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Abstract

A crack lying along one interface on an elastic
sandwich structure is analyzed. When the thickness
of the middle layer is small compared with the
other length scales of the structure, a universal
relation is found between the actual interface stress
intensity factors at the crack tip and the apparent
mode I and mode II stress intensity factors
associated with the corresponding problem for the
crack in the homogeneous material. Therefore, if
the apparent stress intensity factors are known, for
example calculated from the applied loads as if the
structure was homogeneous, this information can
be immediately converted into the interface stress
intensity factors with the universal relation. This
observation provides the theoretical basis for devel-
oping sandwich specimens for measuring interface
crack toughness. The universal relation reveals the
extent (o which the asymmetry inherent to a
bimaterial interface induces asymmetry in the near
tip crack field. In particular, the result of the study
can be used to infer whether stress intensity factors
for a homogeneous body can be used with good
approximation in place of the actual interface
stress intensity factors. A proposal for simplifying
the approach to interfacial fracture is made which
plays down the role of the so-called oscillatory
interface singularity stresses.

1. Introduction

Cracks in homogeneous, isotropic materials
tend to propagate under mode I conditions in
which only normal stress acts on the plane of
separation ahead of the tip. For this reason, the
development of fracture mechanics for such
materials has tended to place heavy emphasis on
mode I conditions. By contrast, the fracture mode
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on an interface of dissimilar materials is often
mixed. Differences between elastic properties
across an interface will generally disrupt the
symmetry even when the geometry and loading
are otherwise symmetric with respect to the crack.
Moreover, an interface between dissimilar
materials is frequently the weakest fracture path
in a composite body, and an interface crack will
tend to stay in the interface even when subject to
loading combinations which give rise to shear
stress as well as normal stress on the interface
ahead of the tip. Some potential applications of
interface fracture mechanics, such as fiber
debonding from a matrix due to pull-out, involve
substantial shear contributions. Thus, in general,
the interfacial fracture mode is inherently mixed,
and a complete characterization of an interface
requires toughness data over the full range of
mode combinations. Recent efforts in this direc-
tion are found in |1, 2].

~ A special class of sandwich specimens have
been devised recently for experimental deter-
mination of interfacial toughness [3, 4], or for
other related purposes such as evaluation of the
toughness of adhesive joints [5, 6]. The common
feature of these specimens is that each of them is
homogeneous except for a very thin layer of
second material which is sandwiched between the
two halves comprising the bulk of the specimen.
The thickness of the layer is typically a hundredth
or even a thousandth of the length scale of the
overall geometry (Fig. 1). A pre-existing crack lies
along one of the interfaces. With such specimens,
it has generally been the practice to use the stress
intensity factor (or factors if mixed mode condi-
tions pertain) determined for the homogeneous
specimen with no layer to characterize the inter-
face crack in the presence of the layer. In this
paper we determine a universal relation between
the stress intensity factors for the homogeneous
specimen or body and the actual interfacial stress
intensity factors for the crack between the layer

© Elsevier Sequoia/Printed in The Netherlands




136

In absence af layer,

Ko+ Ky
Tpp T1012 7 Tomr
4

ahead of ¢crack tip

-

a) FINITE GEOMETRY

Oon x=0,
r— o
K +1K
[ GlEAD &
Top "2
. #1 Jewr
? r—=0 i€
. (Ky*1Ka)r
4 I il % VT T m

e #2
# 1

b) ASYMPTOTIC PROBLEM FOR SEMI-INFINITE CRACK

Fig. 1. Schematic of asymptotic problem.

and the material bonded to it. The universal rela-
tion is asymptotic in that it requires the thickness
of the layer, A, to be very small compared with the
crack length and to all other in-plane length
scales of the specimen,

The mathematical problem analyzed is intro-
duced in Fig. 1. A thin layer of material 2 is sand-
wiched in a homogeneous body of material 1.
Each material is taken to be isotropic and linearly
elastic. Attention is restricted to the plane
problem, either plane strain or plane stress. The
crack lies along one of the interfaces (the upper
interface in Fig. 1) coincident with the x,-axis
with the tip at the origin. As indicated in Fig. 1,
the asymptotic problem for the semi-infinite
interface crack will be considered, as is appro-
priate when the layer thickness, 4, is very small
compared with all other in-plane length scales.
The crack tip field of the homogeneous problem
(with no layer present) is prescribed as the far
field in the asymptotic problem. Thus the far field
is characterized by the mode 1 and mode II stress
intensity factors, K; and Kj;, induced by the loads
on the reference homogeneous specimen. The
interface crack tip field is characterized by a
different set of interfacial stress intensity factors,
K, and K,, which will be defined precisely in Sec-
tion 2 below. The universal relation developed in
the next section connects these two sets of the
stress intensity factors. An analogous problem

and similar arguments can be found in [7] for a
crack parallel to, but slightly displaced from, an
interface.

