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Abstract—Thin films or coatings on a substrate are often under a state of residual biaxial tension.
This paper analyzes the cut test wherein a straight cut which is long compared to the film thickness
is made through the film down to the substrate. Depending on the elastic properties of the materials,
the residual stress level, and the toughness of the interface bond between the film and substrate, the
cut may induce extensive decohesion, limited decohesion or no decohesion at all. The main thrust
of this paper is concerned with the shape and extent of the zone of decohesion when extensive
decohesion occurs. The interface crack front at the boundary of the decohered region is subject to
mixed mode conditions involving modes 1, 2 and 3. The shape of the decohesion region depends
sensitively on the way in which the mode 3 contribution enters the decohesion criterion. Observations
of shapes for a polyimide film on a glass substrate permit the relative importance of the mode 3
contribution to be inferred when the decohered film makes no contact with the substrate. Some
experimental observations indicate that the decohesion process is quite complex when the decohered
film makes contact with the substrate. A prototypical criterion for mixed mode interfacial fracture
is proposed for cases in which the interfacial crack remains open.

1. INTRODUCTION

A thin film or coating bonded to a substrate and under a state of residual biaxial tension
will decohere starting from a flaw at a free edge or from a through-cut if the residual stress
is sufficiently high and/or the bond is sufficiently weak (Evans et al., 1988). If the substrate
has low toughness compared to the interface, cracking may occur in the substrate (Evans
et al., 1988; Suo and Hutchinson, 1989b), but that possibility is not considered here.
Suppose the film is in a state of equal biaxial tension ¢ and suppose the film thickness 7 is
very small compared to the substrate thickness so that the substrate can be considered to
be infinitely thick. Let E, u and v be Young’s modulus, shear modulus and Poisson’s ratio
of the film and E, u, and v, be the corresponding quantities for the substrate. The energy
release rate, 4, of a two-dimensional plane strain crack on the interface and emerging from
a through-cut is shown in Fig. 1. This result was obtained by Thouless et al. (1989) using
finite element techniques for the case where the elastic properties of the substrate coincide
with those of the film., When the interface crack is longer than 3 to 5 film thicknesses it
approaches steady-state conditions with a length-independent energy release rate given by
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This steady-state result is independent of the elastic properties of the substrate.

The plane strain interface crack is characterized by two stress intensity factors, K, and
K, such that on the interface a distance r ahead of the tip the normal and shear stresses
are given by

1 Dedicated to the memory of Charles D. Babcock.
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Fig. 1. Sketch of the variation of energy release rate % for a plane strain interface crack spreading
from a cut in a film with residual biaxial tension g. See Thouless et al. (1989) for an accurate plot.
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The two Dundurs parameters measuring the elastic mismatch between the film and the
substrate are
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In writing (2) it has been assumed that § = 0 (either exactly or as an approximation), and
thus we are sidestepping some of the difficulties associated with the more pathological
oscillatory interface singularity. Throughout the paper we will take f = 0. Under this
circumstance and under combined mode 1 and 2,

L (1=v> 1=v}\ ,
g——z( 5 + E, )(K1+K2) G))

assuming K, > 0 so that the crack is open. The steady-state plane strain problem for
decohesion driven by a tensile stress o has K, > 0 but is heavily mixed mode with the phase
of the stress intensity factors, i = tan~' (K,/K,), depending on « as shown in Fig, 2
(Hutchinson, 1989 ; Suo and Hutchinson, 1989a).
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Fig. 2. Dependence of the phase of the stress intensity factors, ¢ = tan™' (K,/K) for a steady-state
plane strain interface crack as a function of the elastic mismatch parameter « when § = 0. The crack
is driven by residual tensile stress in the thin film.
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In general, interface toughness is strongly mode-dependent (Cao and Evans, 1988),
usually with the energy release rate needed to drive the crack increasing with increasing
proportion of mode 2 to mode 1. The condition for decohesion of a plane strain crack can
be written as

4 =%, (5)

where %,(y) is the mode-dependent interface toughness which must be determined by test.
The critical stress associated with steady-state plane decohesion from (1) and (5) is

_ (2E.)\"”
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where y is found from Fig. 2.
The general criterion (5) includes two limiting cases which will be considered later. An
“ideally brittle” interface is defined as an interface with a mode-independent toughness, i.e.

