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ABSTRACT

A FIBER-REINFORCED ceramic subject to tensile stress in the fiber direction can undergo extensive matrix
cracking normal to the fibers, while the fibers remain intact. In this paper, the critical conditions for the onset
of widespread matrix cracking are studied analytically on the basis of fracture mechanics theory. Two distinct
situations concerning the fiber-matrix interface are contemplated : (i) unbonded fibers initially held in the
matrix by thermal or other strain mismatches, but susceptible to frictional slip, and (ii) fibers that initially are
weakly bonded to the matrix, but may be debonded by the stresses near the tip of an advancing matrix crack.
The results generalize those of the Aveston—Cooper—Kelly theory [or case (i). Optimal thermal strain
mismatches for maximum cracking strength are studied, and theoretical results are compared with
experimental data for a SiC fiber, lithium-alumina-silicate glass matrix composite.

NOMENCLATURE
a fiber radius
¢ ¢, fiber, matrix volume fractions (c;+¢,, = 1)
E composite Young’s modulus, =¢E;+c,E.,

E; E,, fiber, matrix Young’s moduli
matrix shear modulus, = E_/[2(1 +v,)]

m
Y, critical debonding energy release rate
g critical mode-T matrix energy release rate
K, critical mode-I matrix stress-intensity factor (= \/En%./(1—v2))
Iy fiber debond length
I fiber slip length
q fiber-matrix interface pressure
U coefficient of friction
Vi,V  fiber, matrix Poisson ratios
T, interface slipping shear stress

INTRODUCTION

Fieer-reinforced ccramic materials have promising potential for high-temperature
applications (PREwo and BRENNAN, 1980). Under tensile loading of the composite in
the fiber direction, the brittle matrix can undergo extensive cracking normal to the
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fibers, but the associated matrix cracking stress may be substantially greater than the
catastrophic fracture stress of the unreinforced ceramic. Furthermore, with the fibers
intact, the composite material can continue to sustain additional load up to the fiber
bundle fracture stress.

This behavior is illustrated by the schematic stress—strain curve shown in Fig. 1. The
slope of the initial straight portion of the curve is closely approximated by the rule of
mixtures based on matrix and fiber moduli. Extensive matrix cracking, often involving
a small stress drop, occurs at A, and the matrix becomes permeated by many, more-or-
less equally spaced cracks that traverse the full cross-section of the specimen. Under
continued loading, the fibers alone provide most of the subsequent stiffness. The
ultimate strength would ideally be associated with fracture of uniformly strong fibers,
but in practice is degraded somewhat as fibers fracture sequentially rather than
simultaneously before the peak stress at B is reached.

In this paper, critical conditions for the onset of widespread matrix cracking are
studied theoretically on the basis of fracture mechanics theory. Two distinct situations
concerning the fiber—-matrix interfaces are considered : (i) unbonded fibers held in the
matrix by initial pressures due to thermal or other strain mismatches, but susceptible to
frictional slip, and (ii) fibers under initial radial tension that are weakly bonded to the
matrix, but may be debonded by the high stresses near the tip of an advancing matrix
crack.

The study of case (i), which generalizes the well known Aveston—Cooper—Kelly
(ACK) theory (AvesTon, CooPER and KELLY, 1971 ; AvESTON and KELLY, 1973 ; KELLY,
1976 ; AVESTON and KELLY, 1980; HANNANT, HUGHES and KELLY, 1983), is based on the
analysis of steady state crack growth in the matrix. The concept adopted (slightly
different from that of ACK) is that a “first” planar crack will propagate across the
composite under an applied stress that becomes constant during the propagation as
soon as the crack engulfs more than a few fibers. With dynamic effects neglected, the
stress associated with this steady state cracking is equivalent to the “first cracking”
stress of ACK. (The initiation of growth of the most critical flaw in the matrix could
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F1G. 1. Schematic stress—strain curve of brittle-matrix fibrous composite.
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require a somewhat higher stress than that associated with steady state growth-—hence
the slight dip in the stress—strain curve of Fig. 1.) Figure 2 illustrates the matrix crack as
it proceeds across the composite. With enough frictional resistance, no slip will occur at
the interfaces, as shown in Fig. 2a. When slip does occur (Fig. 2b), the slip length along
the fibers on either side of the crack can be expected to approach an asymptotic value
on the downstream side of the crack front.

The presumption that Coulomb friction provides the resistance to fiber slip implies
that positive fiber—matrix pressures are imposed by strain mismatches that occur
during the fabrication process. It does not however follow that increasing such
mismatches would necessarily raise the matrix cracking stress, despite the larger
frictional resistance thereby provided. The same strain mismatches also generally lead
to initial axial tensile stresses which act to reduce the cracking strength. Accordingly,
optimal strain mismatches can be expected to exist, and these will be estimated.