With the universal relation in hand, we outline
in Section 3 the procedure to convert the experi-
mental data (e.g. the critical external loads) to
interfacial toughness using two particular
specimen configurations as illustrative examples.
A proposal for simplifying the interpretation and
presentation of interfacial toughness will be
discussed in Section 4.

2. The universal relation

As observed in [8] the non-dimensional elastic
moduli dependence of bimaterial systems, for
traction prescribed plane elasticity boundary
value problems, may be expressed in terms of two
(rather than three) special combinations. The
Dundurs’ parameters adopted in this work are
defined as

a=r(7‘2+1>_(7‘1+1>

Mx,+ 1)+ (x,+1

( )+ () + 1) )
ﬁzr(xz'n_("l_l)

L, + 1)+ (%, +1)

Subscripts 1 and 2 refer to the two materials in
Fig. 1, x=3—4v for plane strain and (3 — v}/
(1+ v) for plane stress, I' = u,/u,, vis the Poisson
ratio, and u is the shear modulus. The physically
interesting values of & and § are restricted to a
parallelogram enclosed by o«o=%1 and
a—4B==*1 in the «, § plane. This will be of
advantage later on when discussions of any func-
tions depending on material moduli are made.
Both o and B vanish when the dissimilarity
between the materials does.

Two other bimaterial constants, = and &, may
help understand the roles that ¢ and g play,
respectively, i.e.

=ﬁ=g e 1 1 1-p (2)

= =—71In
27 1+p
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where the compliance parameter c¢ is related to
Young's modulus E by

CxH1 8/E for plane stress

(3)

c
M 8(1—-»2)/E

From (2) @ can be readily interpreted as a
measure of the dissimilarity in stiffness of the two

for plane strain




materials. Material 1 is stiffer than 2 as &> 0 and
material 1 is relatively compliant as a <0. The
parameter &, and thus 8, as will be clear soon, is
responsible for the oscillatory behavior at the
interface crack tip, and it will be proposed in
Section 4 that taking #=0 may be a sensible
simplifying approximation in many cases.

With K, and K, as the two interface stress
intensity factors and with K=K, +iK, as the
complex interface intensity factor [i=(—1)"?,
the traction in the interface a distance r ahead of
the crack tip is given by

za™ " @

The associated crack face displacements a
distance r behind the crack tip are

022+10'12=
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The energy release per unit of new interfacial
crack area is related to the complex stress in-
tensity factor by

w_ Cta

=12 |K 6
16cosh2n£‘ | (6)

These results for the interface singularity field
were contained in a number of papers in 1965
[9-11]. The present normalization of the inter-
facial stress intensity factors follows [1] and [7].
The interfacial stress intensity factors for various
crack configurations have not been well
documented, yet some important problems have
been analyzed. Two examples are depicted in Fig,
2. For a semi-infinite crack along the interface
between two elastic half-spaces loaded by equal
but opposite tractions o,, +io,,= — T{x,) on the
crack faces,

2 0
K= (%J cosh e f (_%ﬁmdl (7)

—

In the case of a finite crack of length 2a on the
interface between two half-spaces which are
subjected to equal but opposite tractions
0y, +10,,= — T(x,) on the crack faces, the stress
intensity factor at the right-hand side tip is

K=

+a
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Fig. 2. Two basic interface crack configurations.