YW =9 M

One imagines that the total energy released goes into the creation of the new surfaces. At
the other extreme, consider an interface crack where the tip is fully shielded from any effect
of K, ; that is, assume the condition for crack advance is K|, = K¢, independent of X,. The
fully shear-shielded criterion is

%) = 9lcos® ®)

where 4. is the pure mode 1 toughness related to K9 by (4). Experimental data for an
epoxy/glass interface obtained by Cao and Evans (1989) over a wide range of modes | and
2 fell somewhat below the trend of (8) and well above (7). Using micromechanical modeling,
Evans and Hutchinson (1989) produced a family of criteria for combined mode 1 and 2
interface fracture which depended on a single nondimensional parameter characterizing the
roughness of the failed interface. Their family of criteria reduced to (7) for a perfectly
smooth interface and to (8) in the limit of a very rough interface.

In the cut test, a straight cut of length 2L, which is very long compared to the film
thickness, is made through the film to the substrate. If consideration is limited to purely
elastic behavior in the film and substrate and if substrate cracking does not occur, there are
three response regimes as depicted in Fig. 3. Let g, be the lowest value of ¢ needed to initiate
decohesion at the intersection of the through-cut and the interface. Usually, o; will be less
than o, (c.f. Fig. 1), although, in general, the size of o, relative to o, will depend on « and
on the y-dependence of %.(¥). If 6, < g,, as assumed in Fig. 3, then no decohesion can
occur if
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a=0 aa f a«< L

Fig. 3. Three regimes of behavior for cut test when o, < g..
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U<Ui. (9)
If
0, <0 <o, (10)

the extent of the decohered region from the cut in its central portion will be determined by
a plane strain relation such as that in Fig. 1 and will be limited to distances perpendicular
to the cut on the order of, typically, I to 5 times ¢. If

g >0, (11)

there will be extensive decohesion spreading out over an area controlled by the length of
the cut. For material combinations for which g; > ¢, there are two response regimes: ¢ < o;
with no decohesion and ¢ > ¢, with extensive decohesion.

2. MODEL OF THE CUT TEST (o > 0,)

The regime of extensive decohesion is considered with ¢ > ¢, (and ¢ > o, if 0, > 0,).
If L > ¢, it can be anticipated that the extent of the decohesion perpendicular to the cut
will be determined by L and will be very large compared to 7. For one experimental system
discussed in Section 4, the lateral extent of the decohered region is about one hundred times
t. The stress distribution in the cut decohered film is analyzed as a two-dimensional plane
stress problem. Assume for the moment that the boundary C of the decohered region is
known. As depicted in Fig. 4, the stress distribution within the decohered region of the cut
film is the sum of the stresses in two plane stress problems, (i) and (ii). Problem (i) is the
trivial uniform equal biaxial stress state ¢ and Problem (ii) is the plane stress distribution
for a film clamped along C and subject to a normal traction ¢ along the cut, i.e.

u1=u2=0 onC

(12)

0'12=O and Oy = —0 OHX2=O,|x1’<L.

The boundary C of the decohered region has been depicted as standing off the ends of
the cut in Fig. 4. Whether the boundary stands off or is attached to the ends of the cut turns
out to be a significant issue which is tied to the details of the interface decohesion criterion.
This issue will be dealt with in Section 3.

The stresses in the film resolve into a normal component, g,,, and a tangential compon-
ent, o,, to the boundary C as shown in Fig. 5. The steady-state energy release rate for a
straight crack front when the film has uniform normal and tangential stresses is, instead of

(1),

1(1—-v? 11
=~ Acit+ - = Ag}
2 gl Aot (13)

g 35

where Ag,, and Ao, are the stress changes from the state of biaxial tension ¢. Equation

—~C C C
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CUT DECOHERED FILM PROBLEM (i) PROBLEM (i)

Fig. 4. Plane stress model of extensive decohesion when ¢ > ¢, Problem (i) is state of uniform
biaxial tension ¢. Problem (ii) has clamped boundary C with normal traction ¢ applied to cut,
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Fig. 5. Local tractions g,, and g,, in film along interface crack front for Problem (ii).

