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The growth of an isolated void is analysed for a void contained in a block
of material undergoing simple shearing combined with superimposed
hydrostatic tension. The evolution of the size, shape and orientation of
two- and three-dimensional voids in an incompressible, linearly viscous
solid is first discussed. The main problem addressed is the behaviour of
a two-dimensional eylindrical void in an incompressible, nonlinearly
viscous solid for which the strain rate varies as the stress to a power. The
growth rate of the void and its shape evolution are strong functions of
the degree of material nonlinearity. Relatively simple approximate
formulas are obtained for the dilatation rate of a circular void as well as
for the void potential. The constitutive relation of a block of material
containing a dilute distribution of circular cylindrical voids is obtained
directly using the isolated void potential. The paper concludes with a
summary of available results for the dilatation rates of voids and cracks
under combinations of shear and hydrostatic tension.

1. INTRODUCTION: VOID IN A LINEARLY VISCOUS MATERIAL

The present study is intended to provide insight into the void growth mechanism
of ductile failure in solids under shearing deformations. The work builds on the
pioneering work of McClintock et al. (1966) concerned with the behaviour of voids
in shear bands. Aside from this early work, relatively little is known about void
growth in metals under predominantly shearing conditions. Such knowledge is also
needed for the further development of quantitatively accurate constitutive
relations for porous metals. .

This introduction will review some of the basic results of McClintock et al. (1966)
for isolated 2D cylindrical voids in shearing fields and will compare them with
some new results for 3D ellipsoidal voids, in both instances for incompressible
linearly viscous materials. It will be seen that the 2D void in plane strain is a good
model of the 3D void. The body of the paper then deals with various aspects of
the behaviour of an isolated 2D cylindrical void of circular or elliptical cross
section in a nonlinear power-law viscous solid. The geometry and notation used
throughout the paper is displayed in figure 1. The field remote from the void is
a state of simple shearing parallel to the x,-direction with hydrostatic tension (or
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Ficure 1. Conventions and remote stress and velocity fields.

pressure) superimposed on the incompressible material. The remote field is thus
specified by the velocities

vP = yx,, vy =0y =0, (1.1)

where 7 is the remote shear strain rate; y is the measure of shear used throughout,
which will be referred to simply as the shear strain. The associated non-zero
components of the remote strain rate, vorticity and stress are

€2 =8, O =3 (1.2)

and
N — 5O — O = D0 =
oh=0n=0n=0, and g5 =T7T. (1.3)

In all cases considered in this paper, the initial orientation and location of the void
are such that it remains centred at the origin preserving symmetry with respect
to the plane ; = 0. For 2D cylindrical voids the deformation is one of plane strain
and thus independent of x,.

All possible remote plane strain stress states are generated from all combinations
of o, and 7. One important case is that of a void in a shear band which is at 45°
to the axis of tension in a block of material undergoing plane strain tension o. The
void experiences a simple shearing history with o, = 7 = }o, assuming the voids
are relatively far apart. The ratio o, /7 will be used as the measure of stress
triaxiality in this paper.

We begin by considering a void in an incompressible linearly viscous material
whose strain rate is

€5 = i/ (2n), (1.4)

where s is the stress deviator. It is known from Eshelby’s (1957) general solution
that an ellipsoidal void will evolve through a sequence of ellipsoidal shapes.
Throughout the paper, the major axis of the ellipsoidal void in the plane of x, and
z, will be denoted by @ and is aligned with x], while the minor axis in this plane
is denoted by b and is aligned with . The axis of the ellipsoid in the direction
of xy = ay is c.

The solution for the evolution of a 2D cylindrical void was obtained by
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McClintock et al. (1966) using Muskhelishvili methods. Here we note that their
solution for the void surface can be represented compactly using the complex
quantities B and m according to

r,+ix, = R(E+m/), R=|R|e* m=|m|e?, (1.5)

which maps the unit circle in the complex {-plane onto an ellipse centred in the
plane of x; and x, with

a=|Ri(1+|m]), b=|Rl(1—|m|), f=a+ir (1.6)

The solution for the elliptical surface of a void, which is characterized by R, and
m, when y = 0 is
R = Ryl i+omMily, (1.7)

m = mye /MY fie % i+ (o, /7)] L (e} —eTOm/N7). (1.8)

For a void which is initially a circular eylinder of radius a, the above becomes
R = a el 1+ m/Mliy, (1.9)
m=1[i+(0,/7)] (/¥ —e Tm/M7), (1.10)

The broken-line curves in figures 2, 3 and 4 show the evolution of a 2D cylindrical
void which is initially circular and which is subject to constant ratios of o, /7. The
solid-line curves in these figures apply to an initially spherical void and will be
discussed later. The ratio of void volume to initial volume when vy = 0 (i.e. the
ratio of the respective cross sectional areas), V/V,, is plotted as a function of shear
gtrain y in figure 2. When the mean stress o, is zero, the void closes at a shear
strain of ¥ = cos 11 = 1.05, as can be seen most clearly in figure 4. If ¢, /7 £ 0.62
the void closes and the limiting case for o /7 = 0.62 is included in figure 2. The
strain at closure for this case is y = 2.45. For o, /7 > 0.62 the void remains open
during the entire shearing history.

