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Abstract—The cracking and spalling processes that accompany the edge loading of brittle plates have been
investigated. Experiments performed on glass and on PMMA have revealed systematic trends in crack
location, crack propagation load, and in the onset of spalling. In particular, a steady state crack growth
region has been identified wherein the cracks propagate parallel to the side surface. Calculations of mode
I and mode II stress intensities have allowed comparison of the crack trajectorics and crack propagation
loads with experimental measurements. The general trends in cracking were found to be broadly consistent
with predicted behavior governed by a zero mode II criterion and assuming that the cracks grow into
a steady state trajectory. However, some quantitative discrepancies exist. These have been attributed to
constraining tractions that develop upon distortion of the test specimens.

Résumeé—Nous avons étudié les mécanismes de fissuration et d’écaillage qui accompagnent la mise en
charge de plaques fragiles sur la tranche. Les expériences réalisées sur du verre et sur du PMMA ont révélé
des tendances systématiques dans la localisation de la fissure, dans la charge de propagation de la fissure,
et dans le début de I'écaillage. En particulier, nous avons identifié un domaine de croissance stationnaire
de la fissure dans lequel les fissures se propagent parallélement a la surface latérale. Le calcul des intensités
de la contrainte dans les modes I et II ont permis de comparer les trajectoires des fissures et leurs charges
de propagation avec les mesures expérimentales. La tendance géneérale 4 la fissuration est généralement
compatible avec le comportement prédit en se basant sur I'hypothése que les fissures grossissent en suivant
une trajectoire stationnaire régie par un critére de zéro dans le mode I1. Cependant, il y a quelques écarts
quantitatifs que nous avons attribués a des tensions liées a4 la distorsion des éprouvettes d’essais.

Zusammenfassung—Die Bruch- und Abspaltprozesse, die bei der Kantenbelastung spréder Materialien
auftreten, wurden untersucht. Die Experimente an Glas und PMMA weisen systematische Tendenzen in
der Lage der Risse, der fiir RiBausbreitung notwendigen Last und dem Einsatz des Abspaltens auf.
Insbesondere konnte ein Bereich des stationdren RiBwachstums aufgefunden werden, in demsich die Risse
parallel zur Seitenfliche ausbreiten. Mit Berechnungen der Spannungsintensititen fiir Mode 1 und Mode
11 konnten die RiBtrajektorien und die Lasten fiir RiBausbreitung mit den experimentellen Messungen
verglichen werden. Die allgemeinen Tendenzen bei der RiBbildung stimmten gut mit dem vorausgesagten
Verhalten iberein, vorausgesetzt, daB die Risse in eine stationire Trajektorie wachsen, bei der das
Kriterium fiir Mode II zu Null wird.

1. INTRODUCTION
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When a load is applied along the edge of a brittle
plate, cracks may initiate, propagate and, eventually
spall from the side surface (Fig. 1). Such edge
dominated cracking and spalling phenomena have
been encountered in many problems of technological
importance: e¢dge machining, edge mounting, the
impact of ice sheets onto offshore structures [1],
flint knapping [2], etc. Analogous edge cracking and
decohesion processes have been noted in residually
stressed thin films and coatings [3] used in various
electronic devices, as well as in barrier coatings
(Fig. 2). Yet apparently there has not been a system-
atic attempt to investigate either the nucleation and
propagation of such cracks, or the ultimate spalling
event. The present article addresses several of the
issues central to these processes. Experiments per-
formed on precracked plates, and related stress

intensity factor calculations contribute toward the
understanding of crack propagation. In addition,
stress analysis coupled with weakest link statistics
provide a description of trends in crack nucleation.
Finally, spalling is addressed by considering the
critical event that deflects the crack to the surface.