When 8#0, and thus by (2) ¢#0, K, and K,
do not strictly measure the normal and shear trac-
tion singularities, respectively, on the interface
since the two traction components do not
decouple independent of r due to the term
r'¢=explie In r] in (4). Moreover, crack face inter-
penetration is implied by (5) at sufficiently small r
(usually exceedingly small r) when £# 0, as has
been discussed in [9]. However, when =0, K,
and K, do measure the normal and shear traction
singularities on the interface ahead of the crack
tip with the standard definition for the intensity
factors. The utility of taking 8 =0 as a pragmatic
approximation will be discussed in Section 4. At
this point we simply note that interpretation of
the interface intensity factors is much clearer
when 3 =0, interpenetration is no longer an issue,
and it will be argued that little of physical con-
sequence is lost by taking § to be zero in most
instances.

The far field for the asymptotic problem in
Fig. 1 is characterized by mode 1 and mode 11
stress intensity factors, K; and K;, for the homo-
geneous specimen. With K* =K, +iK; as the
apparent, or applied, (complex) stress intensity
factor, the traction a distance r far ahead of crack
tip is

o, tio, =

Carf” ”

The energy release rate computed using the far
field is

C, ® |2
¢=—1K
L (10)
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By elementary energy arguments, or by appli-
cation of the J-integral, one notes that the energy
release rate in (6) and (10) must be equal and thus

|K|=p|K~| (11)
where

1—a |'?
P:(l_ﬁz) (12)

Following an argument similar to that used in ref.
7, dimensional considerations (¢f. (4) and (9)) and
linearity require that

Khit=aK® + bK*® (13)

where (7) denotes complex conjugation and a and
b are dimensionless complex constants depend-
ing only on a and B. Equations (11) and (13)
imply

lal®>+|b|*= p? ab=ab=0 (14)

The solution to (14} which gives K =K™ in the
limit &= =0 is
b=0 (15)

where o is a real function of only a and 5. Now it
is possible to rewrite (13) as

a =pei¢u

Khit=pK=el® (16a)
or
K, +iK, =p(K,+iK,) h e (16b)

The universal relation (16) thus has been fully
determined apart from w(a, ). An integral equa-
tion formulation of the interface crack problem is
given in Appendix A. The function w(a,p)
extracted from the numerical solution to the
integral equation is presented in Table 1. As dis-
cussed in Appendix A, the error is believed to be
within a few tenths of a degree.

The basic relation (16) can be expressed
another way. Noting | KA'¢ | =| K|, one can write

Khit=|K|e'v (17)

as in [1], where y is a real phase angle. With
¢=tan " '(Ky/Kj) so that

K*=|K%|e" (18)
Equation (16) can be written equivalently as

y=¢+w(a,p) (19)

In words, the complex interface stress intensity
factor combination KA'* has magnitude scaled by
a factor p and phase angle shifted by o with
respect to the far field stress intensity factor.

For material combinations with =0 and thus
=0, K, and K, have conventional inter-
pretations, as already emphasized, and (16)
becomes

|K|=plK*|

K=(1-a)”?K=explio(a, 0)] (20)

independent of A. Now, wy=tan '(K,/K;)
measures the relative proportion of “mode 11" to
“mode I” on the interface. By (19), the shift in the
relative proportion in the applied (remote) field
to that in the interface field is given by w(a,0).
From Table 1, it is noted that this shift is not large,
varying from 4.4° for a= —0.8 (when the layer
material is stiff compared with the bulk material)
to —14.3° for a = 0.8 (when the layer material is
relatively compliant), Thus, for example, a mode I
specimen with a sandwich layer will not be “mode
I” at the interface crack tip, but the shift will not
be large. Much to the expectation of the designers
of these kind of specimens, the fracture mode at
the crack tip is essentially the same as that
induced for the crack in the corresponding homo-
geneous specimen under the same external load-
ing, but with a scaling factor p.

TABLE 1 w(a, B) (in degrees)
a -0.48 —0.6 —04 -0.2 0.0 0.2 0.4 0.6 0.8

B

-0.4 2.2 3.5

-03 30 4.0 33 1.4

-0.2 3.6 4.1 34 2.0 -0.3 —-33

-0.1 4.0 4.1 33 2.0 0.1 -2.3 -55 -10.8
0.0 4.4 3.8 2.9 1.6 0.0 -2.1 —-4.7 -84 —-14.3
0.1 2.3 1. -0.5 -23 —4.5 -74 -11.6
0.2 1.3 -3.0 -49 -7.3 -10.5
0.3 -58 —-7.8 -104
04 -11.1




