effective stress, and E,(o,) as the secant modulus of the
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uniaxial stress-strain curve, the deformation theory relation
for multiaxial stress states is

_ 1+ 1-2» 371 1

“="g Si (E E)s”
Let €, be the hoop strain and ¢,;; be the axial component of
strain, with o;; as the stress component in the direction
normal to the middle surface. Under the conditions that
033 =0 and ¢;, =0, one can derive an incremental expression
from (18) relating é=¢,, to 6= 0, in the form 5=F, ¢, where
E, is the plane-strain tangential modulus which depends on
the stress at the particular point in the ring. The incremental
form of the constitutive relation for the ring is

F=Lé+L,k
M=L,é+Ljk

_E“"—Uppa,'j+ 5 (18)

(19)
Here,

Z
L,‘=S Ez"ldz

—/2

with z as the coordinate measured from the ring middle
surface.

After writing the equilibrium equations (16) in incremental
form, we obtained four first-order differential equations with
S, ¢, ¢, and & as dependent variables. This is a convenient
choice of variables since S and ¢ vanish at the quarter sym-
metry points. At each stage of the deformation history, the
system of four first-order equations was integrated
numerically. Then, the displacement increments were ob-
tained by integrating the first two equations of (17) subject to
v=0 at quarter symmetry points. The increment in area
reduction is — {wds. An accurate evaluation of the integral on
the right-hand side of (13) was obtained by fitting the
discretized results for p (AA) using cubic splines.
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