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Introduction

This paper reviews some recent developments in the mechanics of fracture of interfaces between elastic
materials. The review draws heavily on the recent work of the author and his collaborators at Harvard and the
University of California, Santa Barbara.

Due to asymmetry in loading and elastic properties across the interface, many interfacial fracture problems
are inherently mixed mode. In mixed mode, both normal and shear stresses act across the interface ahead of the
tip of the interfacial crack, and both opening and shearing displacements occur on the crack faces behind the tip.
Thus interfacial fracture in two-dimensional geometries involves mode 1 (opening) and mode 2 (shearing) stress
intensity factors, and one must allow for a toughness characterization which, in general, is a function of the
relative amounts of mode 1 and mode 2. This is one of the main differences between interfacial fracture
mechanics and fracture mechanics for isotropic homogeneous materials in which mode 1 toughness receives
predominant emphasis.

This review starts off with a discussion of universal crack tip fields at an interface between dissimilar
isotropic elastic solids. Then, examples are given which illustrate the extent to which loading and moduli
differences influence conditions at the tip. Some mixed mode toughness data are presented and related to
preliminary micromechanics modeling. Decohesion of coatings and thin films is discussed within the context of
interfacial fracture, and some first results of an analysis of the cut test are reported wherein decohesion is induced

by a straight cut through a residually stressed coating. The final example deals with the deflection of a crack into
an interface.

Crack Tio Field

With the interface on the x;-axis, let E, f; and v, be the Young's modulus, shear modulus and Poisson's
ratio of material 1 lying above the interface (x3 > 0) with similar quantities, Ej, p; and v;, for material 2 lying
below the interface. For plane problems with traction boundary conditions, only two nondimensional
combinations of the four independent material moduli parameters enter into any solution (1). For plane strain the
moduli mismatch parameters of Dundurs are
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where E =E/(1-v?) is the plane strain tensile modulus. Note that o and P both vanish when dissimilarity
between the elastic properties of the materials is absent, and & and B change signs when the materials are
switched.

For each material pair, a universal singular crack tip field exists at the crack tip according to.linear elasticity
theory for a traction-free line crack. For the plane problems, the normal and shear stresses of the singular field
acting on the interface a distance r ahead of the tip can be written in the compact "complex™ form
(K, +K,)r'®

{2nr
where j=4-1 and the oscillation index € depends on B according to

G,, +i0,, = (2]
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In plane strain the crack face displacements a distance r behind the tip, §; = u;(-r,0*) - ui(-r,O') , are given by

< 4 (WEHIE)
8+ 18 = o= T Tycosh(me)

(K, +HK )T £ (4]

The amplitude factors, K| and Kj, depend linearly on the applied loads and on the details of the full geometry of
the body, as will be illustrated below. These stress intensity factors are defined to be consistent with
corresponding stress intensity factors for cracks in homogeneous problems (2). The energy release rate per unit
length of extension of the crack in the interface is related to the stress intensity factors by (for plane strain)

[/E +1/E
8= —‘2-21 (K2+K2) (5]
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which is the generalization of Irwin's famous result for a homogeneous isotropic material.

When € # 0, the relative proportion of normal and shear stresses on the interface in the singular field
varies slowly according to ri€ = cos(€ /nr) + i sin(€ /n r) , and this feature complicates the implementation of
interfacial mechanics in several respects. When € # 0, the traction-free line crack solution is not fully consistent
since the solution [4] implies that the crack faces interpenetrate behind the tip. Although seemingly troublesome,
this inconsistency will usually be inconsequential since the distance of the contact region behind the tip is generally
exceedingly small compared to the zone of nonlinear deformation or fracture processes. More problematic is the
fact that K; and Kj cannot be interpreted in a straightforward way as mode 1 and mode 2 intensity factors
directly linked to normal and shear stresses. Moreover, the combination K;+iK; has dimensional units of stress
o and length L in the form o/L L™ A peculiar consequence of the dimensional form is that the relative
proportion of a critical combination (Kj, K7) changes when units are changed (2).