(13) holds locally along the crack front if the radius of curvature of C and the length scale
over which Ag,, and Ag,, vary are large compared to the film thickness ¢. This is assumed
to be the case in the present model, and the stress changes Ag,, and Ag,, are calculated
from the stresses in Problem (ii).

Locally along the crack front C, Ag,, induces mode 1 and mode 2 with K, and X, in
Jixed proportion characterized by i in Fig. 2, while Ao, induces mode 3. Under the three
modes of loading the energy release rate is related to the stress intensity factors by (with

v f=0)

1{1—v? 1—v? T 8
S (. : |-+ — K. 14
4 2( z T E >(K1+K2)+4 #+# 3 (14)

¥ s

Thus, by comparing (13) and (14), one has

1—v2  1—v? 1—v?
( Pt g )(K%+K§)=(~EV)AG,?,,1 (15)
and
1/1 1 1
= (— + >K§ — ~Aclt (16)
2\u 7

where iy = tan~' (K,/K)) is given by Fig. 2. The above assumes K, > 0, which holds if
Ac,, < 0. If Ag,, = 0, the crack front does not open, K, = 0, and (14) and (15) apply with
K, = 0 if the fractured interface is perfectly smooth with no friction.

We now propose a family of criteria governing the advance of the interface crack
between the film and the substrate. Since the relative proportion of K, to K, is fixed along
the front, the shape of the decohered region is not dependent on how y enters into the
decohesion criterion. Put another way, the observed shape of a decohered region cannot
be used to discriminate how the relative proportions of K, to K, enter the decohesion
criterion. As will be seen, however, the shape is strongly dependent on the way in which
the mode 3 intensity factor is included in the criterion.

Noting (13), consider the family of criteria specified by -

1 (1—v?)
2 E

1

Ac? A
Ol + 3

1
;Aa,f,t =%* o))

where %*can be thought of as the critical energy release rate for the plane strain crack in
(5) when Ag,, = 0, i.e. ¥¥= % (). The parameter A in (17) is used to adjust the influence
of the mode 3 contribution. When 4 = 0, mode 3 has no effect on the condition for crack
advance—the crack tip is fully shielded from any influence of mode 3. At the other limit,
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A =1, there is no shielding of the crack tip from mode 3. This family of criteria includes
the “ideally brittle” interface if 4 = 1 and 4¥ is identified with 4 in (7). The limit of an
interface fully shiclded from both mode 2 and mode 3 is also included in (17) if 4 = 0 and
%*is identified with 4 () in (8).

When the decohered region remains attached to the ends of the cut, the computed
distribution of Ag,, along C reported in Section 4 is everywhere negative giving K, > 0
along the front. When, on the other hand, the decohered region stands off the ends of the
cut it is found that there is a small portion of C just opposite the ends where Ag,, turns out
to be positive implying that the crack is closed along this portion of its front. The steady-
state energy release rate (13) still applies when Ag,, > 0, assuming friction effects are not
important, and a criterion in the form of (17) remains plausible. However, one should not
necessarily expect the same values of the parameters A and %¥*to hold for both Ag,, < 0
and Ao, > 0. Nevertheless, in the present exploratory study we have used (17) independent
of the sign of Ac,,. The limitations of this assumption for the case in which the decohered
region stands off the end of the cut will be discussed in Section 5 along with some exper-
imental evidence which suggests that an adequate criterion is probably lacking when contact
between the decohered film and the substrate takes place.

In Appendix A, we propose a class of criteria for characterizing interfacial fracture
under combined three-mode conditions, of which (17) is a special case. In Appendix A, the
general class of criteria, including the special family (17), are expressed as

Y=9.0,9) (18)

where y and ¢ are Fuler angles in a space of (K, K,, K3). In the present study, (17) is the
convenient form for the decohesion criterion.

