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ABSTRACT An overview is given of the continuum mechanics of void
growth pertaining to room temperature ductile fracture processes. Analyses
of the growth of isolated voids and of void interaction effects are reviewed.
A framework for phenomenological constitutive relations for porous plastic
solids is discussed. Calculations of localization and failure in porous plas-
tic solids are reviewed that illustrate the progressive development of ductile
failure. Additional considerations, including the effect of the constraint pro-
vided by contact between the growing void and the void-nucleating particle,
cavitation, and the effect of non-uniform porosity distributions are briefly
noted.

4.1 Introduction

The role played by void nucleation, growth and coalescence in ductile frac-
ture was identified in the 1940, Tipper (1949). However, it was not until
the 1960’s that the phenomenology of this process was well documented,
Rogers (1960), Puttick (1960), Beachem (1963), and Gurland and Plateau
(1963). In structural metals deformed at room temperature, the voids gen-
erally nucleate by decohesion of second phase particles or by particle frac-
ture, and grow by plastic deformation of the surrounding matrix. Void
coalescence occurs either by necking down of the matrix material between
adjacent voids or by localized shearing between well separated voids.

McClintock’s (1968) analysis of the expansion of a long cylindrical hole
in an ideally plastic solid marks the beginning of a now extensive liter-
ature on the micromechanics of ductile fracture. More broadly, this pa-
per showed that a precise mechanics analysis of a carefully chosen con-
tinuum model could serve to quantify complex microstructural behavior.
Micromechanics analyses of void nucleation and coalescence, as well as of
void growth, have now been carried out. Such analyses have served as the
basis for phenomenological constitutive relations for porous plastic solids,
which in turn have been used to predict macroscopic ductile fracture be-
havior. An overview of these developments is given by Tvergaard (1990).
Another overview of void growth studies is given in Gilormini, Licht and
Suquet (1988).
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Our focus in this paper is on issues in the mechanics of void growth
relevant to room temperature ductile fracture processes. We begin by re-
viewing analyses of the growth of an isolated void. A key point in this regard
concerns the hydrostatic stress dependence of the void growth rate. The
phenomenological framework for constitutive relations for porous plastic
solids introduced by Gurson (1975) is outlined, since there has been con-
siderable interplay between analyses based on this constitutive relation and
the development of more accurate void growth models.

4.2 Growth of an Isolated Void

Predicting ductile fracture behavior requires knowing the relation between
the growth of a void and the imposed stress and strain histories. Of partic-
ular importance is the dependence of the rate of void growth on the remote
stress triaxiality, which is revealed by tension tests on notched tensile bars,
Hancock and Mackenzie (1976), Hancock and Brown (1983). Although the
maximum strain occurs at the root of the notch, for certain combinations
of notch acuity and stress state (plane strain or axisymmetric), ductile fail-
ure initiates inside the specimen where the triaxiality of the stress state is
greater than near the surface.

To investigate the stress state dependence of the void growth rate, Mc-
Clintock (1968) considered a long cylindrical void in an ideally plastic solid,
extending in the direction of its axis, as shown in Fig. 4.1. The cylindrical
vold has current radius b and the aim is to determine the dependence of the
void growth rate b/b on the imposed axial strain rate é and the transverse
stress 0. McClintock’s (1968) analysis is summarized here.

Generalized plane strain and cylindrical symmetry are assumed, so that
with polar coordinates (r, 0, z), all field quantities are functions solely of r.
Equilibrium in the current configuration is written as

do, o, — oy
dr r

The radial displacement is denoted by u(r) and is the only non-vanishing
in-plane displacement. With a superposed dot denoting the time derivative,
the strain rate-displacement rate relations are

=0 (4.1)

_du . u (4.2)
&= €0 =7 .
and incompressibility implies
btépti=0 (4.3)
The flow rule for a Mises solid requires
. 3 € .3 3
€r=‘2*(0,—0)? 6925(00—0]-}—; (4.4]
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FIGURE 4.1. Long cylindrical void extended along its axis.