In the case of bonded fibers, the matrix cracking strength will depend on the
debonding toughness of the interface. In the presence of sufficiently high debonding
toughness, the first matrix crack will propagate in a manner indistinguishable from that
of the no-slip frictional case (Fig. 2a). If debonding does occur, and the interface
pressure is negative (i.e. tensile residual stresses exist between fiber and matrix) the
debonded regions will open up, and the crack will propagate as shown in Fig. 2¢. The
steady state cracking calculation will be made for this case on the basis of an elementary
analysis of the debonding process near the advancing crack front.

Riunul

(a) No slip, no debond

|

(b) Unbonded, frictionally constrained
slipping fibers
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Crack-tip debondin‘g\

(c) Initially bonded, debonding fibers

F1G. 2. Steady state matrix cracking.
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ENERGY RELATIONS

A fairly general relation will be derived for the loss in potential energy of a
prestressed elastic body, within which, under constant additional load, cracks develop
and open up, and also sliding occurs along internal interfaces. These relations will be
used subsequently in the steady state cracking calculations. Figure 3 shows three states
of the body. In state (0), the body is free of external load, but contains an initial tensor
stress distribution g, in its volume V. With the external vector tractions T applied to
the external boundary S; in state (1), the stress becomes o,, and additional
displacements u,, compatible with additional strains ¢, are produced. The body may
now contain open cracks, as well as internal surfaces in which sliding has occurred. In
state (2), with no change in T, more open cracking has occurred, and additional
frictional sliding has taken place along the interface Sy. The final stresses are now o,
and the displacements and strains, still measured from the ground state (0), are u, and
&, We want to calculate the potential energy loss (n, —mn,) associated with the
transition from the energy n; in state (1), to =, in state (2). The elastic constitutive
relations may be written

¢ = M(a—0a,) 1
for the strain changes produced by ¢, where M is a linear operator. Then
1
Ty = -—J\ oo M(op)dV, (2)
2)v
1
n1=f GI:M(al)dV~J T u,dV, (3)
2 )y S
1
n2=*J‘ GZ:M(az)dV—j T u,dV. 4)
2 14 St

In each case, the volume integral represents the elastic energy stored in the body. Since
0,:M(o,) = o,: M(a,), the energy loss may be written as

1
nl-nzziJ. (al+62):M(al-az)dV*J‘ T (u; —u,)dS. (5)
14 St
state (O) state (1) state (2)
oy
Eo =0 6\ M{oy-0,) {62 M(o, - oo
uo =0 U| uz

F1G. 3. Three successive states: (0) unloaded, prestressed, (1) loaded, (2) new open crack surface S, more
sliding on surface Sg.
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We now assume that in state (2) the shear tractions on Sk act in a direction opposite to
that of the relative sliding, and have constant magnitude 1,. Then, by the principle of
virtual work,

J T+ (uy—uy)dS =f GZ:M(al—az)dV—‘cs-[ |Av| dS, (6)
St v Se

where |Av| is the magnitude of the relative slip on Sy that has occurred during the
transition from states (1) to (2). Hence

1
nl—n2=zj (al—az):M(al—o’z)dV-l—'rSJ~ |Av| dS. (7)
14 Se
If we assume further that slip on Sy has been unvarying and monotonic in direction
during the transition to state (2), and that the sliding resistance has always been equal to
74, the frictional energy £ dissipated (as heat) is precisely the last integral in (7). Hence

1
771*”2:5‘[ (01—05):(er—&)dV + &5 8)
v
under the stipulated assumptions. This result is clearly not valid under conditions of

variable-direction slip, or history-dependent frictional resistance, during the transition
from states (1) to (2). It does remain correct for pointwise variations in 7,.

STEADY STATE CRACKING RELATIONS

To apply the energy relations just developed, we contemplate a long matrix crack of
length s in a very wide specimen of width W and unit thickness, as shown in Fig. 4. The
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F1G. 4. Advancing matrix crack.