We now summarize the model for predicting the shape of the decohered region when
¢ > o, where in the new notation used in (17)

* 1/2
o, = (ﬂ) . (19)

1—vH)t

The plane stress boundary value problem for determining the boundary C of the decohered
region is Problem (ii) of Fig. 4 with boundary conditions (12). The boundary C must be
found such that (17) is satisfied everywhere along C, where Ags,, and Ac,, are the normal
and tangential tractions to C determined from Problem (ii). This assumes that the interface
crack is poised for continuing advance at every point along C and has nowhere become
subcritical. This is a reasonable assumption for a decohering region spreading from a
lengthening cut and is consistent with the shapes produced in Section 4. Alternatively, one
could cut the film when ¢ < ¢, and then increase ¢ above ¢, for example by changing
temperature and exploiting thermal expansion mismatch between the film and substrate.
In this case, too, one can reasonably expect that the crack front will advance simultaneously
everywhere along C as the temperature is changed. By (19), condition (17) can be rewritten
as

24
2 2 _ 22
On + (1 —V) Op = 0, (20)

where ¢, and o,, are the stresses in Problem (ii).
From dimensional considerations and the form of (20), it is readily concluded that the
shape of the decohered region depends only on

alo., Aand v 1)

while the size scales with the length of the cut, 2.L.
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3. LOCAL ANALYSIS AT THE END OF THE CUT

Observations of the cut test indicate that in some instances the decohesion boundary
C remains attached to the end of the cut while for some other material combinations it
stands off the end of the cut. Insight into this issue is gained by investigating the conditions
under which the boundary can be attached. Consider the local geometry shown in Fig. 6
where the boundary emerges from the end of the cut at an angle w. Let (r, 8) be planar-
polar coordinates centered at the cut end, and look for a solution to the plane stress
boundary value problem for the wedge region of Fig. 6 where the stresses depend on 8 but
not on r. Such a solution is readily found. Along the rigidly clamped edge on 8 = w the
stresses are found to be

oo = —20c0s2w [l —v+(1+v)cos2w] !
0,0 = —a(l—v)sin2w[l —v+(1+v) cos 2w] "
6, = o[l —v—(1+v)cos2w][1 —v+(1+v)cos2w] . (22)

A separate calculation for the wedge region of Fig. 6 with homogeneous boundary
conditions (i.e. with g4 = —o replaced by g5 = 0 on 8 = 0), shows that the stresses from
the homogeneous problem will approach zero as r — 0 as long as

1—v+(1+v)cos2w > 0. 23)

That is, the most singular admissible stresses to the homogeneous problem vanish as r — 0
when (23) is met. (For v = 1/3, (23) requires w < 60°, while for v = 1/2, w < 54.7°.) Thus
for a boundary emerging from the cut with an angle w satisfying (23), the local stresses
along the boundary on 0 = w are given by (22).

Now consider the requirement that (20) be satisfied along 8 = w. With o,, = a4 and
6, = 0,5 from (22), (20) becomes

Fw, ) = (a./0)* (249
where
F(w, ) = [4cos? 2w+ A(1 —v) sin? 2w]/[1 — v+ (1 +v) cos 2w]?. 25

A plot of F as a function of w for various 4 is shown in Fig. 7 for v = 1/3.

Next, recall that the regime of extensive decohesion under consideration requires o > o,
so that the right hand side of (24) is less than unity. The angle w made by the boundary
satisfying (24) is given by the intersection of the solid-line curve in Fig. 7 (for a given 1)
with the dashed-line curve for a given ¢/a,, as illustrated in Fig. 7. The solution where the
dashed-line intersects the solid curve on the right where F is increasing with w is unstable
in the sense that a slight increase in w would perturb the front to a condition in which the
left hand side of (20) would exceed ¢. One notes immediately that there exists no solution
when A = 1 since ¥ > 0. In other words, an attached boundary emerging from the end of
the cut at some angle is not possible for an ideally brittle interface. By contrast, when A = 0

(C
AN w

r

\9

u=0

&"ef -0, 0p=0

Fig. 6. Geometry at end of cut for local analysis of attached boundary.
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Fig. 7. Function F(w, A) associated with local analysis of boundary attached to end of cut. Condition
for determining w is F = (o,/0)>.

there exists a solution for w for all ¢ > ¢,.. For 0 < 4 < |, there exists an attached local
solution for a range of o/o,, but for g/g, sufficiently large no such solution exists. The
numerical results presented in the next section are completely consistent with the conclusions
drawn from the local analysis. In fact, it wasn’t until this local analysis was conducted that
the numerical analysis could be formulated properly.