2. EXPERIMENTS
2.1. Test procedures

Plate specimens of two transparent materials
(PMMA and glass) were subject to various modes of
edge loading. Preliminary observations revealed that
crack growth and spalling tendencies were strongly
dependent upon any non-uniformity in the loading.
Localized (corner) loads generated cracks more
readily than quasi-uniform, distributed, loads. These
initial tests suggested a suitable geometry for model
experiments to investigate such edge cracking
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Fig. 1. A schematic illustration of an edge spall.

phenomena (Fig. 3). With this geometry the imposed
stress was readily and accurately confined to a specific
segment of the edge. This was done by applying
load to an elevated region via a steel plate attached
to the crosshead of a testing machine. Between the
steel plate and test specimen, a soft inter-leaving
material was placed to distribute the load evenly. A
precrack was introduced into each plate, and aligned
approximately parallel with the side surfaces. The
load was applied at a uniform rate of ~ 100 Ns~!
and the cracks optically monitored throughout the
experiment.

Stability of the specimen was achieved by clamp-
ing it between thick plates with rubber interlayers
(Fig. 3). This arrangement inhibited buckling, while
allowing a stabilizing moment to be exerted by means
of shear tractions distributed along the side faces
(Fig. 4). However, friction may have developed at the
loading area, creating a lateral force (Fig. 4) and
influencing on the cracking behavior.

2.2. Observations

Crack propagation was observed to occur in three
stages. Initial extension of the crack (Stage T) was
unstable and accompanied by a small load drop
(Fig. 5). Subsequent growth (Stage II) was stable,
occurring at a constant load L. By this stage, the
crack had progressed into a trajectory parallel to the
side surface at a characteristic depth, d, beneath the
surface. This depth was independent of the location

Fig. 2. A scanning electron micrograph of a Cr film deco-
hering from a glass substrate. (Courtesy of R. M. Fisher.)
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of the precrack (Figs 3 and 6). Finally, in Stage 111,
the crack deviated to the free surface, creating a spali
(Fig. 6), and the load dropped to zero. The spalls
exhibited a characteristic ratio (length divided by
thickness), R, which for PMMA had values in the
range, R =6+ 1.

Measurements of the stable propagation load indi-
cated that the load per unit thickness, P, exhibited a
systematic variation with the characteristic crack
depth d (Fig. 7) such that

P=L/b
~A \/ d.
The characteristic depth also revealed a unique de

pendence on the distance between the load line anc.
the free surface,  (Fig. 3) such that (Fig. 8)

d = Bh. (2)

(r

The values of the coefficients 4 and B are summarize 1
in Table 1. These coeflicients provide the basis fcr
comparison with crack growth predictions, as di -
cussed in Section 5.

SAMPLE
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Fig. 3. Schematic drawing of the test specimen ased to
study edge cracking and spalling.
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Fig. 4. Schematic illustrating the system of forces exerted
on the test specimen by the applied load and the con-
straining plates.

3. BASIC EDGE CRACK PROBLEMS

An important edge fracture problem, depicted in
Fig. 9, consists of a plate containing a plane crack of
length a at a depth d beneath the free surface (Fig. 9).
The beam above the crack is subject to a uniform
compressive stress, g, parallel to the crack (or, equiv-
alently, a load per unit thickness P, exerted at a line
of action, d/2 below the surface). The stress state for
this configuration is mixed mode, characterized by
stress intensity factors, K| and Kj;. Some trends in K
with crack length can be ascertained using finite
element computations,t as summarized in Fig. 9.
Such computations reveal that each stress intensity
factor increases monotonically and eventually attains
a steady state. General trends in edge cracking are
thus most expeditiously addressed by using analytic
approaches to obtain asymptotic solutions for both
short (@ «d) and long (a »d) cracks. These solutions,
derived below, are shown to provide adequate repre-
sentations of K; and K|, for cracks having lengths,
a £d/4, and a = 44, respectively (Fig. 9).

3.1. Asymptotic results for long cracks

The long crack problem (Fig. 10) involves a semi-
infinite crack, parallel to the free surface of a semi-
infinite, isotropic, elastic planar body. The only
length quantity in the problem is the distance d
between the crack and the surface. The cracked
“arm” is subject to a compressive load P acting
through the center of the arm, and a moment M
(both being defined per unit thickness perpendicular
to the plane).