An interesting feature is brought out in figure 3, where the dilatation rate V/V
of the void is normalized by the dilatation rate of a circular cylindrical void

VIV =0c,/9 (1.11)

at the same level of o, /7. After a transient period when the dilatation rate drops
below that of the circular cylindrical void, the dilatation rate asymptotes to the
value for the circular cylindrical void, even though the asymptotic shape of the
void is elliptical and not circular. Analogous behaviour is seen for the 3D void,
which asymptotes to the dilatation rate of a spherical void, as will be discussed
below. This same asymptotic behaviour was noted by Budiansky et al. (1982) for
spheroidal voids under general axisymmetric remote stresses. These three instances
lead us to make the following unproven conjecture. The dilatation rate of any 3D
ellipsoidal (or 2D elliptical) void, which approaches a non-degenerate asymptotic
shape in a given remote field will approach the dilatation rate of a spherical (or
circular cylindrical) void in the same remote field.

The evolution of the orientation f of the major axis of the 2D cylindrical void
and its aspect ratio b/a are shown in figure 4. When /7 = 0, the curve is
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Froure 2. Ratio of volume of void at shear strain y to initial volume at different triaxiality
ratios o, /7. Starting shape for 3D void is a sphere and for 2D void is a circular cylinder
(n=1).
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Fraure 3. Evolving ratio of dilatation rate to corresponding dilatation rate of sphere (for 3D
void) or of circular eylinder (for 2D void). Equation (1.11) is used for normalizing the 2D
case and (1.17) for the 3D case. Starting shape is a sphere for the 3D void and a circular
cylinder for the 2D void (n = 1).
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Ficure 4. Evolution of the aspect ratios and ortentation of 2D and 3D voids.
Corresponding evolution of the volume is given in figure 2 (n = 1).

terminated at § ~ 30° and y = 1.05 when the void closes. For o, /7 > 0.62 the
void approaches an orientation inclined to the x, axis and a finite asymptotic aspect
ratio b/a.

An isolated void starting with a spherical shape when y = 0 evolves through a
sequence of ellipsoidal shapes when subject to the remote field (1.1)—(1.3). The
solution can be obtained by specializing Eshelby’s (1957) general solution for
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ellipsoidal inclusions. Related studies for eavities containing a second incompress-
ible linearly viscous material have been carried out by Bilby et al. (1975), Howard
& Brierley (1976) and Bilby & Kolbuszewski (1977). The last authors also discuss
the equations governing the evolution of a vacuous ellipsoidal void, and the
formulation outlined below is essentially identical to theirs.

Let L be the uniform viscous moduli of the material outside the void such that
7; = Lyjp €4y- Under the remote stress ¢ and the remote vorticity @™, the surface
of the void deforms through a sequence of ellipsoidal shapes, as already emphasized,
and one can regard the ‘ether’ in the void as undergoing a uniform strain rate £°
and a uniform vorticity @°. If the ellipsoidal surface of the void is specified by

Gi]-xisz 1, (1.12)
then (Goddard & Miller 1967)
(= — G165+ wS;) — G (65, + wS,). (1.13)

For the special remote conditions (1.1)—(1.3) of interest here, the void retains its
symmetry with respect to the z, direction, €f, = €5, = vy, = w§, = 0, and one can
use (1.13) to obtain
B = (@2 +b2) (@2 —b) 7 €5y — 5,y (1.14)
where the primes denote components in non-rotating axes, 7, which are momen-
tarily coincident with the principal axes of the ellipsoid, as indicated in figure 1.
The strain rate and vorticity in the void are determined from

(L'i]'kl— Li]'mn Smnkl) €k1 = 0—105) (1.15)
and

Wy — 0 =y eg, (1.16)

where S and IT are the special tensors introduced by Eshelby (1957) to solve the
cllipsoidal transformation problem. Equations (1.15) and (1.16) will not be
specialized further here. Our solution procedure entailed writing these equations
in the x;-axes and then using Eshelby’s expressions for the components of .S and
I1. The above equations are supplemented by 4 = ae$. ., b = bel, and ¢ = cely.

The behaviour of the void as it evolves from a starting spherical shape at y = 0
is shown alongside the 2D results in figures 2, 3 and 4. When o, = 0, the void
closes (i.c. b—0 with ¢/a >0.37) at a shear strain y = 1.76. For o, /7 > 0.44, the
void does not close. The transition case with o /7 = 0.44 is included in figure 2;
closure occurs at y = 3.4. As already mentioned, the dilatation rate of the 3D void
asymptotes to the rate for the spherical void,

VIV =3om/n. (1.17)

when o, /7 > 0.44, as can be seen in figure 3.

At corresponding levels of o, /7 the 3D void evolves to its asymptotic shape and
orientation somewhat more slowly than its 2D counterpart. Its dilatation rate,
V/ V. is also slightly lower. For the most part, however, the 2D cylindrical void
appears to be a good qualitative model of the 3D void.
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2. DEFORMATION RATE OF CYLINDRICAL VOIDS OF CIRCULAR AND
ELLIPTICAL CROSS SECTION IN A NONLINEARLY VISCOUS MATRIX

In this section a method is detailed for the numerical solution of the 2D problem
of a cylindrical void of elliptical cross section in an infinite power-law viscous
matrix subject to the remote field (1.1)—(1.3). The matrix matcrial is isotropic and
incompressible with a uniaxial strain rate in simple tension given by

€ = €,(a/0y)" (2.1

where ¢, and ¢, are a reference strain rate and stress. Under multiaxial stress

states o, (2.1) generalizes to

J?

€ = o'g_lsij/(,?ﬂ), (2.2)
where & is the strain rate, s is the stress deviator, o, = (3s;;5;;/2)} is the effective
stress, and 7 is a viscosity-like parameter defined by

0= 0/ (36,). 23)

An effective strain rate ¢, = (2¢;;€;,;/3)! is also defined such that the relation
between €, and o is the same as the tensile law, i.e.,

e = 6(To/00)" = ai/(3n). (2.4)

For n = 1 this relation reduces to the linearly viscous law considered in §1. At the
other limit, n > o0, it becomes a rigid or perfectly plastic material with the yield
condition o, = .