4. NUMERICAL RESULTS AND COMPARISON WITH SOME OBSERVATIONS

The numerical method used to solve for C made use of a sequence of interations
wherein C was adjusted in a systematic manner until (20) was satisfied. In a given iteration
with a given C, the plane stress boundary value problem (ii) of Fig. 4 was solved using a
finite element procedure which subdivided the region within C into a grid of elements with
due attention to achieving resolution near the ends of the cut. The normal and tangential
tractions, ¢,, and ¢,, on C were determined, the error in (20) was computed, and an
adjustment to C for the next iteration was established. Details of this procedure are spelled
out in Appendix B. Insight from the local analysis of the previous section was essential in
knowing how to deal with the issue of whether C attaches or stands off the end of the cut.
Under conditions where C is attached, the numerical prediction for the wedge angle w was
in excellent agreement with the prediction from the local analysis.

One-quarter sections of the computed decohered regions are shown in Fig. & for A = 0,
1/2 and 1, in each case for v = 1/3. When mode 3 has no influence on decohesion (4 = 0),
the boundary of the decohered region always remains attached to the ends of the cut. When
A =1, the boundary always stands off the end of the cut. Moreover, for a given value of
a/a,, the extent of the decohesion is more extensive when A = | than when A = 0. When
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Fig. 8. Computed boundaries of decohered region for various values of a/a, for A =0, 1/2 and 1

with v = 1/3. The case A = O applies to a criterion based on X, = K along the boundary independent

of K, and K, while the case 4 = 1 applies to an ideally brittle interface where ¥ = % along the
boundary.

A = 1/2, the local analysis predicts that the boundary is attached to the ends of the cut for
ofa, < 1.1 and stands off for g/a, > 1.1, consistent with the boundaries shown in Fig. 8.

Decohered regions for a thin film of polyimide approximately 35 um thick and bonded
to a glass plate approximately 2 mm thick are shown in Figs 9 and 10. Figure 9 shows
decohesion spreading outside a circular cut of about 0.75 cm in radius. (The thin film inside
the cut has completely detached.) Figure 10 shows decohesion from a straight cut of
approximately 1 cm in length made on the same plate. Each of the two smaller decohered
regions below the cut appear to be pinned at a point along the cut, probably because the
cut was not as sharp as it should have been on that side. Note, however, that the three
shapes are similar.

Information from the extent of the decohered region from the circular cut together
with the observed shape of the decohered region in the straight cut test can be used to good
advantage to draw conclusions about the nature of the decohesion criterion. For the
axisymmetric decohesion boundary induced by the circular cut, g,, = 0, by symmetry, so
that mode 3 plays no role. The plane stress problem for the circular cut is readily solved
(Farris and Bauer, 1988)f. Imposition of the criterion (20) then gives the extent of the
decohesion. The ratio, Ry/R,, of the radius of the decohered region to the radius of the
circular cut is found to satisfy

/o, = 3[(1—v)(Ro/Ri)*+1+]. (26)

By measuring the ratio Ry/R; in Fig. 9 and using v = 1/3, we determined ¢/o, = 1.21

tWe are indebted to Professor R. J. Farris of the University of Massachusetts for supplying us with the
polyimide coated glass plate.
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Fig. 11. Computed boundaries of decohered boundaries for o/o, = 1.21 and v = 1/3 for various
values of A. The value o¢/c. = 1.21 corresponds to the value of the parameters for the polyimide
film/glass plate system in Figs 9 and 10.