Far from the crack tip, the arm is subject to a
combined state of bending and compression. Exact
results for the energy release per unit advance of the
crack are thus readily obtained using simple energy

tThe finite element results were calculated using 8-node,
isoparametric, plane-strain quadrilateral elements (the
MARC finite element package). The stress intensity
factors were obtained from crack surface displacements
near the crack tip.
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Fig. 5. Typical load displacement curve.

Fig. 6. Optical views of spalled segments of PMMA, indi-
cating the essential constancy of the relative steady state
crack depth, d (independent of d).
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Fig. 7. Trends in steady state load P, with characteristic
crack depth d for PMMA and glass.
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Fig. 8. Trends in characteristic crack depth d with load line
depth A.
arguments [4, 5], these give
MN\? -
G =[P2+ 12(7) :|/2Ed 3)

where £ = E in plane stress and £ = E/(1 —v?) in
plane strain.

For arbitrary combinations of P and M the stress
field at the crack tip is governed by both K; and K;,.
Dimensional considerations require that the stress
intensity factors be related to the load quantities by

K =c Pd~ "2+ c,Md=?
K,= (':,Pd*l/2 +c,Md ™2

4

tFor the case indicated in Fig. 10, where a compressive load
has its line of action a distance h below the surface.
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Fig. 10. Idealized geometry and loading for Stage II crack
advance, including definition of M and P.

where the ¢; are constants, Furthermore, since the
energy release rate is given by

G =(Ki+K}H)/E %)
comparison of equations (3) and (5) reveals that the
constants must satisfy

(©

Specific determination of ¢; requires that the crack
problem be rigorously solved for one loading combi-
nation. This has been done for the case M =0
(Appendix I), giving

¢, =0434, ¢,=1934,

¢y =0.558,

2 1
clted=1 cteae=0, d+ci=6.

o= —1.503. (7)

The corresponding values of K| and K|, for a crack
at depth d, subject to uniform edge compression, are
indicated on Fig. 9: denoted “long crack asymp-
totes”. Corresponding trends in K| and Kj; with crack
depth are summarized in Fig. 1.t Note that K|
exhibits a maximum at d=4.1h, and K;=0 at
d=78h. Also plotted on Fig. 11 are the finite
element solutions. The discrepancy between the
analytic and finite element results for K|, has been
identified as being caused by the finite geometries of
the finite element solution.
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Fig. 9. Trends in K; and K|, as a function of crack length for a crack having the indicated configuration.
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Fig. 11. Trends in K; and K, as a function of crack depth
for a semi-infinite crack and the loading geometry defined
in Fig. 3.

3.2. Asymptotic results for short cracks

The stress intensity factors for short cracks may be
obtained from the surface stresses (Appendix II), as

(6]
K = 1.120,,/na
Ky=1.120,./na. ®)

Specifically, for short cracks at depth d, subject to
uniform edge compression

%ﬁ =0.36 /(a/d)

f(ﬂ;/j =0.63./(a/d) )

as indicated on Fig. 9. denoted “‘short crack asymp-
tote™.

The surface stresses may also be used to estimate
trends in the crack activation load, by requiring that
fracture initiates from a distribution of pre-existing
edge flaws. Then, weakest link concepts [7] suggest
that the fracture probability @ may be expressed as

g Tmdx
“m(-@)=]| |22
1-%) J[S] e

where m, S, and h, are parameters that characterize
the flaw population. Noting that, to a reasonable
approximation (Appendix II, Fig. B1)

. 4 P
GRS E

the fracture load, at the median probability level

(¢ =3) may be readily derived as

(z*—4)
4

(10)

1n

m-—1
P:

c (In2)'m o@m)™ =D (12)

m
where &, = Syhy™. The fracture load is thus predicted
to scale almost linearly with 4. This scaling law is
similar to Auerbach’s law [8] that describes crack
initiation at spherical indentations in brittle surfaces,
and consistent with practical experience that thin
spalls initiate more readily than thick ones.

AM. 35/6—]
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Fig. 12. The effects of K}, on the crack path in a brittle solid.