172 B. Bubpiansky, J. W. HUTCHINSON and A. G. Evans

crack extends through the thickness of the specimen, with a straight front CC, but all of
the fibers are intact. With no change in the average applied stress o, the crack is
presumed to advance an amount As to C'C’. Now identify the initial uncracked and
unloaded but possibly prestressed state of the specimen with state (0), and let the states
before and after the crack advance As correspond to states (1) and (2). The assumption
of steady state cracking means that the stresses at the crack front, averaged through the
thickness, remain unchanged during the crack growth, and also that the upstream and
downstream stress states, far ahead of and behind the crack front, do not change.
Consequently, if we define Py and P, as the upstream and downstream potential
energies per unit cross-sectional area of the composite, it follows that

ny— 7y = (Py—Pp)As. 9)

Hence, with the use of (8), the potential energy release rate (per unit crack extension, per
unit thickness) becomes

1
P24,

Xk

Py—P j j(au—ab):(eu—sD)dAdz+\ (10)
-LJ A4,

os’

where oy, ey and oy, &, are the upstream and downstream stress and strain distri-
butions, and A_ is a representative cross-sectional area of the composite. Here 0¢¢/0s is
the frictional energy dissipation rate (per unit thickness) associated with fiber-matrix
slip.

In the case of unbonded, frictionally constrained, slipping fibers, the energy release
rate Py— P must be balanced by the sum of this frictional energy dissipation rate and
the critical matrix crack extension energy release rate ¢,,%,, per unit thickness of the
composite. Hence the relation

1
24,

JL J (oy—op):(ey—ep)dAdz = ¢, ¥, (11
-LJ 4o

governs matrix cracking, for both the slip and no-slip cases. If slip does occur, the
validity of this result requires that there be monotonically increasing slip along each
fiber.

In the case of initially bonded, debonding fibers, the frictional term in (10) is absent,
but now a debonding energy release absorbs part of P, — Pp,. For a unit crack advance,
the increment in debonded surface area per fiber is 2nal, on each side of the crack, and
the number per unit area of newly debonded fibers is ¢;/(na?). Hence the total
debonding energy release rate is 4eg(ly/a)%,, where 4, is the critical energy release rate
for debonding of the fiber—-matrix interface, so that

1 L
- (06— 0p): (eu—Ep) Az = G,y +dcr(ly/a)% . (12)
2Ac ~LJAc

In order to implement (11) and (12) for the calculation of the cracking stress, we now
have to estimate o, and op, and for the debonding situation we also must estimate the
debonding length /,.
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FIBER—-MATRIX STRESS ANALYSIS

Upstream stresses

Far ahead of the crack-tip, the axial stresses in the fibers and the matrix in the loaded
composite are those of the uncracked material. The upstream stresses are therefore well
approximated by :

of = (E¢//E)s + o}, } (13)
oY = (E_ JE)}c+a.,

where ¢ is the average applied stress, of and ., are the initial axial stresses in the
unloaded composite, and E, E, are the fiber and matrix Young’s moduli. This
approximation neglects the effects of transverse stresses on axial strains, and is
consistent with the rule-of-mixtures expression

E = ¢E¢+enFEm (14)
for the effective axial modulus of the composite. The initial and total stresses satisfy

cot+enoh, =0 (15)
and

CO¢+Cp0y, =0 (16)

respectively.

Downstream stresses

Behind the crack-tip, the average fiber and matrix axial stresses at the crack face are

g = O'/Cf, } (17)

on=20

and for L > a the stresses at z = L are given by equation (13). Approximate shear-lag
analyses will provide the far-downstream stress distributions in each of the cases shown
in Fig. 2.

No-slip case. Far from the crack-tip, an isolated composite-cylinder shear-lag model,
similar to that adopted by AvestoN and KeLLy (1973), will be used. Each fiber is
presumed to be embedded in a matrix cylinder of outer radius R chosen as

R=a//c (18)

to provide the correct volume concentration of fibers (Fig. 5a). The model is further
simplified (Fig. 5b) by concentrating all of the axial stress-carrying area of the matrix at
an effective radius R between a and R, and assuming that the region in ¢ <r < R
supports only shear stresses z,,(r, z). The equilibrium and constitutive relations in this
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F1G. 5. Shear-lag model : (a) composite cylinder ; (b) concentrated matrix area at effective radius R, and (c)
axial and shear stresses.

region simplify to

aTrZ + EZ — 0’ (19)

or r

T, = Gm(lw», (20)
or

where w(r, z) is the axial displacement, measured from the uncracked state. It follows
that

_ati(z)

Trz(r7 Z) I (21)

r
where 1,(2) is the interface shear stress, given by

. Gm(wm - Wf)

W) = log (R/a) (22)

in terms of the fiber and matrix displacements w; = w(a, z) and w,, = w(R, z). Fiber

equilibrium implies
do¢ 2
i (Zhk. =0

a2 T (a)r' @)
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and since the composite cylinder is isolated, equation (16) remains valid. Eliminating
w,, and w; from

a—op dw,

‘Ej[ B dZ’

(24)
0,0 _ dwp

E. dz

and equations (16),(22) and (23), and applying the boundary conditions (17) and (13) at
z =0 and |z] = oo respectively, leads to the following results for the downstream
stresses :

b = (ealeolie 11,
—plzl
651—0—1[;{ = —O'[lljle p|z|,a, (25)

z
‘[('P:’—

i l’l (Cm/cf)o.ﬁe'plz)/a’

D

where

G, E 12
— Tm 2
P [:cmEmEflog (R/a)] (26)

If the fibers are held in the matrix by friction, this result is valid only if the no-slip
condition

1,2 17(07)

or

E
o +(E/Ep)t, < ( 26 ) 27)
PlmEm

m
is met.