2.1. Radially symmetric solution

For reference, we give the exact solution, which can be obtained analytically,
for a circular cylindrical void of radius @ in a matrix with finite outer radius a,
when a normal traction T acts on the outer cylinder surface. The dilatation rate
of the void is found to be

V/V = 20@)/a = (1/(nv/3)) sgn (T) (1T v/3/m)"(1 —pliy s, (2.5)

where the area fraction p = (a/a,)? can be thought of as the void volume fraction,
and sgn (7') = 7'/ |T|. In the limit a,-> 0, T— oy, and (2.5) reduces to

V/V=(1/(nv3)) sgn(oy) (ol v3/n)" (2.6)

As in the spherically symmetric void problem discussed by Budiansky et al. (1982),
the lowest order influence of the void volume fraction on the dilatation rate is
proportional to p?/®. Thus, interaction between voids can be expected to occur at
exceedingly low values of p when n is large and when the overall stress state is
one of hydrostatic tension or compression.

2.2. Numerical technique

We first describe the procedure for computing the velocity field and then
explain the method for determining the deformation rate of the void from the
velocity field.
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A minimum principle for velocities was employed to find approximate Rayleigh—
Ritz solutions. The principle is from Hill (1956) and was modified by Budiansky
et al. (1982) to be applicable to infinite regions. With v®, ¢*, ¢* denoting
quantities associated with the remote field, as in (1.1)—(1.3), the complete field is
written as

=efj+€y, 0y =05+, (2.7)

—_— g0 ~
V= 0 €y

2%

where the additional fields, which are denoted by a superscript tilde, decay to zero
at infinity. The strain rates and velocities are connected by
while ¢ and ¢ are related by (2.2).

Subject to conditions on the rate of decay of the additional velocity fields
admitted for consideration, the exact field minimizes

P(D) :f {w(s)—w(sw)—ag’;?é"ﬁ}dV—j o n;¥;dS, (2.9)
v S
where V is the infinite region surrounding the void, § is the void surface, and n
is the unit normal pointing into V. The potential w(e) is defined by

€ de.. — n )(ee)("ﬂ)/n 2.10)
w(e) = Ocr,;]- €ij = 04 €g 1)\, (2.

so that s;; = 0w/0e;;. In 2D applications the minimum principle is restricted to
problems for which the additional strain rates £ decay faster than r~' where
r? = x; ;, and the admissible class of trial functions must meet this restriction. As
long as 7 is finite, the solution for the additional strain rates in the present
problems decays like r—2. This is not necessarily true for the rigid or perfectly
plastic solid (#—+o0), and we will not attempt solutions for this limit. The
governing equations are elliptic when » is finite but may become hyperbolic in the
limit n— c0.

A mapping technique was used in conjunction with the minimum principle to
deal with cylindrical voids of elliptic cross section. Let z = x,+ iz, = rel? be a
complex variable defined in the physical plane and § = £ +i£, = ue'¥ be the
variable in the mapped plane. The region exterior to the elliptical boundary of the
void is mapped onto the interior of the unit circle in the {-plane by (1.5), where
now R is taken to be real. Thus, as indicated in figure 5,

a=R(1+ml), b=R(1—|m|), B=1A, (2.11)

where a is the length of the semimajor axis of the ellipse, b the length of the
semiminor axis, and £ is the orientation of the semimajor axis.

Incompressibility of the additional velocity fields was satisfied with the aid of
a stream function y(x,, x,) such that

By=X9 Th=—X. (2.12)

The stream function was regarded as a function of the polar coordinates (u, ¢) in
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Fieure 5. Geometry and mapping from physical plane to mapped plane.

the mapped plane. A truncated complete representation was employed according
to

N M
x=A0+ % X {4, 47 sin2jp+ B, uF 1 cos 2}, (2.13)
J=1k=1

where the amplitudes 4, 4;; and By, are free parameters chosen to minimize P.
The lead term in (2.13), 4f, gives rise to the radially symmetric contribution

T.=Arl §,=0, é=—¢=—Ar?% ¢£,=0. (2.14)
This term, which is solely responsible for the dilatation rate, was retained in this
simple form, although a multi-valued function of ¢ could have been used. The
¢-dependence of the trigonometric terms in (2.13) is consistent with the periodicity
of the solution in the physical plane.

The contributions to the velocity and strain rate fields from the terms other than
A in (2.13) were computed using the change of variables specified by the mapping
function, z = w({), as detailed in the Appendix. In this way, additional velocities
and strain rates can be computed at any point z corresponding to { in the mapped
plane, given values prescribed to the free amplitudes. For a given void shape
specified by z = w({), the minimization of P’ with respect to the amplitude factors
is conducted by a Newton—Raphson method. With the set of K = 1 +2MN free
amplitude factors denoted by {4}, the condition for the minimum is

oP/04,=0, p=1K. (2.15)

Given an estimate of the amplitudes as {4}, the improved estimate, {Ap+AAp}

is obtained from

X orp AP
——AA, = -

= 04,04, ~°* 0d,’

r=1 q

¢=1,K. (2.16)

Explicit expressions for the partial derivatives which are evaluated at {4}, are

0P )
5@=L("if“’f?)éﬁ:a‘”dV—Lff?njv§p’dS (2.17)
and
_—azp —(n-1)/n| > & 2(7@—1 — ~ (1 ~
34,04 =fV2’7(3’76e>‘ v {6%6&3’"—T,@ ' 2e,-je§f’emek%>]dv, (2.18)
q D
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where, in cbvious notation,