4. COMPARISON BETWEEN THEORY
AND EXPERIMENT

The experimental result deemed to have the most
fundamental significance concerns the existence of
the characteristic steady-state crack depth, d. The
location of this trajectory is presumed to be dictated
by the condition, Kj =0, because experiments on
brittle solids [9] indicate that a planar crack only
continues to advance in its own plane when the crack
tip is subject to pure mode L: positive K;; deflects the
crack away from the side surface, while negative Ky
causes the crack to deviate toward the surface (Fig.
12). For preliminary comparison of this premise with
experiment, the Stage I crack propagation process is
idealized (Fig. 10), as a combination of P and M,
with

M = P(d]2—h). 13)

Hence, by setting K;; = 0 in equation (4) and substi-
tuting M from equation (13), steady-state crack prop-
agation is predicted to occur at a load

P _ 1
chﬁ €y — €163{€4
and at a depth

=0.87 (14)

dih =178. (15)

Comparison with the experimental results [equa-
tions (1) and (2) and Table 1] indicates consistency of
functional form, with 4 =0.87K,, and B =7.38.
However, appreciable numerical discrepancies exist
(Table 1); notably, the predicted values of A are too
small and the predicted B is too large.

The discrepancy is not resolved either by regarding
the crack path as the trajectory having the maximum
global, coplanar strain energy release rate (because
this path occurs at d =2h) or by any other simple
crack growth criterion (such as the maximum K
criterion discussed below). Furthermore, the results
cannot be rationalized by simply invoking an un-
known additional moment deriving from the con-
straining plates, from load misalignment, etc. because
a moment that brings d/A closer to the observed value
(positive sign) invariably causes the predicted load to
deviate further from the measured load (and vice
versa). There are believed to be three possible con-
tributions to the discrepancy. One arises from the
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Table 1. Crack propagation constants

Loading coefficient crack depth coefficient

A (MPa,/m) B
K, Predicted Predicted
Material (MPa\/m) Measured (K; =0) Measured K;=0 K maximum
PMMA ~10 2.4 ~0.9 4.8 7.8 4.1
Glass ~0.6 0.9 ~0.5 6.0 7.8 4.1

loading configuration, the others from the specimen
geometry. A lateral force, Q, develops at the loading
line [Fig. 4(b)], as the specimen attempts to rotate in
response to the imposed moment, M. Beam theory
(Appendix III) indicates that such a lateral force
induces crack surface displacement having a different
functional form than those induced by the moment,
resulting in crack surface contact (Fig. 13). Friction
at this contact would inhibit full transmission of the
imposed Kj; to the crack tip, causing the crack plane
to become closer to the surface than the above
prediction (based only on P and M). Furthermore,
the frictional tractions would tend to counteract the
axial force P and thus require larger applied loads to
achieve crack extension. Both of these trends are
consistent with the observed deviations from equa-
tions (14) and (I5). The analysis needed to quantify
the implied frictional effect is, however, beyond the
scope of the present article.

For completeness, it is noted that the experi-
mentally measured values of the crack depth, d (Table
1) fall between the value predicted at Kj; = 0 and the
value when X; exhibits a maximum, K.. However, use
of a maximum K| as a fracture criterion is deemed
inappropriate in the present context, because K;/K; is
substantial at K, = K, (Fig. 11). The crack would thus
tend to deviate from its plane at this location as
illustrated in Fig. 12, and the observed steady state
behavior could not obtain.

Edge spalling is attributed to the onset of elastic
buckling, because buckling induces substantial nega-

CONTACTING

=~ CRACK SURFACE

e
-~ T < <

e— OPEN CRACK TIP

Fig. 13. A schematic illustration of the partial crack surface
contact expected when a lateral force Q develops due to
friction at the load line.

tive Kj; and thereby deflects the crack to the surface
(see Fig. 12). The buckling instability initiates at a
critical axial load [10]

d 2
pc=;,E(> d
a

where 4 is a constant that depends on the boundary
conditions. The two extreme values pertinent to the
present problem are /3 (rotation inhibited) and
n°/48 (one free end). By substituting P from equation
(14), into equation (16) a critical aspect ratio for
spalling emerges

a\ _ ;_E\/_l/z
d).” | K. |-

For typical values of 4 pertinent to the present
experiments (~ 1 mm) the spall ratio measurements
(Section 2.2) indicate a value of A =0.4 4+ 0.1. This
value lies within the expected range, being somewhat
in excess of the free end result (1 ~0.18). Some
lateral constraint is thus implied, consistent with the
preceding interpretation of the discrepancy between
the measured and predicted values of the crack path
and steady state load.