3. Applications

The application of the universal relation to a
particular sandwich specimen is straightforward.
One may start with any specimen which has been
successfully used for homogeneous crack fracture
test. Proper techniques are required to sandwich
a second material layer into the bulk of the speci-
men and ensure that the crack stays along one of
the interfaces, as discussed in [4]. Critical external
loads are recorded as the crack starts to prop-
agate. The apparent stress intensity factor, K=,
is then calculated from the critical external loads
as if the specimen were homogeneous. The actual
interfacial stress intensity factors are readily
evaluated using the universal relation (16), or its
simplified version (20). Two particular specimens
are discussed below for purpose of illustration.

First consider the specimen shown in Fig. 3. A
layer of material 2 with thickness 4 is sandwiched
in a large plate of material 1, with overall length
scale L. A crack of length 2a is introduced at the
center of the specimen along the interface. To
apply the universal relation, the specimen should
be devised such that 4 is very small compared
with the crack half-length a. We will also assume
that L®» a so that the formula for the infinite
plane applies, but any formula which accounts for
the influence of L. on the intensity factors for the
homogeneous problem could be used. A uniaxial
tensile stress o is applied at an angle 6 to the
direction of the layer and crack. The apparent
stress intensity factor is simply that of an internal
crack in an infinite homogeneous plate due to
remote stress [12], i.e.

K® =K, +iK; = g(ma)'?sin fe'® (21)

The interface stress intensity factor is then
obtained by substituting (21) into (16). That is

Fig. 3. Sandwich layer and interface crack in finite plane at
angle 0 to applied tension.
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Kh'*=po(ma)'?sin Bexpli( 0+ w )] (22)
With =0, the interface stress intensity factors are
K, =ola(l—a)a]*sin 6cos(6+ w)

K,=ola(1—a)a]'*sin Bsin( 0+ w) (23)

Observe that (23) implies the toughness | K| can
be measured using this specimen over a wide
range of phase angles y=tan K, /K,) by con-
tinuously varying the direction of the load 6.

Next consider the double cantilever beam
(DCB) specimen proposed in [4], consisting of a
thin film of medium 2 bonded between substrates
of medium 1 (Fig. 4). The apparent stress in-
tensity factor associated with the corresponding
homogeneous specimen, determined from the
previous numerical solution [13] in terms of
applied load per unit thickness P, crack length a,
and half-height /, is

K== K,=PI~%2a[3.467 +2.315(l/a)] (24)

Substituting (24) into (16) gives the interface
stress intensity factor of the crack tip as

Khie=pPl=%24[3.467 +2.315(1/a)lc'® (25)

If the simplifying assumption is made, i.e. 8=0,
{(25) becomes

K=(1-a)'2Pl-¥24[3.467 + 2.315(}/a)le’* (26)

Since w is typically very small according to Table
1, this is essentially a mode I specimen, as antici-
pated [4].

4. On the virtues of taking §=0

By conducting fracture tests over a full range
of external loading (ie. a full range of
¢=tan"'(K,/K,), one generates a locus of the
critical combinations of the interface intensity
factors, K, and K,. A thorough discussion of
several approaches to recording and using inter-
facial fracture data is given in [1]. In particular, if
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Fig. 4. Double-cantilever beam specimen with sandwich
layers.
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full accounting for the e-effects is made, then a
critical value of K =K +iK, must be reported in
units of stress o and length L as

K=AolL'/>i (27)

where A is a dimensionless complex number. A
peculiar consequence of (27) is that the phase, ie.
the relative proportion of K, to K, changes when
length units are changed. Moreover, from (4) it
can be scen that the relative proportion of shear
to normal stress acting on the interface directly
ahead of the tip is not constant but varies (weakly)
according to r'* = exp(ieln r) when ¢ # 0.