from (26). (Note that this procedure enabled us to avoid direct measurement of individual
quantities such as E, ¢, 9% o, etc.) Next, assuming /o, = 1.21 and v = 1/3, we computed
the shapes of the decohered region for the straight cut as they depend on A. These computed
shapes are shown in Fig. 11. For g/, = 1.21 with v = 1/3, the transition from an attached
boundary to one which stands off the ends of the cut occurs at 4 = 0.34. The shape which
best approximates the observed shape in Fig. 10 corresponds to 4 = 0.3, nearly at the
transition to stand-off. With reference to the criterion (20), the value 4 = 0.3 for the
polyimide/glass interface suggests that mode 3 has a relatively small influence on the
interface fracture process. Evidently the tip of the interface crack is heavily shielded from
the full effect of mode 3. This finding is consistent with the analogous observations for an
epoxy/glass interface under combined modes 1 and 2 (Cao and Evans, 1989). For that
system, the tip of the plane strain interface crack was shielded from the effect of mode 2 by
a comparable amount.

5. CONCLUDING REMARKS

The residual stress state assumed throughout this paper was equal biaxial tension ¢.
One can readily verify that the shapes predicted for the equal biaxial residual stress state
(611 = 0, 0,, = ¢) are unchanged according to the model if the residual stress component
parallel to the cut g, is different from o, i.e. for (¢,; = 0y, 03, = ). Observations of
decohesion under uniaxial stressing perpendicular to the cut were recently made on a model
system where a thin layer of transparent rubber adheres by van-der-Waals forces to a
silicone rubber substrate (Ashby and Burwell, 1988),

The shape of the decohered region in the straight cut test is quite sensitive to the extent
to which mode 3 enters the decohesion criterion. For a polyimide/glass combination the
observed shapes suggest that the interface is far from being “ideally brittle”, with significant
shielding of the crack tip from the influence of mode 3. This study emphasizes the importance
of mode-dependence in interface fracture. A family of decohesion criteria is proposed in

“ Appendix A which is applicable to arbitrary combinations of modes 1, 2 and 3 and which
can model the full range of behavior from ideally brittle to fracture controlled by K, as
long as K, > 0. We suspect that the least certain aspect of the present model is the use of
the criterion (17) when Ag,, > 0, asitis just opposite the ends of the cut when the decohesion
boundary stands off the ends. As discussed in Section 2, the crack front will be closed when
Ae,, > 0 with K, = 0 and it scems unlikely that (17) should continue to apply, at least not
with the same values of A and %*as in the range when Ao, < 0.
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1O .

Fig. 9. Decohered region exterior to a circular cut on a glass plate with a film of polyimide.

Fig. 10. Decohered regions from a straight cut on a glass plate with a film of polyimide. The plate
is the same as that for the circular cut in Fig. 9.



Fig. 13. Dccohered regions from cut for a relatively thick polyimide film on glass at three tem-
peraturcs: 7 = 120°C, 80' C and 40"C. Regions wherc the film has rebonded to the substratc arc
evident.

Fig. 14. Decohered region for the relatively thick polyimide film on glass at room temperature.
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Further evidence of the complication which occurs when the film comes into contact
with the substrate is seen in Figs 13 and 14. The system in these two figures is also a
polyimide film on a glass substrate but here the film is almost five times thicker (z = 150 um)
than in the system discussed in the previous section. The cut length is approximately 6 mm.
In these examples the film was cut at a temperature (T = 180°C) at which the residual stress
initiates limited decohesion, The specimens are then cooled down. The thermal expansion
mismatch between the film and the substrate increases the residual tension in the film as
the temperature drops and decohesion spreads. The three decohesion regions shown in Fig.
13 are associated with the three approximate temperatures, T = 120°C, 80°C and 40°C,
respectively. The decohesion boundary does stand off the ends of the cut by a small amount
and, moreover, the crack front is open (K, > 0) just opposite the cut ends. A second highly
noticeable feature in Fig. 13 is the region of contact between the film and the substrate, as
indicated by the dark spots more or less in the center of each of the decohered zones. These
spots of contact appear to have had a significant influence on the shape of the decohered
region, retarding its growth transverse to the cut. Note that the location and size of the
contact spots change as the temperature is lowered. On the upper side of the cut one can
see the interaction and subsequent merging of the boundary of the decohered region with
a small circular decohered region pre-existing prior to the cut having been made.