K K
b= 2 A,%P and €&;= X A, &P, (2.19)
p=1 p=1

The integrations in (2.9), (2.17) and (2.18) were carried out numerically by using
integration formulas with # and ¢ as integration variables, as discussed in the
Appendix. The numerical minimization procedure gave the deformation rate of a
circular cylindrical void in a linear viscous material (n = 1) to an accuracy of six
significant figures since the representation for y contains the exact solution for this
case (4 = ona?/(2n), B,, = —2B,, = —0}5a?/(2n)) and the integration formulas
are also exact to within round-off error for the particular integrands. For the
nonlinear material (n > 1), numerical experimentation with different ¥ and M
showed that the dilatation rate and the rate of change of the aspect ratio, (a/b)",
were accurate to better than 29, while the rotation rate of the void, ,6’ was
accurate to better than 59%,, when M =4 and N = 3, as long as the aspect ratio
of the void did not exceed 2. A prohibitively large number of amplitude terms
would be required to achieve accurate results for voids with greater aspect ratios.

Calculations were lengthy and a judicious starting choice was required for the
amplitudes. A form of parameter tracking was employed whereby the starting
values of the amplitudes were taken from the converged solution at a slightly lower
n. Convergence problems became severe when n was greater than 5, reflecting the
intensification of velocity gradients at high n.

The void in the linear material evolves through a sequence of elliptical shapes.
This is not strictly true for the void in the nonlinear material, but examination
of the velocity component normal to circular and elliptical voids indicated that
the incremental shape change was closely approximated by a deforming ellipse.
This observation facilitated the computation and presentation of the rates of
change of the parameters characterizing the size, shape and orientation of the
void.

The velocity component normal to the surface of a void deforming through a
sequence of elliptical shapes is given by

v = Bla ng—ayn}) + (d/a) xpny + (b/b) ay nj, (2.20)

where £ is the rotation rate of the major axis of the ellipse, x; are axes aligned with
its principal axes, and #; are the components of the unit normal to the surface in
these axes, as shown in figure 5. The quantities d/a, /b and f were determined
from the three equations obtained from (2.20) by evaluating v, from the numerical
solution at the points 4, B and C (see figure 5) on the ellipse. The normalized
dilatation rate can be computed either directly from the contribution 460 to y
giving

V/(3V) = 24/ (yab), (2.21)
or by using the values of d/a and b/b and the elliptical approximation, which give
VIGV) = (@/a+b/b)/7. (2.22)

These two formulas always agreed to within a few percent, indicating that the
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deformation rate of the void shape is well approximated by a deforming ellipse.
The normalized rate of change of the aspect ratio was computed from

(a/b)'/y = (a/b) (a/a—b/b)/y. (2.23)

2.3. Numerical resulls

Results characterizing the initial deformation rate of isolated eylindrical voids
of circular and elliptical cross section are now presented for various n-values as
a function o, /7. We will regard r and o, as being positive, but solutions for
negative 7 and/or o, can be deduced immediately from symmetry and the fact
that changing the sign of ¢* simply changes the sign of the velocity. From (1.2)
and (2.2) it is noted that the remote shear and vorticity rates are given by

erp = iy = 3y = (I7[v/3)" 17/ (2y). (2.24)

The normalized dilatation rate of an elliptical void with aspect ratio 2 is
compared with that of a circular void in figure 6. The dilatation rate necessarily
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10 . . /
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L . /
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and # = 0°, 90° ’ /
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/ /
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| | J
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Ficure 6. Normalized dilatation rate as a function of stress triaxiality for voids with
circular and elliptical cross sections for several n-values.

vanishes when o, = 0. By symmetry, the result for the clliptical void apply
equally well for the orientation § = 0 or # = 90°. While the normalized dilatation
rate for the elliptical void is slightly larger (typically by about 20 9%, for each n-value
shown), the dependence on the aspect ratio is not exceptionally strong. A stronger
dependence on n and stress triaxiality o /7 is seen.
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The initial rate of change of the aspect ratio of the circular cylindrical void is
shown in figure 7a. The point on the circular void surface where the normal
velocity is a maximum locates the orientation £ of the major axis of the evolving
pseudo-ellipse, and this orientation is displayed in figure 76. For n = 1, the circular
void evolves into an ellipse with initial orientation of its major axis at f = 45° to
the x,-axis for all levels of triaxiality. Similar behaviour is seen for the void in the
nonlinear material (n = 3 or 5) when o, /7 is small. However, at higher triaxiality
the behaviour changes dramatically. Above a certain triaxiality level depending
on n, the evolving pseudo-ellipse is orientated with its major axis at § ~ —45°.
We re-emphasize that a is always identified with the length of the major axis. Thus,
the abrupt turn-up in figure 7a in the curve of (a/b) against o /7 reflects the
transition in orientation of the major axis. In figure 754, the portions of the curves
in this transition are broken as an indication that they have been drawn based
on only relatively few points.

(@)
B (b)
n=5 60 /A/\ .
4r 45 ¥— n=
T kB 30 - I \
3 2 r= Q 0 1 | I“ l\\ L 1 1
—_i5L 2 I 4 \ 6
B | Tn/T
n=3 —30F+ i \\
| 1 [ | | 1 _axL —_
0 2 4 6 45
/T

FraUure 7. (a) Initial rate of change of aspect ratio and (b) initial orientation f# of major axis
for a void with a starting circular cross section as a function of stress triaxiality.