(16)

17)

5. CONCLUDING REMARKS

The research presented in this article provides the
background needed to analyze and predict the edge
cracking and spalling behavior encountered in many
situations having practical importance. In particular,
it is now apparent that, by separating the imposed
loads (mechanical or thermal) into force and moment
components, the relative mode I and mode II stress
intensities can be readily specified. Then, com-
parisons with measurements of crack trajectories and
of crack extension loads allow definition of the
criteria that dictate various aspects of edge cracking.

The present study has been restricted to homoge-
neous materials. However, extension to hetero-
geneous systems would be straightforward. In partic-
ular, re-evaluation of K; and K, for heterogeneous
systems would address such important phenomena as
the decohesion of thin films from substrates, delami-
nation cracking in composites, etc.

The present comparison between experiment and
theory has revealed that the loading used to con-
duct the experiments is complex, because lateral
restraining tractions may develop at the load
line. Experimental measurements using designs that
permit free rotation of the specimen and thereby
inhibit the development of such tractions are now in
progress.
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APPENDIX 1

Stress intensity factors for a semi-infinite sub-surface crack
In this Appendix we set up and solve the integral equation
for the plane strain problem specified in Fig. Al.

Let b,(¢) and b,(¢) be the x and y components of an edge
dislocation located on the x-axis at x = ¢ and interacting
with a traction-free boundary along y = 1. The stress com-
ponents o,,(x) and o,,(x) at a point (x,0) on the x-axis
induced by the dislocation at (£, 0) can be obtained using
Muskhelishvili methods and are given by

0,,(x) +io,, (x) = 2B(E)x — &)

+BQ)G (x ~ &)+ B )G, (x = &) (Al)
where i =./—1, (7) denotes the complex conjugate, and
G()= —160/(4 + *)
Gy (0) = =20 /(C* + 4) + 8/ ~ 2iy’
B(£) = E[b.(§) + ib,(£))/[8mi(1 — v?)).
The semi-infinite crack is represented by a distribution of

dislocations lying along the negative x-axis such that the
traction vanishes along the negative x-axis. That is, the

TY
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Fig. Al
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distribution of dislocations B(¢) for ¢ < 0 must satisfy
]
Zf B(&)x - ¢)td¢ +J.

+B()G,(x —¢)]dd =0 (AD)

for x <0, where the first integral is the Cauchy principal
value integral.

The crack opening displacement components are defined
in the usual way as d,=u/(x,0")~u(x,07) and
d,=u,(x,0%) —u,(x,07) for x <0, and they are related to
the dislocation distribution by

0

[BE)G(x —¢)

i)
8.(x) + 8 (x) =J. [b,(£) + ib,(£)] d&

8mi(l —v?) (°
=——— | B()dd. (A}

E X
The stress state remote from the origin in the “arm™ (i.e. in
0 <y <1 for x - —o0) is prescribed to be g,, = —0o (with
6, = -ve)so that e, = ~ (1 ~v¥a/E. For x » — 0

défdx =u,(x,0%) =¢,, = —(1 —v¥)o/E
since u,,(x,07) - 0 as x - —oco. Thus, from (A3)

b,=—dé/dx =(1—v})o/E as & —+ —x0 (Ad)

and
Im{B} = —0/(8r) as (AS)

Note that b, is related to the crack opening displacement by
b,= —dé /dx. Since dé /dx is not known a priori for large
negative x, the real part of B is unknown for large negative
{; it must be determined as part of the solution to the
integral equation. Condition (AS5), together with the require-
ment that B(£) has an inverse square root singularity at
¢ =0, complete the specification of the integral equation
(A2) for B(¢). A direct calculation shows that the stress
intensity factors are given by

& - —oo.