Slipping fibers. When the no-slip condition (27) is violated, frictional sliding between
fiber and matrix, with 7, = 7, occurs in a length I, on either side of the crack. Then
equations (16), (17) and (23) imply that

O—t]’) = O'/Cr—szlZl/a, I
T = 2(ci/cm)tsl2l/a,
D

T

(28)

=T

s

for 0 < |z| < I, far downstream from the crack-tip. Re-solving equations (16), (21)~(23),




176 B. Bupiansky, J. W. HurcHinsoN and A. G. Evans

now with the boundary conditions t; = 7, at |z] = [, and, again, (13) at |z| = o0, lcads to

21
aP— gV = T2 g pllzi—la
o
2t
D u , ~ ~1Is
Om—0Om = — S(('f/cm)e Pzl )/a’ (29)
o
z
T? = _Tse-(IZI*ls)/a
|z|

for |z| =z I,. Then imposition of the requirement that the axial stresses be continuous at
|z| = I, provides the equation

E
[a+(E/Em)a£n][c'c‘,‘7;] 1

lja= —— 30
Ja 7 ; (30)

for the slip length. For I, = 0 this is consistent with the no-slip requirement (27), and
equations (28) and (29) are, of course, valid only for I,/a = 0. For L larger than a few fiber
radii, the contribution to [./a of the term (1/pj in (30} will be small.

Initially bonded, debonding fibers. Now we suppose that debonding along a length [,
on either side of the crack is produced near the crack-tip by interface fracture, and that
the debonded regions remain open downstream of the crack-tip. The axial and shear
stresses in 0 < |z| < I, are simply

D
0 = G/Cﬁ 1
P =0,

-0

G0

and for |z| = [ shear-lag analysis reproduces the results (25) from the no-slip case, with
|z| in the exponents simply replaced by (|z| —1;). We presume that the interface shear
stresses will not produce any additional debonding that increases I, beyond its crack-
tip value.

Note that in contrast to the case of frictionally slipping fibers, the shear-lag solution
for debonded fibers involves a discontinuity in 7; at [z]| = .

MATRIX CRACKING : (i) UNBONDED, FRICTIONALLY CONSTRAINED FIBERS
Critical cracking stress

Using the stresses of the shear-lag model in the steady state cracking equation (11)
gives (for L — o)

1 (= c o 1 o0 R
3 J [Ef; (of —aP)? + E—m(o‘E1 - Gﬁ){l dz + TRIG. J_ . L (tr)? 2nrdrdz = ¢, %,
(32)
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wherein, by equation (21), T2 = (a/r)tP. (Here we neglect contributions to strain energy
associated with downstream changes in transverse stress.) For the no-slip case
substitution of equations (25) into (32) leads to the formula

O O—}‘n _ [CfEfgmp]l/Z

+ - - -
E "E, | aE.E

(33)

for the cracking stress o_,. Except for the initial stress term ¢! /E,,, this is essentially the
result originally given by AvesToN and KrLLY (1973) for no-slip matrix cracking.

Aveston and Kelly do not specify R in the definition (26) for p, beyond the
unelaborated statement that R is equal to the radius at which the matrix displacement
equals its average value. On a different basis, the explicit estimate

2loger+en(3—¢)
4c2

m

logR/a =

(34)

is derived in Appendix A. (This gives (R—a)/(R—a)— 1/3 for ¢, — 1; for ¢, -0,
(R—a)/(R—a) — e~ ** = 0.47.) If we introduce the utility constant

Con 1/4
B= (610g Rm) (33)

into the definition of p, we get

B? 6 1/2
p= | e (36)
Cm Ef(l +vm)

and we can rewrite (33) in the convenient form

Or a:‘n )
m -0 7
E + E, FE’ 37
where
6 2 1/4 g 1/2
% _p 7,& mo (38)
E cmE(l + vm) aEm
When the estimate (34) is used for log R/a, we have
263 1/4
B=|—i—2 . 39
|:—6log cf—3cm(3—cf)] (39

Then B — 1 for ¢; — 1, and, as shown in Fig. 6, B does not vary much from unity over a
large range of fiber concentration c;.