The features mentioned above have stood as conceptual stumbling blocks in the development of interfacial
fracture mechanics even though there is no compelling evidence to date to suggest that "€-effects” are important.
For many pairs of materials of interest one finds that € is very small, ¢.g. less than a few hundredths in
magnitude, even when a is substantial corresponding to ratios of the E's of 4 or 5 or more. An extensive
tabulation of (,B) pairs is presented in (3). At this stage in the development of interfacial fracture mechanics it
is likely that the role of € is far less important than other problems and issues, including even the simplification of
elastic isotropy. Thus, various proposals have been put forth for ignoring €. A consistent approach proposed in
(4,5) is to systematically take B =0 (and thus € = 0), both in the determination of critical toughness data from
test specimens and in subsequent application of such data to predict fracture. In other words, for a given material
pair one contemplates another pair with slightly perturbed elastic moduli leading to B =0 for the purpose of
analyzing specimens and making applications.

With €=0,r€=1 in[2] and [4], and then K; and K> have conventional interpretations as mode 1 and
mode 2 stress intensity factors measuring the singularity of normal and shear stresses, respectively, on the
interface ahead of the tip. At various points throughout this review the assumption is that € =0 will be invoked
in the above spirit. Recent work (6-9) has dealt with crack tip fields for an interface crack lying on an interface
between dissimilar anisotropic elastic solids, and general restrictions on the moduli leading to nonoscillatory fields
and conventional stress intensity factors have been identified.

Some Basic Solut

A number of relatively simple exact solutions were given in the original papers on interface cracks from the
1960's (see (2) for a listing of these references). For a crack of length 2a lying on the interface between two
semi-infinite blocks subject to remote stress (see Fig. 1a), the stress intensity factors of the right-hand tip are



K, +iK, = (a5 +iop)(1+2ie)(2a) /7@ (6]

This solution does not depend on @, and perhaps it is partly for this reason that so much emphasis was placed
on the role of € in the beginning development of the subject. When € = 0 (recalling that the magnitude of ¢ is
often only a few hundredths or less), [6] reduces to the classical result for the mode I and mode I1 stress intensity
factors for a crack in a homogeneous, isotropic elastic solid.

Next, consider the semi-infinite interface crack between two infinite elastic layers shown in Fig. 1b and
subject to the general loading indicated. This problem has been solved completely in (10). An exact expression
for the energy release rate 9 can be obtained in closed form, which by [5] gives the magnitude of K;+iK;.
Integral equation methods have been used to obtain the relative proportion of K3 to K. Complete details of the
solution are given in (10); the form of the solution is

. [ -172 -312), -ie
Kl +iK, = lclPh +c2Mh Jh [7]

where P (load per unit thickness) and M (moment per unit thickness) are linear combinations of the Pj's and
Mj's, and ¢; and c¢; are dimensionless complex numbers depending on o, p and h/H. Application of this
general result will be made to two problems in the next section.

Another complete solution is available for sandwich geometries wherein a thin layer of material 2 is
sandwiched between two planar bodies of material 1 with an interface crack lying between the thin layer and the
upper block. Let K; and Kj; be the conventional mode I and mode II stress intensity factors for the
homogeneous body of material 1 in the absence of the middle layer. If the thickness of the sandwich layer h is
very small compared to the crack length and to all other relevant in-plane length quantities, a universal asymptotic
relation exists between the interface intensity factors, K; and K, , and the stress intensity factors, K| and Kjj,
for the homogeneous problem. The factors Kj and Kjj, can be thought of as applied, or remote, stress
intensities for the semi-infinite crack problem depicted in Fig. 1c. The asymptotic relation between the interface
stress intensities and the applied stress intensities is

K, +iK, = /—1;12 (K, +iK h e X 8]
1-

where the real function w(a,B) is tabulated in (5). Thus, for example, if stress intensity factors Kj and Ky
are known for a test specimen with homogeneous moduli, {8] is the universal relation giving the interface intensity
factors for the corresponding sandwich specimens. The energy release rate $ in this asymptotic problem is equal

to the applied energy release rate (l-vzi)(l(.12+Klzl)/El , as is readily seen from [8] with [5]. The B-dependence of
o is weak; w(a,0) is plotted in Fig. 2. For B =0, {8] reduces to

K, +iK, = /T (K+iK e """ [9]

so that @ represents the shift in "phase” of the interface intensity factors relative to the applied intensity factors,
i.e. :

tan}(K,/K ) = tan (K /K )) + @ [10]

From Fig. 2 it is seen that this shift, which is due exclusively to the moduli mismatch, ranges between 5° and -15°,
depending on a . For most material pairs this will not be a large effect.