The results for n = 1 are in accord with one’s physical intuition that the circular
void should evolve into an ellipse with major axis aligned in the direction of
maximum principal straining. Surprisingly, for the nonlinear material the void
evolves instead into a pseudo-cllipse with major axis transverse to the direction
of maximum principal straining when the stress triaxiality is sufficiently large.
Budiansky et al. (1982) and Budiansky & Hutchinson (1980) have observed
similarly that a spherical void in the nonlinear material under remote axisymmetric
loading will deform into an oblate spheroid when the ratio of the remote mean to
effective stresses is sufficiently large. The void grows more rapidly in directions
perpendicular to the straining direction than along it. The explanation appears to
be common to both the cylindrical void and the 3D void. Here attention will be
restricted to the cylindrical void.

The anomalous behaviour in the nonlinear material under high triaxiality is a
consequence of the nonlinear coupling between the remote shear field and the
radially symmetric field. When o, /7 is large and » > 1, the radially symmetric
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field dominates the deformation response of the void, and the strain rates and
velocities in the vicinity of the void are given roughly by

€=03V3)é =—¢€, €4=0, (2.25)
v, = 1€y = 3V 3)ré,, v =0. (2.26)

The main pertubing effect of the remote strain rate y is to alter the variation of
é, near the void with less effect on the relative proportions of the components in
(2.25) and (2.26). For positive y, €, is largest at # = —45° and 135°, and smallest
at @ = 45° and —135°, as one would expect. With (2.26) still approximately in
effect, this implies that the void grows fastest in the directions # = —45° and 135°
transverse to the direction of maximum remote principal straining.

= 45°)

135°)/V, (a, @

V.(a, &

T/0m
Fiaure 8. Ratio of velocity normal to surface of circular void at # = 135° to that at 6 = 45°,
as a function of 7/ . The void in the nonlinear material grows more rapidly in the direction
perpendicular to the maximum principal strain rate than along it at sufficiently large
triaxiality (i.e. sufficiently small 7/0,).

The tendency just discussed can be seen directly in figure 8 where for a circular
void the ratio of v, (r = a, @ = 135°) to v, (r = a, 8 = 45°) is shown as a function
of r/a,, for n =1, 3 and 5. For »n = 1, this ratio diminished monotonically from
unity as 7/0,, increases, indicating that the void elongates in the direction of
maximum prinecipal straining. For » > 1, there is a range of 7/, where the void
clearly grows faster in the transverse direction.

We now consider the rotation rate £ of the major axis of a void which at the
current instant has an elliptical cross section with aspect ratio 2 and whose
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orientation # with respect to the @,-axis can take on any value between —90° and
90°. Results for a relatively low triaxiality, o, /7 = 1, are shown in figure 9 and
for a high triaxiality, o, /7 = 5, in figure 10. For the low triaxiality case in figure 9,
there are two orientations, g~ +35°, for which the void is momentarily not
rotating. The orientation § = 35° is stable for all n since a void slightly rotated
from this orientation will rotate back towards it. Conversely, the orientation
B ~ —35° is unstable. At high triaxiality in figure 10, it is seen that for n = 1 the
orientation f = 30° is again the stable one. However, for n =3 and n = 5 the

LA

21 U'm/'r=1

f~ .'.‘\
s~ "n=5
N,

11115“11)10/9'-\ stable
orientation ‘.s‘" e, orientation
: > Nt :
—90  —60 . 60 90
7 B/ deg

n=1

Ficure 9. Rate of rotation £ of the maximum principal axes of an elliptical void with a
current aspect ratio of 2 as a function of the void orientation # for o, /7 = 1.
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Ficure 10. Rate of rotation £ of the maximum principal axis of an elliptical void with a
current aspect ratio of 2 as a function of the void orientation £ for o, /7 = 5.
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stable orientations are at angles of about —45° and —35°, respectively. This
behaviour is consistent with the initial deformation rate of the circular cylindrical
void.

3. EVOLUTION OF AN INITIALLY CIRCULAR CYLINDRICAL VOID

To illustrate the evolution of the void shape and orientation, an initially circular
cylindrical void is considered subject to the triaxiality ratio o, /7 = 4. From the
results of figure 76 giving the initial deformation rate, we can expect a void in the
most nonlinear material (n = 5) to evolve to an orientation with its major axis
transverse to the principal straining direction. The calculations were made with
the numerical schemc outlined in the previous section. The void dimensions, @ and
b, and orientation, f#, were updated after small increments in time (or remote
strain) such that in each increment the largest in magnitude of Aa/a and Ab/b was
less than 0.1, while Af never exceeded 5°. The results of the calculation are shown
in figure 11, and arc now discussed.

60
n=1
30
n=5
z 0 t } t
. 0.5 10 15
Y Y

=30 n=>5

—60 -

Ficure 11. Evolution of orientation and aspect ratio of an initially circular void in linear
and nonlinear materials for o /7 = 4.

For n = 1 the circular void evolves into an ellipse of aspect ratio a/b = 1.64 and
inclination § = 38° after a shear strain y of approximately unity. For n = 3, the
void remains almost circular and asymptotes to an aspect ratio a/b = 1.03 and an
inclination # = 52°. For n = 5, the void evolves to an aspect ratio a/b = 1.27 with
an inclination f = —36°, as cxpected, after a shear strain of about 0.3. For all »
considered, the dilatation rate of the void remained to within 1 9, of the dilatation
rate for a circular void at the same triaxiality level over the whole history. The
small oscillation in # for the case n = 3 as the void cvolves to its asymptotic shape
is thought to be spurious. It is a consequence of the finite step size in the numerical
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procedure and the fact that £ is difficult to identify when the shape is almost
circular.