The ACK results for slipping fibers (AVESTON et al., 1972) can be recovered from
equation (32) by substituting equation (28) for of and o2 in |z| < [,; dropping the shear
contribution to the energy ; neglecting all energy contributions in |z| > [,;and dropping
the (1/p) term from the formula (30) for I /a. (It can be verified that these truncations are
all asymptotically valid for I,/a — 0.) The result

UCf o-:l'l
E E, "

m

04
E (40)

&)
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Cf>

6c2E, [ 9 T2
FiG. 6. Utility constant Bin go/E = Bl ———— — .
chE(L+v,) ak,,

where

% _ [6"3 Eﬂs]”Tﬁ]m, @1)
E cmEnE ak
is equivalent to the ACK expression for the critical, large-slip cracking strain. (AVESTON
et al., 1972, do not actually present a counterpart to equation (40); they derive the
cracking criterion o /E = ¢,/E for o}, =0, and, separately, also deduce that
ob/E = o,/E is the condition for self-cracking in the absence of external loading,)
To bridge between the no-slip and large-slip ACK results, we can substitute the full
expressions (29) for |z| = [, together with (28) for |z| < L, into (32). With Y defined by

o AN/ CnEmp
Y= (= pom|fimEm 42
(5 e
the results can be manipulated into the form
Oer + (E/Em)o-{n _ Y 0, ?
Og N 3 Oo ’
where (43)
o1\ 27 /6
o,) \Y343Y—1/) °

In the range Y > 1 specified by the slip condition (27), equations (43) are parametric
relations giving

(0 + E/Eq)om

O

as the function of the independent variable (¢,/0,) plotted in Fig. 7. For Y =1,
(61/04) = 313 = 1.442, and so for (6,/5,) > 3'/3, the no-slip result

Gort (E/En)h _

Go

1

applies. For Y — 0, (61/05) — 0, and o, +(E/E,)s!, approaches the large-slip ACK
value o,. This large-slip result is a good approximation over the substantial initial
portion of the curve in Fig. 7 that is nearly linear. In the slipping range, the slip length [
may be found from equation (30).
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no slip

6] 5 1.0 1.5 2.0
T
ER)

FiG. 7. Matrix cracking stress, initially unbonded, frictionally constrained fibers;

[iYerd P R [ 6c2E, |V %, |V
Oo/E =B —— -—1t , a/E={—— — 1 .
chE(1+v,) akE,, ¢nEE,, ak,,

Optimal strain mismatch

Mismatches between the non-elastic fiber and matrix strains that occur during
fabrication (e.g. due to cooling, plasticity, creep, or phase transformation) will produce
initial matrix stresses o', as well as fiber-matrix interface pressure ¢, and a positive g will
generally go along with positive o', If a Coulomb friction law of the form

T, = ug (44)

is valid for the sliding frictional resistance 1., it follows that increasing the strain
mismatch would raise ¢, as well as o%,. Then equation (40) implies the existence of an
optimal strain that maximizes the externally applied cracking stress o.,. (However, the
assumption of Coulomb friction is not necessarily valid. Conceivably, 1, may be due
primarily to interface roughness, in which case the optimization study that follows is
inapplicable.)

Suppose that non-elastic strains e, and e; occur isotropically in matrix and fiber
during fabrication, and call

Q= (ef_em)

the strain mismatch. (If, for example, the mismatch is due only to thermal strains,
Q = (x;—a,) AT, where AT is the temperature change, and o, & are the linear ther-
mal expansions over the range AT. Note that Q is positive if the matrix contracts more
than the fiber during fabrication.)

For simplicity, we assume that both the fibers and the matrix are isotropic. A
straightforward analysis of the composite cylinder model of Fig. 5a then gives

1
i =ﬁ[1 - ]Q
m 1 — Vm (45)

om  AE ¢
Zm M2 Q,
E. 4| E|1T-v.
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where 4, and 4, are functions of ¢;, E;/E.,,, v; and v, shown explicitly in Appendix B. For
¢ — 1,4,,4;, = 1,and both 4, and 4, will not vary too much from unity for reasonable
values of ¢; and E¢/E. If we assume v; = v, = v, the neat forms

1/1-2v E
bl 2(1_v)(1 ‘E—)’ 6

1 1
Ay =1—5(—E/E) =5 (1+E/E)

are obtained.
If we anticipate that the optimum value of Q will lead to large-slip matrix cracking, it
is appropriate to use equation (40) for o, with 7, = uq in equation (41). Then