K+ iKy = (2n)*? tlin;_ {(=&) "2 B(¢)). (A6)

To prepare the integral equation for numerical solution,
make the changes of variables
x=@@-—-D/u+)(—1l<u<l),
E=@-D/t+D(-1<t<]).

The integral equation can then be rewritten as

(A7)

1 1
f AW u~¢)""de + {A()G (x — &)
-1 -1
+ AW +1+Gyx — O+ 1) dt =0 (A8)

where A(t)=B(¢) and x — & =2(u — 0)/[(1 + u)(1 + 1))
The representation for 4(¢) was taken to be

1 N
A(l)=\/l_—t{ao+(l+l)k§|aka_‘(l)} (A9)

where T(t) is the Chebyshev polynomial of the first kind
of degree j and the a’s are complex coefficients which
must be determined in the solution process. From (AS),
Im{a,} = — /20 /(8n), while the real part of a, Re{a, }, and
the real and imaginary parts of g, for k == 1, N are unknown.
When substituted into (A8), the representation for 4 leads
to an equation of the form
N
Y [ad\(u, k) + o (u, k)] + Re{ao } () = ol,(u)  (A10)
k=1
where the terms 7, to I, involve integrals such as
1
G (x =T, _ (DA + )" (1 —¢)~"de.
-1
These integrals must be evaluated numerically for given
values of u and k. (Some of the integrals require further

Ii(u, k)=
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Table Al. Computed values of ¢, and ¢,

where (A10) is satisfied at the N
Gauss—Legendre points
N c I ci+el
6 0.4359%4 0.55754 0.50089
8 0.43383 0.55828 0.49988
12 0.43418  0.55811 0.49999

reduction before they can be efficiently evaluated numer-
ically.)

The solution procedure is as follows. Let a set of 2N real
unknowns be Re{a,} plus the real and imaginary parts of
a, for k =1, N, excluding the imaginary part of ay (ie.
effectively, Im{ay} is set to zero). This set of 2N unknowns
is used to satisfy the real and imaginary parts of (A10)
at N points {&;} on the interval —1 <u < 1. The results
tabulated above were determined using Gauss-Legendre
points for {u,}. However, several other sets of points were
tried and the results for ¢, and ¢; were not strongly
influenced by this choice. Considerable care must be taken
to ensure that the integrals involved in the [, are evaluated
accurately. A convergence study was made for each entry
in the table so that the results listed were free of any
dependence on inaccuracies in the numerical evaluation of
the integrals. Once the a’s have been determined, the stress
intensity factors can be computed, using (A6) and (A9),
from

N
K + ik = 2n(m)'? {ao+2 )y dka_,(l)}. (ALl)
k=1

The crack opening displacements can be computed from
S (x)+ 18 (x)=16nE~"(1 —v7)i

t N
x'( [a0+(l +1) Y aka,\:l(l +1)"%dy (Al12)

where ¢ is related to the integration variable 5 by
t =1—(1 —-u)(1 —n)*4 and where x and u are still related
by (A7).

The general expressions for K| and K|, in equation (4)
apply to the present case with M =0,d =1 and P =0 so
that K, + iK}; = (¢, + ic,)s. The computed results for ¢, and
¢, are presented in Table Al for 3 choices of N. Also
included is the computed value of ¢{ + ¢} which by equation
(6) should be precisely 1/2; this value provides an indepen-
dent check on the accuracy of the solution. Based on the
convergence displayed by the data in Table Al and on some
additional convergence studies, we believe that the values of
¢, and ¢, given by equation (7) are accurate to within 0.2%.
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The values of ¢, and ¢, follow immediately from equation
(6) and must therefore have essentially the same degree of
accuracy.

For completeness, we show the crack opening displace-
ments in Fig. A2 for the case considered here (i.e. M = 0).
Finally, it can be mentioned that the results for the stress
intensity factors hold for plane stress as well as plane strain,
and the plots in Fig. A2 for the crack opening displacements
hold for plane stress if (1 —v?) is replaced by | in the
ordinate variable.