At lower triaxiality the asymptotic void shapes will have larger aspect ratios.
For n = 1, the results of MeClintock ef al. (1966) show that the asymptotic aspect
ratios are larger than 2 when o, /7 is less than 3. Numerical experimentation
indicated that the same will be true for the nonlinearly viscous materials. Since
the accuracy of the numerical technique is severely diminished when a/b > 2, no
attempt was made to track the evolution in the nonlinear material for o, /7 < 3.

1t is concluded that a circular void will evolve into a pseudo-ellipse with major
axig aligned approximately transverse to the direction of maximum principal
straining when o, /7 is sufficiently large and when the material is nonlinear.
Otherwise, it evolvesinto an ellipse or pseudo-ellipse with major axisapproximately
aligned with the direction of maximum principal straining. It is seen that the
asymptotic void shape tends to be achieved after considerably less strain in the
nonlinear material than in the linear material.

4., APPROXIMATIONS TO THE DILATATION RATE OF A CIRCULAR
CYLINDRICAL VOID
4.1. High triaxiality approximation

When the triaxiality is large there is a strong coupling between the radially
symmetric field and the remote shear field. A good approximation to the dilatation
rate of a circular cylindrical void may be achieved by neglecting all but the
radially symmetric term 40 in expression (2.13) for the stream function y for the
additional velocity field. The functional P in (2.9) then reduces to

5 in e 2\(n+1)/2n
— EJ dej [ 277 1/n(%)(n+1)/2n {(%);2_7‘48—1:1204.%4_) _(%);)(nﬂ)/n}

r r
A4 . P .
+2Tr—2 sin 20 |r dr—2no,, 4. (4.1)

Minimization of P with respect to the free amplitude 4 and use of the identity
V/(yV) = 24/(ya?) leads to an expression relating the dilatation rate to o, /7 and
n. Details of this calculation are omitted as it closely follows the equivalent
calculation for a spherical void given by Budiansky et al. (1982). We find, for large

V/igv),
Vo (om){l +(n—1)(n+g)}" 49
yV_Sgn T )\|n 2 ’ (4.2)

n
1 T [29]
g = lim [lne—;j dﬁJ‘ {2721 — 22 sin 20 + 22—z ' —z 72} dz]
4] €

c—>0

Im

T

where

=2—In4 =0.6137. (4.3)
Equation (4.2) is exact for n = 1; for n— oo it becomes

V/yV =exp(g—1) exp (0,/7) = 0.680 exp (0,,/7), (4.4)
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which is the counterpart to the result of Rice & Tracey (1969) for a spherical void.
The high triaxiality predictions from (4.2) are compared with the more accurate
numerical results from §2.3 in figure 12. The approximation gives good agreement
for o, /7 > 4, and even for o, /7 as small as unity it underestimates the dilatation
rate by no more than 309%,.

numerical
,,,,, (4.2
......... (4.5)
100 |-
.
= w0 -
Y
- | | | | !
0.5
] 2 4 (i}
Om/T

Ficurk 12. Normalized dilatation rate of a void of circular cross section as a function of stress
triaxiality o, /7. Comparison of the numerical results with the high triaxiality approxi-
mation (4.2) and the approximation (4.5) of McClintock ef al. (1966).

Included in figure 12 is the dilatation rate from the formula
V/yV = (n/(n—1)) sinh [(n—1)/n) o, /7], (4.5)

from McClintock ¢t al. (1966), who arrived at this approximatc formula by
converting a result for the axisymmetric deformation of a circular cylindrical void
to the shear loading. This result is not accurate at very high triaxiality (except
for the case n = 1, when it is exact) and is somewhat less accurate than (4.2) for

o,/7 In the range from 1 to 4.
The high triaxiality approximation (4.2) is exact in the limit of pure hydrostatic

loading. Multiplying (4.2) by 5y = (|7]4/3)"7'7 gives
nV/V = (V3" {1/ m)log| +[(n—1) (4 g)/n*]I7]}" sgn (o). (4.6)

The nonlinear coupling between 7 and o, in giving large dilatation rates in the
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high triaxiality range can be seen very clearly from (4.6). As an illustration for
n = b, the dilatation rate of a cylindrical void under combined ¢, and 7 with
7 =0,/4 is 40 times greater than the corresponding dilatation rate under the
same hydrostatic stress o, with 7 = 0.

4.2. Low triaxiality approximation
When |0, /7| < 1, the dilatation rate of a circular cylindrical void is almost

linear in o, /7 as can be seen in figure 6. Thus, an accurate low triaxiality
approximation for the normalized dilatation rate is

V/yV = k(n)o,,/T. (4.7)

Values of k(n) have been calculated from the average slope of the relation between
V/yV and o, /7 over the range between o, /7 = 0 and 1, and these are presented
in table 1. Both the present result (4.7) and (4.5) of McClintock et al. are exact
for n = 1, but (4.5) is significantly in crror in the low triaxiality range for n > 1.

TABLE 1. LOW TRIAXIALITY APPROXIMATION FOR DILATATION
RATE OF CIRCULAR CYLINDRICAL VOID

no k() F¥w)
1 1 1

3 1.742 1.600
5 2.209 1.898
7 2.529 2.090

The high and low triaxiality formulas cover essentially the entire range of
triaxiality, albeit with errors which may be as large as 30 %, for o, /7 in the vicinity
of 2. A uniform approximation over the entire range of triaxiality could be
developed but this is not pursued here.