where Y is the tensile flow strength and

1 . 2
o= §(0r+aa+02) €= g(é?-{—éf,-i—é?) (4.5)

Here, o is the mean stress and ¢ is the Mises equivalent strain rate.
The boundary conditions are that the radial stress vanishes on the surface
of the void and that it takes on its remote value as r - co.

ar(b) =0 or(00) = 00 (4.6)

Solving the flow rule Eq. 4.4 for (0, — gy} gives,

o, —0g  2Wiég—¢, ()

r 3r g

Using Eq. 4.7 in the equilibrium equation and integrating we obtain,

Oeo 2 [T |ép—¢€, | dr
Teo _ 2 L s 4.8
Y 3 ,/; { € J r (4.8)

The incompressibility condition Eq. 4.3 gives the velocity field %(r) in
terms of the imposed strain rate é and the void expansion rate &/b as,

b é1 ¢
.- 2.- -1z _ =
u=>b [b+2]r 5 (4.9)
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so that )
b2 b € €
€ re'b 2 2
bz[é &€
= Rl Tl Ty
2 4 l‘) ég 1 1)
3l t 2] i (4.10)

Using these expressions in Eq. 4.8, with the substitutions

b2 2 b 1
= ar—2 a = %[5 + 5] (4.11)

gives
o ¢ dzx
= = / = (4.12)
V3Y o V1+4?
Integrating Eq. 4.12 and rearranging terms gives the dependence of the
relative void growth rate, b/éb, on the transverse stress 0,

b \/5 . O 1
é—b:7smh[\/§ ]—— (4.13)

2

McClintock’s (1968) exact solution exhibits an exponential increase in
the void growth rate with positive transverse stress. This can be contrasted
with the linear increase that is predicted for a linear viscous material, Berg
(1962). For a spherical void, subject to a general remote stress state, the
problem is no longer one dimensional and exact solutions are not available.
Rice and Tracey (1969) used a Rayleigh-Ritz method to obtain approximate
solutions for the growth of an isolated spherical void surrounded by an
ideally plastic matrix, as sketched in Fig. 4.2. At high triaxiality, i.e. for
large values of the ratio of remote mean stress, o5°, to matrix flow strength,
Y, their numerical results were well-approximated by

B 397 1 0.566sinh[ 205
R 0.283exp| %G ]~ 0.566sinh| G ]

(4.14)

Furthermore, Rice and Tracey (1969]), found that Eq. 4.14 was a very good
approximation even at low triaxialities.

Similar explicit expressions showing the effect of material strain harden-
ing on void growth rates have not yet been obtained for rate independent
plastic solids. However, the assumption of non-linear viscous, rather than
rate independent strain hardening, material behavior facilitates the anal-
ysis. Within this context, Budiansky, Hutchinson and Slutsky (1982) have
obtained a high triaxiality approximation for the growth rate of an initially
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FIGURE 4.2. Spherical void in a remote simple tension strain rate field.

spherical void in a power law viscous solid, i.e. one for which the uniaxial
response is € & o™, as

. n

R 1| 3o¢° -1 0.

Ro _ 1| 30f (n —1)(n + 0.4319) (4.15)
éRy 2|2no%® n?

In the limit n — oo, the response of the power law viscous solid approaches
that of a rigid-ideally plastic Mises solid. In this limit, Eq. 4.15 reduces to
Eq. 4.14.

This consistent picture persisted until 1989. In the course of a study
of cavitation instabilities in elastic-plastic solids Huang, Hutchinson and
Tvergaard (1991) obtained finite element results for the growth of an iso-
lated spherical void in ideally plastic solid that were about 50% higher than
expected based on the Rice-Tracey formula Eq. 4.14. This discrepancy was
investigated further by Huang (1989) who carried out a Rayleigh-Ritz anal-
ysis using a much larger number of terms than Rice and Tracey (1969) and
Budiansky et al. (1982). Huang (1989) found that a surprisingly large num-
ber of terms were needed to obtain a converged value for the void growth
rate and that when a sufficient number of terms were included in the anal-
ysis, the Rayleigh-Ritz results were consistent with finite element solutions
in Huang et al. (1991). Huang’s (1989) high triaxiality approximation is

: 3o3°
% ~ 0.427exp[-§?"—] (4.16)
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FIGURE 4.3. Dilation rate in a rigid-perfectly plastic solid as computed at var-
ious levels of approximation. The volumetric_ growth rate is normalized by that
obtained from Eq. 4.14 using (V /éoV)y = 3Ro/éoHo (from Huang, 1989).