APPENDIX 1T

Stress fields: small crack asymptotics

Unstable propagation of small cracks can be analyzed by
considering the top face of a guarter-plane loaded by an
applied compressive stress of magnitude ¢ up to a distance
d from the corner, using the method developed by Tranter
[11]. The radial (o,), tangential (7,) and shear (z,,) stresses
are given by

r
; (G’[) - Ur)

{20: sin(a — @) — sin 2« sin{x + 9)}
=f{——— -

402 — sin? 2o

- f [P(£) - SE)lsin{¢ logd/r)}d¢.  (Bla)
2@y +a,)
2a sin(a — #) — sin 2a sin(x + 6)
=7 40 — sin? 2a
+%r[P(é)—éQ(é)—S(éHéT(f)l
0
sin{& log(d/r)} a®
XTdé —1’["‘0 [Q&E)+EPE)
— 1) — esey oS o) (Blb)

1+ &2

r

ET,{,=%L [R(E) — U(&)Jcos{¢ log(djr)} d&  (Blc)

where @ = n/4 and P(¢), Q(¢) and R(&) are the symmetric

1 L T T T T
i 8yE/od(l-v?) 1°
- -8y
- -8
crg, N
T
| 16 =
el
8,E/od(I-1" S
= XE od(l-v%) -4 l‘_|<_|)
- —H2
_ il ) I | | 1 0
%6 -5 -4 -3 -2 -1 0
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Fig. Bl
parts of the solution given by Atr <d: gy=0, 1, =0 and
[¢ sin 2a + sinh 221 P(£) = sin(x — 6) cosh[(x + 8)¢] 4 2 (s .
r a g [ 2
+ sin(a + 8) cosh[(a — 8)&]. ;1(0'+G):|:n?74}7;f {Mzi?}
o
[¢ sin 2& + sinh 22¢]1Q(£) = cos(a — 8) sinh[(x + 8)¢]
+ cos(x + 8) sinh[(x — 8)¢]. y sin{¢ log(d/r)} 4. (Bo)

[€ sin 2a + sinh 2a&]R(¢) = sin(a — 8) sinh[(x + 8)¢]
—sin(x + &) sinh[(ax — 8)¢].

and S(&), T(£) and U(¢) are the anti-symmetric parts of the
solution given by

[¢ sin 2a — sinh 22£]S(&) = sin(a — @) cosh((x + 6)¢]
— sin(a + @) coshf(a — 6)E].
[¢ sin 2a — sinh 22€]T (&) = cos(a —~ 6) sinh[(x + 6)¢]
— cos(a + 0) sinh[(x — )]
[¢ sin 2o — sinh 2a&]U(¢) = sin(a — B)sinh[(x + 8)¢]
+ sin(x + 6) sinh[(a — #)¢].

The stresses can be determined by numerical integration
[12]. The stresses along the top surface are calculated by
letting @ — 8 = ¢ and then examining the limits of the above
equations as ¢ — 0. Ignoring terms of order ¢ or smaller, the
following stresses are obtained. At r=d: g,= —0/2,
7y =o0c/n and

2—ne B2
R Py B2
Atr>d, 0,=0, 1,=0 and
r _ 4g 20 (@ é)’
<Z>”" =4 7 ), \sinh*én2—2?
XM“. (B2b)

¢

G

The surface stresses deduced from equation (B2) are plotted
in Fig. Bl.

APPENDIX III

Beam theory analysis of crack surface contact

In the absence of a lateral restoring force, the opening
displacement of the crack surface has the form

5
-2

(2) = Ci
W (2) 2El (Cl)
where z is the distance from the crack tip. However, when
a restoring force @ is imposed, the surface displacements
must be modified by

2
w,(z) = %‘;ZJ (2
The resultant displacement is thus
wiEz)=w,(2)+w(z) :-fi [(M — Qa) +g:| (C3)
” ¢ 2EI 3

The parenthetical term containing z indicates that w can
change sign along the crack path, when w is initially
negative, at small z (Qua > M). However, it is also noted
that, near the crack tip, the crack tip region remains open,
even though contact may exist over the central portion of
the crack (Fig. 13).