5. CONSTITUTIVE POTENTIAL FOR A POWER-LAW
VISCOUS SOLID CONTAINING A DILUTE CONCENTRATION OF
CIRCULAR CYLINDRICAL VOIDS

The solution for the circular cylindrical void produced above can be used to
derive the relation between overall strain rate and stress of a block of material
containing a dilute, random array of aligned circular cylindrical voids. Plane
strain deformation of the block is assumed with no straining parallel to the
cylindrical axes of the voids. The theory below follows the approach of Duva &
Hutchinson (1984) that was spelled out in some detail for spherical voids. The
constitutive potential of the matrix material is defined by

so) = | e, do, — L T (5.1)
), T 341 w

so that
€y = 09/d0; = (1/(29)) ap sy, (5.2)
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Let ¢ and ¢ denote the macroscopic, or average, stress and strain rate of a
representative block of the material of volume V containing a distribution of
voids. The macroscopic constitutive potential @(¢) of the block provides the
macroscopic strain rate according to

&; = 00/07;, (5.3)

where @ is related to the distribution of the local potential by

Vb(5) = f B(a)dV, (5.4)
Vm

with V,, denoting the region occupied by the matrix material.
For a dilute concentration of voids with volume fraction (or area fraction) p,
the macroscopie potential can be written as

D(a) = $(a) +pP,(d), (5.5)

where @ (@) is an appropriately defined change in potential due to the introduction
of an isolated void of unit volume (or unit area) into an infinite block of matrix
material that is subject to remote stress 6® = @,

To define @, first consider the problem of an isolated void centered in a
spherical (or eylindrical) matrix of finite outer radius a,, where uniform tractions
T; = o n; are applied to the outer surface of the matrix. Define the change in the
potential due to the introduction of the void as

V, ®y(0%) = f i) plo 114V =V, o), (5.6)

where V_ is the volume of the void and V,,, denotes the region occupied by the
matrix.
With €57 = (0P/C0;5) g gr (6.7)

and noting that

fv (oy—o5)esdV =V, 0% €53, (5.8)
m

one can rewrite (5.6) as
V,®, (6%°) = fv [p(e)—p(6®)—(0y— o) e 1AV + V, w(E™), (5.9)

where w(¢)+¢(a) = 0;;¢; has been used. Now let the outer radius a, become
unbounded to obtain @ for the isolated void. The advantage of (5.9) over (5.6)
is that the integrand of the volume integral in (5.9) decays sufficiently rapidly at
large distances from the void such that @, can be evaluated either as the limit
of the finite problem as the outer radius a, becomes unbounded or directly from
the infinite problem where the remote stress is 6®. As it stands, (5.6) cannot be
used to evaluate @ directly from the infinite problem.t We also note the

t This corrects the statement made by Duva & Hutchinson (1g84) with respect to the
definition (5.6).
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connection between @, and the minimum of the functional P defined by (2.9),

+V, B, = V,wE®), (5.10)

mln

which is most readily established by adding together the right and left hand sides
of (5.9) and (2.9).

For a circular cylindrical void in an infinite matrix subject to plane strain
deformations, @, is a homogeneous function of degree n+1 in the remote stress
and is an isotropic function of the in-plane components of 6. Without loss of
generality, @, can be written as

D (67) = (1/(37)) (¢2)" (X, n), (5.11)

where o = (3557 557 /2)%, and
X=0%/0F. (5.12)

Moreover, fis an even function of X.
To obtain f(X, n), we use the fact that the dilatation rate of the void is given

by
V., V, = 3d /ocs = (1/(3n)) o2 Of/0X. (5.13)

For the remote stress state (1.3), o = |7|4/3 and %y = (|7] 4/3)" ' so that

V,/yV, = (sgn(1)/v/3)of/0X. (5.14)

In the high triaxiality range, an approximation to 9f/0X is obtained immediately
by comparing (5.14) with (4.2). To within an unknown constant of integration f
is therefore given by

fX, n) = (n/(n+ 1)) | X|v/3/n+(n—1) (n+g)/n?]"* (5.15)

For large X the constant of integration is asymptotically negligible, and no
attempt has been made to determine it. Similarly, in the low triaxiality range an
approximation to f is obtained by comparing (5.14) with (4.7), giving

S, n) = f*n (n) X2, (5.16)

where the constant of integration f* must now be retained. Values of f*(n) were
found from the computed values of P,;, when X =0 via (5.10), by using the
numerical technique of §2. These values are included in table 1. For n = 1, (5.16)
becomes

f=1+3X2 (5.17)

and this result is exact for all X.

The high and low triaxiality approximations to f in (5.15) and (5.16) are
compared with the more accurate full numerical calculations of fin figure 13. The
full numerical results were obtained from the results of §2 by using (5.10).
The approximations are quite good in their respective ranges.

With the void potential @ in hand, one can use (5.3) and (5.5) to obtain the




Void growth in shear 455

100 -
-
- <
f
10
-
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X=op/o?

Fi6Ure 13. Numerical results for f(X, n) defining the void potential in (5.11), and comparisons
with (5.15) derived from the high triaxiality approximation and (5.16) derived from the low
triaxiality approximation.

overall strain rate of the block containing a dilute distribution of circular
cylindrical voids and undergoing plane strain deformations. The result is
_ 1T _ P |38 of |, 1 of
- n—1 =~ nl|Y %ap _ Yy 2 —_
eaﬂ 277 (o-e) Saﬂ+377 (o-e) [2 E_e {(n+1)f Xax}+3 aXaaﬂ]a (518)
where the notation for the barred quantities is consistent with earlier notation and
where a and £ range over the indices 1 and 2. The approximations for f in (5.15)
and (5.16) may be inserted for the appropriate range of triaxiality.