There is evidence that a fairly substantial residual stress gradient exists in the film in
this system with larger tensile stress at the interface than at the surface. A piece of fully
decohered film curls consistent with the above observation. This residual stress gradient
could account for the crack front remaining open at the ends of the cut and it might have
some influence on the tendency of the film to contact the substrate.

Figure 14 shows another example for the same system cooled down to room tempera-
ture. The decohered region on one side of the cut is fully developed with no interior contact
spots while that on the other side has been retarded by a substantial contact region. If
contact occurs in the early stage of the process it seems to persist. Conversely, a decohering
region free of interior contact zones tends to avoid contact as it spreads. It is almost as if
contact enters the process as an initial condition.
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APPENDIX A: A FAMILY OF CRITERIA FOR INTERFACIAL FRACTURE UNDER MIXED MODE

Noting the expression (14) for the energy release rate of the interface crack under all three modes of loading
(with 8 = 0), consider the family of interface toughness criteria specified by



1112 H. M. JENSEN ef al.

/1=y 1-9 A1 1
§<Tv + T“) (K2+2,K2) + f(ﬁ + L_) K= (Al)

where ¢ can be regarded as the pure mode 1 toughness. The parameters A, and A, adjust the extent to which the
shearing modes, K, and K, affect decohesion ; they are limited to a range between 0 and 1. It is assumed that
K, > 0. For given values of 1, and A,, this criterion can be rewritten as

§=90.9) (A2)
where  and ¢ are Euler angles in the space (K, K,, kK), as shown in Fig. 12, and where
G, ) = F2[1+ (A, —1)sin” Ysin® p+ (43— 1) cos? ¢] . (A3)

In casting the criterion in the form (A2), it has been mathematically convenient to scale the K;-axis by k where

11 1\[1=v* 12!
2_‘7 _ . - s
k _2<y+ﬂx)[ =+ EJ} . (A4)

This family of criteria includes the following special cases.

(i) “Ideally brittle” decohesion:

Lh=i=1 4 =9 (A5)
(ii) Decohesion independent of the shearing modes (i.e. K, = K9):
Ay=4,=0, % =%"[1—sin’ysin’p—cos’p] ' (A6)

where ¢! is the pure mode | toughness related to K9 by (A1) with K, = K3 = 0.
(iti) The decohesion criterion (17) used in the body of the present paper is included in (A2) if one makes the
identification

A=A{14+ (= Dsin?y]~", 9*=@°[1+A,—)sin?y] " (A7)

Thus, a solution in the body of the paper for a given pair (4, ¥7) corresponds to a solution for any combination
of (4,,4; and 4?) satisfying (A7). For example, the solution for A = 0 applies to an interface with 1, = 4, =0
and 7= %!, but it also applies to any interface with 1; =0 and A, # 0if ¥*= @°[14 (4, 1) sin>y]~ "

A comparison of (A1) with the Cao—Evans (1989) mode 1/mode 2 data for epoxy on glass is shown in Fig.
15. The choice 4, = 0.15 gives a reasonable fit to this data. Now suppose that the value 4, = 0.15 applies as well

kKs
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K
Fig. 12. Definition of Euler angles in (K, K,, kK ;)-space.
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Fig. 15. Comparison of the Cao—Evans (1989) data for an epoxy/glass interface with the phenom-
enological criterion (A1) for two values of A,.

to the polyimide/glass system used in the present study. With 4 = 0.3 inferred from the shape of the decohesion
in the cut test and with = 50°, Eqn (A7) gives 4; = 0.15. Thus it would appear that the polyimide/glass interface
crack is heavily shielded from both mode 2 and mode 3 by comparable amounts.