Plane strain values of a, 8 and ¢ were listed in
[7] for six representative material pairs. In most of
these cases, ¢ is very small, often less than 0.01 in
magnitude, even when a is substantial cor-
responding to ratios of 4 or 5 of the plane strain
modulus E/(1—v?) of the two materials. At the
present stage of the development of the mech-
anics of interfacial fracture it is likely that other
problems and issues, such as the difficulty in
preparing specimens and in measuring interfacial
toughness, are much more pertinent than e-
effects. Certainly, there is no compelling experi-
mental evidence to date which suggests an
important role for &, and various proposals for
ignoring e-effects have been considered [1]. A
consistent approach proposed in [14] is to syste-
matically take =0, both in the determination of
critical toughness data from test specimens and in
subsequent application of such data to predict
fracture. Of the two non-dimensional parameters,
a and f, measuring dissimilarity in material
elastic properties, o appears to be the more
important. For example, in the present solution
(16), B enters in the factor p only as 8% and for a
typical plane strain g value makes a very small
numerical contribution to p. Similarly, its lowest-
order influence on the relation between K and
the energy release rate in (6) is only of order j3?
through cosh me. It is also noted that w in Table 1
is a stronger function of @ than of 8 and for
typical § values is hardly influenced. A similarly
weak dependence on § of the solution variables
for intensity factors for a crack kinking out of an
interface was noted in [14]. Curiously, the several
solutions for intensity factors for cracks on the
interface between two semi-infinite blocks of
materials produced in 1965 [9-11], two of which
are listed here as (7) and (8), have no dependence
on «a but do depend weakly on & and, therefore,
on B. This may partly explain why ¢-effects may

have been overemphasized. In any case, at this
stage in the development of the subject it seems
sensible to take =0, especially when £ is small,
in view of the clarification in interpretation and
simplification in approach which thereby follows.
A safe procedure would be to report data in a
manner which would permit conversion to an
e-based scheme at a later date if that turns out to
be necessary. Guidelines can be found in ref. 1.
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Appendix A. Integral equation formulation
and solution

In this Appendix we set up and solve the
integral equation for the plane elasticity problem
specified in Fig. 1. Similar solution procedure can
be found in refs. 7, 15, 16. A layer of material 2 is
sandwiched in an infinite medium of material 1.
Each material is taken to be isotropic and linearly
elastic with the x,-axis coincident with the upper
interface. The thickness of the layer is set to be
unity since the 4 dependence is known. A semi-
infinite crack lies along the x,-axis with the tip at
the origin. The external loading is prescribed in
the far field as the standard crack tip field of a
homogeneous crack characterized by the classical
stress intensity factor

K= =K +iKy (A1)

Let (&) be the x; component of an edge dis-
location located on the interface at x, =§. The
stresses at point x; = x on the interface induced
by the dislocation are given by

2B(§)

+2aBid(x — &) B(E)

oy(x)+io(x)=

+B(E)Fy(x = &)+ B(E) Fy(x— &)

(A2)
where &(x) is the Dirac delta function and
l+a 1 .
B(E)—m;[bdé)ﬂbz(é)] (A3)

and the complex-valued functions F(¢) are con-
structed in Appendix B. The functions £, and F,
are well behaved in the whole range
— o < f < + oo with asymptotes

as L — o0
(A4)

The semi-infinite crack is represented by a dis-
tribution of dislocations lying along the negative
x,-axis such that the traction vanishes along the
negative x,-axis. That is, the distribution B(&) for
& <0 must be governed by

ol Fim=olt
ciamoft ) caemof!

0

| (x%gmx—a

-

B(£)dE

+ [ Filx—&)B(&)dE + 2piB(x) =0
o for x< (0 (AS)
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where the first integral is the Cauchy principal
value integral.

The crack face displacements are related to the
dislocation distribution by

0
-

8,(x)+i05(x)= | [by(&)+iby(£)]dE

+'60; f B(E)dE forx<0
' (A6)

The relation between the complex stress intensity
factor K and the dislocation distribution B can be
derived by combining (5) and (A6). That is

R=(2a)P{1- ) 2lim S0 (a7

The behavior of B(£)as £~ — < can be specified
to give the correct far field loading (A1), i.e.

l—a

1-4

B&)=(2m)7 0 L Re(=E) P asé~ -

(A8)

Notice that with asymptotic behaviors (A4) and
(A8), the integrands in (A5) are integrable.
Make the change of variables

u—1
x= —1<u<l1

u+l

t—1

=— -1<t< A9
f=rr (A9)
and let

2Au—1t)

=x-§ (u+1){r+1) ( )