6. CONCLUDING DISCUSSION AND A SUMMARY OF RESULTS
FOR VOIDS AND CRACKS SUBJECT TO SHEAR

The present study has brought out the strong coupling between mean stress o,
and shear stress 7 in the determination of the dilatation rate of the void. In
addition, nonlinearity has a significant effect on the asymptotic orientation of an
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isolated void under combined stress. At large values of triaxiality (i.e. large o, /7)
the void grows most rapidly in the direction transverse to the direction of
maximum principal strain rate. The present results for nonlincar materials were
limited to ¢ylindrical voids. Nevertheless, because there appears to be a fairly close
parallel between the behaviour of the 2D void and the 3D void, we expect many
of the qualitative features identified for the 2D problem to pertain to 3D voids.
In particular, it appears from the results presented here and elsewhere (Budiansky
& Hutchingon 1980) that the dilatation rate of a void (2D or 3D) which has
attained its asymptotic, steady-state shape is the same, or approximately the
same, for the nonlincar material, as the dilatation rate of a circular (in 2D) or
spherical (in 3D) void. The generality of this result remains to be seen.

We conclude the paper by presenting table 2, which collects together results for
the dilatation rates of isolated voids and cracks under combined remote mean
stress o, and shear stress 7. The first entry gives the present results for the high
and low triaxiality approximations for the circular cylindrical void undergoing
plane strain deformations. The second entry gives the corresponding results for
a spherical void subject to the same remote stress conditions. These are the results
of Budiansky et al. (1982) that were derived by assuming axisymmetric stressing
for arbitrary combinations of remote invariants o, and o,. Their results have been
translated to the shear problem by identifying o, with 4/3|7]. The last entry in
table 2 is that for a crack of length 2a in the power-law viscous solid undergoing
plane strain deformation and subject to a remote mean stress o, and shear stress
7 parallel to the crack. The dilatation rate is obtained as follows from an
approximate solution for the J-integral for this crack problem given by M. Y. He
(personal communication 1985). He’s formula is

J = (nv/n) [1+(0y/7)*] 770 (6.1)

Now, J is directly related to the crack potential @, by J = (3)0®./0a where, in
analogy to the void problem, @, is the change in potential (per unit thickness) from
the introduction of the crack. Thus,

D, = GmVn) [1+ (0 /7)]TPa?, (6.2)

and the rate of change of the cross-sectional area of the crack is therefore

A =0, /00, = (iny/n)(o,/T)yai (6.3)

The normalized rate 4/(yma?) is listed in table 2. Based on numerical comparisons,
He suggests that (6.1) is reasonably accurate as long as |o, /7| does not exceed 3
or 4, and we suppose the same limitation applies to (6.3). The formulas (6.1)—(6.3)
are exact for n = 1.

Lastly, we have noted in table 2 that the normalized dilatation rate for the
circular cylindrical void in the low triaxiality range is well approximated (to
within 59 for all n computed) by v/ na,,/7. This is exactly twice the normalized
rate A/(yna?) for the crack.
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TaBLE 2
Cylindrical void
high triaxiality |o,/7| > 1

A
¥V  \n

low triaxiality lo, /7| <1

Om

T

L= (n+0.6137)}” sgn (0m>

nt

V _ m o'm
YV_K(n) T rV T
Both formulae are exact for n = 1.
n k(n)
1 1
3 1.742
5 2.209
7 2.529

Spherical void
high triaxiality |op, /7| > 2

.£= V3[v3|om +(n—l)(n+0.4319) ".Sgn T
¥V 2 | 2n) 7 nt T
low triaxiality |o, /7| < 2
Y _«m)oy
¥V 3 7
Both formulae are exact for n = 1.
n k(n)
1 2.25
1.5 2.42
2 2.55
3 2.71
5 2.88
10 3.06
0 3.30

Plane strain crack

low to moderate triaxiality o, /7| < 3

A4 _vnom
yrat 2 T

Exact for n = 1.
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APPENDIX: SOME DETAILS OF THE NUMERICAL SOLUTION

Evaluation of the additional velocities and strain rates requires evaluation of
the following partial derivatives of the stream function: x ,, x 5, X 11, X1, @nd
X.22- The stream function in (2.13) is represented as a function of the polar
variables (u, ¢) in the mapped plane. By a change of variables

X,1=X,,,ﬂ,1+x,¢¢,1, (A1)
X1~ (X,,,,,ﬂ,1+x,#¢¢,1)ﬂ,1+x,,,ﬂ,11+(X,,,¢,u,1+X,¢¢¢,1)¢,1+X,¢¢,u, (A2)

with similar expressions for the other partial derivatives. The mapping function
z = w({) can be used to obtain the values of u ,, 4 ,;, etc. These relations are
similar to those of Budiansky & Hutchinson (1980), i.e.

P, =p/R, ¢,+ig,=1/Q,

Boantis gy = p o Q121+ p /(192 ) - (2u2/|2]*) Re{QQ' /w'}
Hoag+ift 5o =, Q/1QF+1uQ /(122 ') — (2uR2/|2|*) Re {i2Q’ /w'}
b 2o—i¢ 1, = 12//(|Q? ')~ (202/I2/*) Re {iQQ’ /w'}
¢ 12—i¢ 11 = 2'/(1QPw')—(2Q2/|Q*) Re {22’ /w'}

where Q = {w’, ()’ = d()/d¢ and () denotes the complex conjugate. Thus, the
additional velocities and strain rates at the point z associated with { are readily
computed when the amplitude factors {4} are assigned numerical values.

The integrals in (2.9), (2.17) and (2.18) were obtained numerically using a
ten-point Gaussian quadrature formula. The double integrals were evaluated by
subdividing the range of each of x onto ¢ into two equal intervals and applying
the Gauss formula in each subinterval. In all, 20 x 20 points were used in the
evaluation. Various checks were made to ensure that the integrals were evaluated
accurately with this procedure.
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