Gcr_ 6Au'cl'2Efgm 3 q 13 o-}'n (47)
E | ¢.E Ea E.] E,

with g/E,, and ¢ /E,, given by (45). For Q > 0, o, will attain a maximum value at
Q = Qupr when the condition

6uctE%m |24 \'? _ of o
[cmEmEa E, =3 En (48)

is met. Hence

MEQ—v,)| u% 112 .
Qopr = — i m 49
OFT 3E; l:/lgcfEma] (49)
and
INE c
(acr/E)MAX = 2(ﬁ)(f)<l_dfvm>QOPT
(50)

_ 2 cf.ugm 12
T 3| AEma |
At this optimum design, the associated slip length, based on the first term of equation
(30), is given by
31,E;

! =
Ja E

1)

Corroboration of the validity of the large-slip assumption follows from the observation
that

o B\ %, 6F;
at Q = Qupr. This value will generally be small enough to fall in the nearly linear initial
part of the curve in Fig. 7, justifying the use of equation (40) for o,

There is an interesting connection between Qqpr and the mismatch Qg for self-
cracking of the matrix in the absence of external stress. Under the assumption of large
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slip, self-cracking occurs when the right-hand side of (47) vanishes, which implies that

Qg = 3\/§QOPT' (53)

MATRIX CRACKING : (ii) INITIALLY BONDED, DEBONDING FIBERS
Cracking condition

We assume that there is initial transverse interface tension in the composite, so that,
downstream from the crack tip, regions of the fiber-matrix interface that have been
debonded stay open.

The steady state cracking condition (12) is then

LI Jee v b, Cmou by 1
- iy U fmo U dz+-—
2J‘ {Ef (Uf Uf) + E (Um Um) z+ 27IRZGm

-

oo R arp 2
X J‘ f ( l) (2nr)drdz = ¢ +dei(ly/a)% g, (54)

a r

where we will use (13), (31) for |z| < I, and (25), with |z| replaced by (|z| — 1), for |z| > 1.
(As before, we ignore transverse stress contributions to strain energy.) This leads to the
result

ou | ind%n (E) 59
Oo 1+le E.) oy
a

where p is given by (36), but now we require an estimate for the debond length /.

Debond length analysis

We suppose that stress changes in the vicinity of the crack tip debond the fiber—
matrix interface just ahead of the advancing crack for a distance I; on each side of the
plane of the crack. To estimate /; we will again adopt a composite-cylinder model in
which we pretend that axisymmetric debonding is produced by an axisymmetric
distribution of load applied to the matrix cylinder that jackets the fiber (Fig. 8).
Conservatively, we take the magnitude of this loading as the stress

oz) = —om (56)

4/nlz|

and apply it at the mean radius R, of the matrix jacket. Here K, = [E%,,/(1 —v?)]1/?
is the critical elastic stress intensity factor of the matrix, and (56) is just the asymptotic
distribution of horizontal tension just above the crack-tip. The debond length [, will be
calculated on the basis of an energy balance involving the debonding toughness %, and
the energy changes in the matrix during debonding. The deformation of the matrix will
be analyzed on the basis of thick-cylinder theory, in which only transverse shear
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Fi16. 8. Debonding model : (a) crack tip stress, and (b) thick-cylinder model,

stresses and circumferential tension resist radial displacement. In terms of the cylinder
thickness

t=R—a=alc -1 (57)
ahd the mean radius
1 a
R, = 5(R+a) = E(cf 241), (58)

the differential equation governing the radial displacement U(z) at r = R, is taken as

d2Uu E_t
-G I: m

mt ) Rl V,%{JU = 0,(2). (59)

The solution of (59), with the boundary conditions U( +1;) = 0, permits the calculation
of the energy expression

V= ;fl 6.(2)U(z)dz, (60)

which represents the loss in potential energy of half of the loaded matrix jacket due to
debonding. Then the energy release rate relation

1%
2na%y = —
maGa = L 61)
provides the condition governing /;. The result (Appendix C) is the pair of parametric
equations

1—
lyfa = (1 +\/c7)( o

wgf”*\/c_‘)a[ 2 )]UZQ(X) (62b)

128nc,, | el —v,,

)1/2)(, (62a)
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relating l,/a to %,/% ., where
¥ coshsds l 2

0X)=1Jo s | (63)

cosh X

is plotted in Fig. 9.

Note that equations (62) imply that [,/a is not a single-valued function of #,/%,_ . But
from the energy based derivation that led to this result, it follows that combinations of
la/a and % ,/%  associated with the region to the left of the curve in Fig. 9 are unstable,
while those to the right are stable. The implications of this are better seen in Fig. 10,
which show, as examples, explicit plots of I /a vs 94/%,, for several values of ¢;. The
upper part of each curve represents stable debonded lengths, but for debonding to
occur at all an energy barrier associated with the region between the horizontal axis
and each lower branch must be overcome. Since the debonded lengths along the lower
branches are quite small, it seems reasonable to presume the presence of initial material
flaws and imperfections that are equivalent to initially debonded regions of similarly
small size. Then crack-tip stresses would push these effectively debonded lengths to the
upper branches of the curves.