This correction is important because the expression for the growth rate
of an isolated spherical void is used explicitly in direct predictions of duc-
tility, e.g. Marini, Mudry and Pineau (1985), or implicitly in phenomeno-
logical constitutive relations for porous plastic solids, e.g. Gurson (1975).
Figure 4.3 compares the void growth rates for a perfectly plastic solid pre-
dicted by the analyses of Rice and Tracey (1969), Budiansky et al. (1982)
and Huang {1989).

4.3 Constitutive Relations for Porous Plasfic
Solids

In general, the flow potential for a porous plastic solid can be written in
the form

Qo ¥,7)=0 (4.17)
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where o denotes the Cauchy stress tensor, } are a set of properties char-
acterizing the plastic flow of the matrix and ¥ are a set of properties
characterizing the porosity. In practice, only special cases of the form

®(0,,04,5,f) =0 (4.18)

and satisfying )
®=7¢_1=0 whenf=0 (4.19)

G

have been considered, e.g. by Gurson (1975), Shima and Oyane (1976),
Guennouni and Francois (1987). Here, the hydrostatic stress, o4, and the
Mises effective stress, o, are given by

1 3
ap = EO'H, Te = EUUU"J (420)
In Eq. 4.20 and subsequently, Cartesian tensor notation is employed.

The most widely used porous plastic constitutive relation for analyzing
ductile fracture phenomena is that due to Gurson (1975), which is based
on averaging techniques similar to those used by Bishop and Hill (1951).
Gurson (1975) approximated a solid with a volume fraction f of voids by
a homogeneous spherical body with a spherical cavity. An approximate
rigid-plastic limit analysis of this situation was used to develop the yield
condition

o= —+2f cosh(—) 1-f%2=0 (4.21)

where @ is an internal variable representing the average strength of the
matrix material. Figure 4.4 sketches the shape of the yield surface at various
levels of porosity. When f = 1, the yield surface shrinks to a point and the
material’s stress carrying capacity vanishes. The yield function Eq. 4.21 has
the following characteristics; (i) it reduces to that for a Mises solid when
f =0, (ii) the dependence on void volume fraction is linear when o}, = 0,
(i1i) the dependence on stress triaxiality, o5/, is exponential.

The plastic part of the rate of deformation tensor, ij, is given by the

flow rule
. 09 1/{du; Juy
P o= A D= = : el .
Dy Gos; i=3 ( oz, 3:1:,-) (4.22)

where u; are the Cartesian components of the displacement vector and a
superposed dot denotes partial differentiation with respect to time.
Evolution equations need to be specified for the internal variables f and
G. In general, the evolution of the void volume fraction results from both nu-
cleation of new voids and from growth of existing voids, but void nucleation
is not considered here. The growth rate of existing voids is determined by re-
quiring the matrix material to be plastically incompressible. With V, denot-
ing the void volume and V,,, the matrix volume, f =V, /(V, +V},). Differen-
tiating with respect to time and using V,,, = 0, so that DY =V, /(Vo+Vn),
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FIGURE 4.4. Yield surface dependence on the hydrostatic tension for various
values of porosity, f, in Eq. 4.21.

gives, ]
f=01-f)Dk (4.28)

The plastic work rate for the porous solid is set equal to the matrix
plastic work rate. Accordingly,

oDl = (1 f)aé (4.24)

i3

From Eq. 4.24, the plastic flow proportionality factor, A, in the flow rule
Eq. 4.22 is determined to be,

L (1-f)ok
A= I (4.25)
kil aakl

Here, ¢ is the matrix Mises equivalent strain rate, which is determined from
the matrix strain hardening relation

o (4.26)

where £ and E; are, respectively, the Young’s modulus and the tangent
modulus, the slope of the uniaxial true stress-logarithmic strain curve, of
the matrix material.