Some Examples

The examples shown in Fig. 3 have been chosen to illustrate the range of mixed mode conditions which
can arise in applications of interfacial fracture mechanics. For discussion purposes (as well as in actual

implementation in many cases), it will be assumed that B =0. Let
v =tan (K,/K)) - -

measure the "phase” of the stress intensity factors so that y = 0° corresponds to pure mode 1 and y = 90°
corresponds to pure mode 2.

The double cantilever specimen in Fig. 3a is a special case of the two-layer problem in Fig. 1b.
Specializing the results of (10) to this specific loading and geometry gives (with B = 0)

. <372 i
K, +iK,=2/3 Mh™ " [12]

where v is plotted as a function of a in Fig. 4. The symmetry of the geometry and the loading dictates that the
specimen must be pure mode 1 when there is continuity of moduli across the interface (i.e. when a = 0). When
o # 0, the asymmetry due to the moduli mismatch induces a mode 2 component which can be appreciable when,
for example, @ = .5, corresponding to E,/E, =3 or 1/3.

Figure 3b depicts a thin film or coating of material 1 with residual biaxial tensile stress ¢ attached to a
thick substrate of material 2. The film is decohering along the interface driven by the residual stress. When the
decohesion crack length is long compared to the film thickness, conditions at the tip approach a steady state which
is independent of crack length. For the limit when the film thickness h is very small compared to the substrate
thickness H (i.e. /H - 0), the steady state energy release rate is

, [13)

The interface intensity factors can be obtained by specializing the results in (10). When B=0,

. 1-a 172 iy
K, +iK, = = ch e [14]

where V is plotted in Fig. 5. It is noted that decohesion cracking is inherently mixed mode with y ranging from
45° to 70°, depending on «.

The four-point bend specimen in Fig. 3c has been analyzed and used for measuring interfacial toughness
for several material combinations (11, 12). The specimen has the advantage that the crack tip is in steady-state
condition when the crack is long compared to the thickness but still between the inner loading points. The results
for the two-layer problem in Fig. 1b can be used to analyze the specimen when the crack is advancing under
steady-state conditions. The analysis, which is given in (10), is highly accurate when the total thickness of the
specimen is small compared to the distance between the loading points. Over a fairly wide range of o and h/H
the analysis predicts = 45°. Thus, this specimen measures mixed mode toughness under conditions when K;
and K are approximately equal.

The final example considered is the fiber pull-out problem depicted in Fig. 3d. This problem is of
considerable interest in connection with the role of fibers in bridging matrix cracks in brittle matrix composites.
For the fiber to perform effectively it is essential that it debond from the matrix some distance away from the main
matrix crack. This debonding permits fiber pull-out and a consequent toughening contribution from the fiber.
There are a variety of conditions under which it is important to understand the fiber debonding process, and many



of these remain to be analyzed. One numerical analysis (13), applicable when there is a residual tensile stress
acting across the fiber/matrix interface prior to debonding, predicts that the interface debonding crack is heavily
mode 2, as might be expected from the loading and geometry, with y = 75°,

Interfacial Toughness

The examples of Fig. 3 are intended to drive home the point that interfacial fracture conditions can range
from mode 1 to mode 2 and are often decidedly mixed. The specification of interface toughness when € # 0 has
been discussed in (2). As noted earlier, the specification is simplified when € =0 since K, and K; then have
straightforward interpretations as mode 1 and mode 2 intensity factors. Here we will confine the discussion to
material pairs for which € =0, either exactly or by approximation.