The criterion (A1) can be expressed in a form which has been considered in the adhesives literature (Kinloch,
1987). When f = 0, separate “components” of the energy release rate can be meaningfully defined as

/1=y 1-¥?
(g1,gz)=§(T+ i )(Kf,K%)

1 1y,
@y = Z<Z + E) K. (A8)

Then it 1s immediately noted that (A1) can be rewritten as

% % 9

TR
where ¥ = %°, 95 = 4°/1, and % = %°/A;. In this form, %5 and ¥ are regarded as the pure mode toughnesses.
The intention behind (A1) is that mode 2 and mode 3 act together with mode 1. It is not necessarily expected that
(A1) should accurately span the whole range of behavior to include pure mode 2 or mode 3.

=1 (A9)

APPENDIX B: NUMERICAL METHOD

The plane stress problem is Problem (ii) of Fig. 4, with boundary conditions (12). The boundary C of the
decohered region must be found such that (20) holds along C where o, and ¢, are the normal and tangential
stresses to C from Problem (ii).

For a given shape, the stresses are determined using the finite element method. A coarse mesh (4 x 3) is shown
in Fig. 16a. Typically, a (30 x 30) mesh gave results of sufficiently high accuracy. Each quadrilateral consists of
two linear displacement elements with straight edges.

0 L *
a) b)
Fig. 16. (a) Finite element grid. (b) Movement of boundary node.
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Two methods for representing a boundary shape that locally satisfies the decohesion criterion have been
compared. Both methods lead to an iterative procedure.
In the first method, the boundary curve C is represented by a set of functions according to

Y(x) = ap+a, fi(x)+a/2(x)+ " +ayfu(x). (B

Let x = 0 be at the end of the cut and x = L at the symmetry line at the center of the cut as indicated in Fig. 16a.
The following polynomial expansion is used

L) =12—-0, fo(d) =329,
£.) = 2(t—1)2T,_,(2t—1) 3<n<N (B2)

where ¢ = x/L and T, are Chebyshev polynomials of order ».

For the case where the decohesion zone stays attached, a, = 0 in (B1) and the results of the FEM analysis
and the local analysis of Section 3 can be compared. The angle between the cut and the decohesion zone as given
by the two methods is usually within 0.5%.

In the second method, the boundary curve is represented by a piecewise linear curve as in the FEM
approximation in Fig. 16a. The boundary is in this way described by a set of coordinates (x,,,),p=1,2,..., P,
with a linear variation between these points.

Let the initial boundary curve be represented by polynomials as in the first method above. The criterion (20)
is approximately satisfied along C by choosing the coefficients 4, to minimize

E, = 2 : R 2d B3
o= || e e gy | o (B3)

The derivatives and curvatures of E,, with respect to each of the g, are obtained numerically by solving the
FEM problem for a,+ da, and a;,— da;. In an iteration, new values of a; are found by choosing da, to minimize E,,
according to the derivatives and curvatures so obtained. In this way, the iteration process usually converges in 5
iterations.

Now let the boundary curve C be represented by the finite element grid as in the second method above. The
stress change for a small movement of a nodal point is found for each node on the boundary curve. Use is made
of the fact that the FEM grid is unchanged except in three elements, as shown in Fig. 16b, resulting in a nearly
unchanged stiffness matrix. The nodes at the boundary are then moved to satisfy the decohesion criterion (20) in
each element at the boundary. Since the stress change at C is nonlinear with respect to movements of the nodes
of C, the process is iterative. Nodes are moved with x, kept fixed except when p is small close to the ends of the
cut where y, is kept fixed.

The two methods outlined above result in essentially identical shapes of the decohesion zone. Typically,
N = 4 in (B1) is sufficient, since results for N = 6 usually are indistinguishable. In the cases when the decohesion
zone stands off the end of the cut, the set of functions (B2) is used in (B1) for 0 < x < L. For x <0, C is
represented by

y(x) = ey(x—ex)'? (B4)

with the ¢, chosen to ensure continuity and smoothness of C at x = 0. The symmetry condition at y = 0 is then
fulfilled. The procedure employed first involved minimizing E,, with respect to the g;’s. Then the nodal points near
the end of the cut are adjusted according to the second method in order to lower the error on this part of the
curve.

No special treatment of the singular behavior at the ends of the cuts was made, other than focussing the
FEM grid towards the end of the cut and comparing results for different levels of discretization.