Then with A(r)=B(&), the integral equation
(A15) can be reduced to

fﬂdt+nﬂiﬁ(u)
Jou~t

1

Fi(§)A() +[1+1+ F(E]A()
+fl <1+t>2 de=0
for —1<u<1 (A11)

where the first integral is the Cauchy principal
value integral. With the asymptotic behaviors
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(A7) and (A8) in mind, one can take the approxi-
mation for A(t) as

L\ -2-ie 1/2
sl

+(1+1¢) 2, akal(t)J (A12)
where
—(27)"2 11__;‘2 k" (A13)

and Tj(t) is the Chebyshev polynomial of the first
kind of degree j, and the a values are complex
coefficients which must be determined in the
solution process. When substituted into (A11),
the representation for A leads to an equation of
the form

Z laud {u, k) +a L {u, k)] +agI3(1) =0 (A14)

where the terms /; for j=1, 3 involve integrals
such as

! _ 1/2—ie
(k)= | F1<c>Tk-]<z><1+z>‘(17’] de
- (A15)

These integrals must be evaluated numerically for
given values of « and k.

The solution procedure is as follows. Let a set
of 2N real unknowns be the real and imaginary
parts of a, for k=1, N. This set of 2N unknowns
is used to satisfy the real and imaginary parts of
(A11) at N Gauss-Legendre points {u,;} on the
interval —1<u < 1. Once the a values have been
determined, the complex stress intensity factor
can be computed, using (A7) and (A12), from

N
K=(2n)3/2(1—ﬂ2)”2(a0+2 > ak) (A16)
k=1
The general expression for K in (14) applies to
the present case with K;=1 and K;; =0, or equi-
valently, with K* =1, and A=1, so that

K =peiv (A17)

which yields sin w and cos @ independently. The
relation sin’w + cos?w = 1 provides a consistency
check on the accuracy of the solution. The results
reported in Table 1 were computed with N

between 10 and 20. The consistency check was
satisfied to better than 0.3%. It is believed that the
error of w is within a few tenths of a degree.

Appendix B. A dislocation in the sandwich
structure

The dislocation solution used as the kernel in
the integral equation (A5) is summarized here.

The plane elasticity problem is specified in Fig.
5. An edge dislocation with components b, and
b, at the origin lies on the upper interface of the
bonded sandwich structure. The solution to the
problem in Fig. 5 is obtained by the similar super-
position technique used in [16]. Only the final
results are reported below. The stresses at (&, 0)
induced by the dislocation at the origin are given
by

Uzz(C’0>+iU1z(C,0)

-3 z+2nﬁi6(f§)+Fz(C) +BE(C)  (BI)

where &(x) is the Dirac delta function and

1+ a .
B 1= p)) i (bl ib,) (B2)

The complex-valued functions F(¢) are deter-
mined by

Fy(8)=[Qx(8) = Ry(E)+i[Q1(E) + Ry(L)]
Fy(8)=[Q:(E)+ R(EN+ilR,(E)— Q,(L)]

where the (0 and R are defined by Fourier
integrals

(B3)

0.(¢)=[ (~4,)cos EAda
Rl(C>=f<—A1+A2>smz;/1d/1
By )sin £AdA

0:(6)= (-

R,(Z)=| (B,— B,)cos EAdA

c’h‘g
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Fig. 5. Geometry for dislocation solution used in construct-
ing the integral equation.

The A and B are solved from the linear algebraic
equations

A, B, 0 0
A, B, 0 0
[P, P,] = (B5)
A; B X, Y
| A, B, X, Y
where P, = CD and
[ e+ — et e ™ —let

—e* (1+4)e* e™* (1—-A)e*

c=-10 e 0 —Se*
(S 26
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1+p -f
0 1-8
1
D= ——
1+
a— B
—2a—B) a—B
"1 -4
R |
p=|2F _emh, 1| (B6)
11—« 11—« 2
a=f a=b_ 5l
| 1—a 1—a 2 |

where £=(1+ a)/(1 - a), and

I 2
x| -8 +(a—ﬂ)(1—ﬂ)46_;
| 1-a l-a
- ﬂ+<a—ﬂ><1—a>4el
i 1-a
_ (B7)
v _ﬂ+<a—ﬂ><1—a>4e_l
| 1-a
. a—ﬂg(a—m(l—awe-i
| 1—a 1-a