In general one must expect that the toughness of the interface (i.e. the critical value of § associated with
crack advance in the interface) is a function of the combination of K; and K3 governing the crack tj§> stresses.
That is, the specification of interface toughness requires that 9. be known as a function of y = tan-!(Ky/K,).
The attainment of conditions for crack advance in the interface is stated formally as

9=95.(y) [15]

where § is given interms of K; and Kz by [5]. It may be that an "ideally brittle" interface will have a
toughness $. which is independent of y and equal to the energy needed to create the two free surfaces. No
mixed mode toughness data exists yet to show that "ideally brittle" interfaces actually exist. In fact, very little
experimental toughness data exists which systematically spans a range of y . One recent set of data for $.(y),
shown in Fig. 6, was generated in (12) for an epoxy bonded to glass. The experimental data was obtained using a
variety of specimens such as those in Fig. 3 to span the range of Y from pure mode 1 to y = 75°. For this
material pair and for the conditions under which the surfaces were bonded, the toughness is clearly a strong
function of the combination of modes at the crack tip.

A first attempt at a micromechanics model of interfacial toughness as it is influenced by non-planarity of
the fractured interface was given in (14). The idealized situation envisioned is depicted in Fig. 7a. Due either to
the intrinsic faceting of the interface in the bonded state (15) or to roughness generated by the fracture process
itself, the fracture surfaces are taken to have facets of height w and spacing I. Within the vicinity of the crack

tip where the crack opening displacement, &; , is less than w, the facets on opposite faces contact one another
and tend to shield the tip from the full effect of K2 when K is not zero. The analysis in (14), which neglects

any dissimilarity in moduli, derives an estimate for 9.(y) based on the criterion that the shielded energy release

rate at the tip equals the "intrinsic" toughness 9 2 , which can also be identified with the pure mode 1 toughness.

The effective interface toughness depends on a single nondimensional material/roughness parameter R
which is predominantly dependent on
Ew?
0 (16]
19,

(A full specification of R is given in (14).) Plots of the normalized toughness increase as a function of y for
different levels of interface roughness R are shown in Fig. 7b. Included in Fig. 7b is the experimental data of
Fig. 6 from (12) for the epoxy/glass interface. The measured roughness of the fractured interface is in

approximate agreement with the roughness level R =1 indicated by the model predictions in Fig. 7b (12). In the
limiting result for $.(y) when R — e, K3 has no influence on the energy release rate at the tip, as the model in

: 2
Fig. 7a would suggest. Thus, for all y the energy release rate at the tip is (l-Vz)Kl/E and, consequently,

8(y) = So[1 + tan?y] (17]



Clearly the epoxy/glass interface behaves more like a highly rough interface than an ideally brittle one.

__ Other microscopic processes can be expected to influence the mixed-mode toughness. These include
friction and plasticity, either dislocation emission at the tip or more extensive zones of high dislocation density.

Decohesion of Thin Fil

A necessary condition for a thin film under residual biaxial tension O to undergo extensive decohesion
can be inferred from the results [13] and [14] for the plane strain problem in Fig. 3b. When the substrate is thick
compared to the film (tVH -» 0) the critical stress for steady-state, two-dimensional cracking is

28 (Y)E,
o = [t 18
(1-vHh 1)

where y is obtained from Fig. 5. Decohesion of regions whose extent is large compared to the thickness will
only occur if 6> O¢. Inthe cut test a straight cut, many times h in length, is made through the film. If ¢ > o,
a region of decohesion spreads from the cut. The equilibrium shape of the decohered region is governed by the
condition that the crack driving force, § , at every point along the edge of the decohesion just attains the condition
for further decohesion.

Because both normal and shear stresses act along the decohesion boundary, the interface crack front is
fully mixed mode with mode 3 present as well as modes 1 and 2. The energy release rate under the three modes is

(with B=0)
111 Y2 2] 11, 1)
$ 'T[E 1»—_}52}Kl +K3 +4~{“1 " uz]K3 [19]

Along the decohesion boundary in the cut test the nature of the local stressing is such that the relative proportion of

K; to K; is fixed with y = tan"!(K5/K;) given by Fig. 5. Thus the shape of the decohered region can not be
used to discriminate the role of K in the decohesion criterion. However, the shape of the boundary is sensitive
to how Kj influences the decohesion criterion. An extensive study of this shape dependence is given in (16).
Here we will report the shapes of the decohesion boundary for two limiting decohesion criteria suggested in the

previous section: (i) based on an ideally brittle interface with $ = 92 where 82 is mode-independent, and (ii)
based on a critical value of K, independent of K; and Kj.