Threshold bond toughness

The function @(X) in Fig. 9 attains a maximum value 0* = 2,061 at X* = 0.9204.
Since debonding can not occur for Q@ > Q% this critical value of Q can be used in
equation (62b) to obtain, as a function of ¢;, threshold values (9,/%..)* of the ratio of
debonding to fracture toughness that would prevent debonding. The results, shown in

Fi1G. 9. Debond length versus debond toughness, universal non-dimensional representation

—y \172 3 12
ld/a=(1+\/;f)<l v’“) X, %/%:M[ : } a(X).

8¢ 1287, | ce(l —ve)
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F1G. 10. Debond length vs debond-toughness/matrix-toughness ratio (v, = 1/4).

Fig. 11, indicate that a debonding toughness that is quite small in comparison to matrix
fracture toughness suffices to suppress crack-tip debonding over the practical range of
fiber fraction.

Critical cracking stress

With the use of equation (36) for p, equation (55) for o, becomes

e, (1N % /2
a E ¢ L+ ﬁ(f)(?d)
<+ - "= = T ’ (64)

o, E. o - B 6F Y21y
Cm (1+vm)Ef a

~—

no debonding

_________ debonding

o] .2 4 -6 .8 I 1
Cg
F1G. 11. Threshold bond toughness (v, = 1/4).
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FiG. 12. Matrix cracking strength vs debond toughness/matrix toughness ratio; illustrative example
E/E, =3, vy = 1/4, 00, = 0.

where B (Fig. 6) is given by equation (39) as a function of ¢;, and I4/a is defined as a
function of ¢; and %,/%_, by equation (62) and the upper branch of the curve in Fig. 10.
For (%4/%.) > (44/%,)* no debonding occurs, and the old no-slip result

1
G"‘:I

) m %o

applies. When debonding does occur, we can expect the result (64) to provide a lower
cracking strength than that for the no-debond case. For (94/%,,) < (%4/%..)*, the right-
hand side of (64) is certainly less than unity if

, B[ 6E |
(%4/% ) <47f|:m] (65)

and this condition will generally be easily met. This means that as a function of
decreasing (94/9.,.), the matrix cracking strength will drop abruptly from its no-debond
value when (% 4/%.,) falls below its debond threshold value. This is illustrated in Fig. 12
for E;/E,, = 3,v,, = 1/4,and ¢!, = 0. It is interesting to note that once it drops from its
no-debond value, ¢, remains fairly insensitive to debond toughness until extremely
low values of ¥, are reached.

EXPERIMENTS

In some recent experiments, MARSHALL and Evans (1985) studied first-cracking in a
ceramic system consisting of silicon—carbide fibers in a lithium-alumino-silicate glass
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matrix. The nominal values of pertinent parameters were

g =05

E, =85GPa }E = 142.5GPa
E; =200GPa

vm =0.25

a =80x10"%m
K, = 2.0MPa-m'/?
%, =44N/m (= Kﬁl(l —v2)/E,.).

Push-through and indentation tests of individual fibers in composite samples gave
measured values of 7, ~ 2.0 MPa, suggesting that the frictional-slip model should be
applicable.
On the basis of the nominal data, equations (38)40) give

0o = 1625MPa (B = 0.88)

o, = 265MPa.
This puts ¢,/0, = 0.16 well within the large-slip range (Fig. 7), and so the theoretical
prediction for the cracking stress is

(e.)
O =01— F T me

(Ocr)exp = 290+ 20 MPa,

Measured values of ., gave

These results suggest the presence of a small initial axial compression. This is
consistent with observations reported by MARSHALL and Evans (1985) of matrix crack
closure, upon unloading, at small tensile loads. But initial axial compression in the
matrix would ordinarily be accompanied by tension normal to the fiber-matrix
interface. Accordingly, interfacial roughness rather than Coulomb friction may have
been the primary source of the interface shear resistance in the Marshall-Evans
experiments.

CONCLUDING REMARKS

The two idealized assumptions pursued herein concerning the fiber—-matrix
interface—frictionally constrained, sliding fibers and initially bonded, debonding
fibers—are not, of course, exhaustive. Combinations of these possibilities could coexist,
and interface roughness might play a more important role than interface pressure in
providing slipping resistance. Two interesting, if tentative, conclusions can nevertheless
be reached:

(1) If Coulomb friction is operative, optimal strain mismatches exist that maximize
the matrix cracking strength,

(2) Inthecase ofinitially bonded fibers, a fairly small interface debonding toughness
(%4 ~ %../5) suffices to inhibit debonding during the matrix cracking process.
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A final cautionary note : the inhibition of either debonding or slipping may be quite
undesirable despite the fact that the matrix cracking strength is thereby increased. Full
maintenance of fiber-matrix continuity facilitates propagation of matrix cracks into
the fibers. The post-matrix-cracking strength exhibited in Fig. 1, and the accompanying
pseudo-ductility, would then be lost.
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APPENDIX A

Estimate of effective radius R in shear-lag model

Evaluation of the shearing energy contribution in equation (32) gives

2¢(l+v,, _ @
J(——]logR/aJ‘ 2 dz. (A1)
E,
This relates to the simplified model of Fig. 5b, but now let us return to the configuration of Fig.
5a, and contemplate a continuous shear lag model in which the matrix stress o, is distributed
across the outer cylinder. Longitudinal equilibrium implies
do,  0(rt,,)
’

T 0 (42

—@®
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together with the boundary conditions

1-rz(a) = Ti»} (A3)
7.(R) = 0.
The assumed distribution
X RZ_ 2
7)< 22 (i) d (A%
a \c, r
satisfies these boundary conditions. Substitution into (A2) gives
00,
. = 2(e/en)(Ti/a), (A3)

uniform in r, and this is consistent with the equilibrium requirements (23) and (16). Accordingly,
an appropriate solution for the z distributions of the stresses based on the principle of minimum
complementary energy (which requires the use of an equilibrium approximation) based on the
assumption (A4) is legitimate. Except for the definition of the characteristic parameter, p, this
solution will be identical to the one derived on the basis of the simplified model. The
correspondence between the two solutions is easily found by replacing R by R in the shear energy
contribution in equation (32) and using (A4) for t5. This gives

20+v.) (Y /R\>, R 3/R\®* 1/a\| [~
i 1 [ RE 6 R TR (A9

With (R/a)? = (1/c;), comparison of (A1) and (A6) then provides the estimate (34) for R/a.

APPENDIX B

Initial stresses

By the classical Lamé solution for the unloaded composite cylinder of Fig. 5a, the initial
circumferential stresses o, and oy, in the fiber and matrix at their interface are

g, = —4q,
or } B1)
Oom Q(l + Cf)/cms

where g is the interface pressure. The conditions of interface strain continuity are

It

1 1 .
£ (65— Veu(Tom —q)lte, = E (ot —vi(ogr—aq)] + €5,
m f (B2)

1 1
F [aﬂm - vm(o-in - q)] +en = E_ [aﬂf - Vf(G'}- - (I)] +eé.
m f

Substitution of (B1), elimination of ¢} via equation (15), and solution for o}, and g gives the results
(45) of the text, with A, and 4, defined by

1 —(1—E/E)(1 —vi)/2+ ¢ (via— v0)/2— (E/EQ [ + (o — V) Ee/E]*

b (I=v,)A (3
2= [1-(1—E/Eg)/2](1 +A"r) +(L +eg(vn— Vr)/z, (B4)

where
A=14+vi+ (v~ v)cE/E (B3)

and E is given by (14). Setting v,, = v; gives equation (46).
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APPENDIX C
Debond-length analysis
Letting
z = 1({/X)
= L[ a0 = PTRET 2 (C1)
4 nE,, t 1—v ’
where
2 1/2
X = (ld/R)<ﬁ) , (€2

reduces the differential equation (59) to
—ug+u = (C3)

and the boundary conditions become u( + X) = 0. The energy release rate condition (61) becomes

@ \/RXZ\/ 2 \V* (X _  (ou
SR o 0

For { > 0, the solution of equation (C3) is
tsinh ({~¢)d¢"  cosh{ (*sinh(X —{)d{

o \/57 * coshX |, \/C—'

ou _ coshl [*cosh{'dl’
X cosh®>X J, \/57 '
Then (C4) provides the results (62) and (63) of the text, when ¢; is introduced via equations (57)
and (58).
For calculation purposes, the function ¢(X) in equation (63) may be written in terms of
Dawson’s integral

(Cs5)

u=

which gives

(Co6)

D(Z) = e*ZI‘[ e ds, (€7

which is tabulated and available in software, Thus
2

eXD(XUZ) + E@eﬂ'(xl/Z)
X)) = T eoshx (C8)

where

-2
ds.

erf(Z) = % L e

For X large, Q ~ 1/X, and for X small, Q ~ 4X.