The shapes of the decohesion boundary based on the criterion § = 32 are shown in Fig. 8a. The critical
stress parameter O is given by [18] with $.(y) = 82 . Once the decohesion criterion has been specified, the
shape and extent of the decohesion depends only on 6/0. and the Poisson's ratio of the film v; . The shapes

corresponding to the criterion K| = Ki , independent of K; and K3, are shown in Fig. 8b. The critical stress
is still given by [18], but now

2
1(1 1 1
S W)= |=—+—|K||—— 20
V) 2[E1+—Ez} 1] costy 0]

where  is obtained from Fig. 5. The most notable difference between the two families of shapes is that the

decohesion boundary stands off the end of the cut when the criterion § = 92 holds but remains attached when
the criterion is based on a critical value of K; . Observation of the cut test for a polyamide/glass system indicates



that the decohesion boundary remains attached for this systems (16). Furthermore, by considering a range of
criteria, involving varying proportions of the mode 3 contribution, and the corresponding shape dependence, it is
possible to draw some conclusions about the quantitative role of mode 3 on the decohesion criterion (16).

Crack Deflection Versus P : Interf

Whether an interface crack propagates within the interface or kinks out of the interface into one of the
adjoining materials depends in an essential way on the combination of modes acting at the tip of the crack (4). It is
also true that the tendency of a crack approaching an interface to deflect into the interface, as opposed to
penetrating through the interface, depends essentially on mixed mode considerations, as will now be illustrated
using an example from (17).

Consider the crack in Fig. 9a impinging at a right angle to the interface and assume the loading is
symmetric with respect to the crack. Now consider two competing trajectories of crack advance: penetration of
the interface in FiF. 9b, and deflection into the interface in Fig. 9c. In each case, the energy release rate, § , is
proportional to al-2* , where a is the putative crack length and A is the exponent of the stress singularitiy of
(o ~ r*) of the problem in Fig. 9a. The ratio, 94/9p , is independent of a when a is small compared to the
length of the main crack. Thus, the relative tendency of the crack to deflect or penetrate can be assessed using this
ratio. Figure 10a shows this ratio as a function of a when P =0. The proportion of mode 2 to mode 1 for the
deflected crack is shown in Fig. 10b. (The penetrating crack is in pure mode 1.)

The condition (a necessary condition) for the crack to be deflected into the interface, rather than to
penetrate it, is

9.(y) 9,
B <§—p— [21]

[

where S.(y) is the toughness of the interface at the relevant combination of modes and 99) is the mode 1

toughness of material 1 across the interface. When the elastic mismatch is not large (a = 0) , the condition
requires that the interface toughness be less than about 1/4 the toughness of material 1, where the interface

toughness is that associated with y = 45° . Deflection as a symmetric doubly-deflected crack has also been
considered in (17). Generally, the singly-deflected crack of Fig. 9c¢ is the controlling case, but this conclusion

depends somewhat on how strongly 9.(y) depends on y since the y-values differ for the two cases.
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Fig. 1 Three basic interface crack geometries.
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Fig. 2 Phase shift @ between remote and near-tip stress intensity factors (B = 0).
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Fig. 3 Four examples illustrating range of mixed-mode conditions at the tip of an interface crack: (a) double
cantilever, (b) decohesion of thin film under residual biaxial tensile stress, (c) four-point bend specimen, and (d)
fiber pull-out.
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Fig. 6 Interface toughness data for an epoxy/glass system from (12).
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Fig. 8 Shapes of decohesion region in the cut test at various levels of 6/0, (v; = 1/3): (a) based on criterion for
an ideally bnttle interface, § = 92; (b) based on the criterion Kl = Kc1 independent of K7 and Ka.
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Fig. 9 Competition between crack penetration and deflection at an interface: (a) main crack at interface, (b)
penetration of interface, and (c) deflection by interface.
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Fig. 10 (a) Ratio of energy release rate of deflected crack to that of penetrating crack as a function of the elastic
mismatch parameter o (B=0). (b) Phase of stress intensities, ¥ = tan"}(K2/Ky), for deflected crack tip (B=0).
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