Substituting Eq. 4.26 in Eq. 4.24 and rearranging gives the evolution
equation for & as

F=—2 4 (4.27)
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The flow rule for the porous aggregate is obtained from the consistency
condition that ®(o;;,5, f) = 0 for continued plastic loading. Hence,

. a% . 0®. 89 .
=—0;+—0+-—f= 4.
® aa;jg”+ 350t aff 0 (4.28)

Substituting (4.22), (4.23), (4.25) and (4.27) in (4.28) gives
1,80 ., 0892 1,09, 0%

P .
D'.j - h(aakl UH)BU,-J- hdok Okl do; (4'29)
where 6y, is the Jaumann derivative of Cauchy stress and
0d 59 h oo ad
he - n2 CL L P
(=57 3om ¥ 1= 710 35 "  3ogy) (4:30)

The expression (4.29) pertains to plastic loading, which is when
(0ki8®/30ki1)/h > 0. Otherwise, D} = 0.

For an elastic-plastic solid, we write
D;; = D{; + DY, (4.31)

In circumstances where the elastic strains remain small, although the plas-
tic strains may be large, it is convenient to use a hypoelastic approximation
for Df; that has the form

E
1+v

Di; + - % 51'1’] = Li;u Dk (4.32)

i = (1~ 2u) Tk

where E is Young’s modulus, v is Poisson’s ratio and §é;; is Kronecker’s
delta.
Combining (4.29), (4.31) and (4.32) gives, for plastic loading,

P;; Py
5.0 = | LS.y, — ! D 4,
Oy [ ikl h+Pan$n.nquPq ki ( 33)
where
. 09
Fij = Lijn Fors (4.34)

In ductile fracture processes, the porosity is typically very small until
Just prior to fracture, when the material’s stress carrying capacity is re-
ducing rapidly. In such circumstances, the effects of porosity on plastic
response dominate the effects on elastic response, so that the dependence
of E and v on porosity can be neglected. However, when appropriate, the
dependence of the elastic properties on porosity can be accounted for, see
Fleck et al. (1991), as in continuum damage mechanics, Lemaitre (1985).
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Figure 4.5 shows curves of 0. and of f versus overall effective strain for a
material element subject to uniaxial tension with a superposed hydrostatic
stress. The stress ratio T = 0}, /o, is constant throughout the deformation
history. The initial porosity is fo = 0.002 and the matrix is assumed ideally
plastic. The elastic properties of the matrix are given by oo/E = 0.004 and
v = 0.3. The large effect of stress triaxiality on void growth and aggregate
stress-strain response is evident in this figure.

It is worth separating the general features of the framework introduced
by Gurson (1975) from the specifics of the particular flow rule. The gen-
eral features are (i) the one parameter characterization of porosity; (ii)
the use of matrix incompressibility to obtain the evolution equation for
the void volume fraction and (iii) the use of the equivalence of aggregate
and matrix rate of plastic work to relate aggregate hardening to matrix
plastic response. The particulars are the specific form of the yield func-
tion (Eq. 4.21) and the characterization of the matrix material as a rate
independent isotropically hardening solid in Eq. 4.26.

4.4 Localization in Porous Solids

During the deformation of ductile solids it is frequently observed that a
rather smoothly varying deformation pattern grows into a pattern involv-
ing highly localized deformations in the form of shear bands. Then, final
shear fracture often occurs at an overall strain, which is only slightly larger
than that at the onset of localization, and failure tends to occur by a void-
sheet mechanism, where small voids coalesce inside the shear band as the
localized strains grow large. When voids are represented in terms of a duc-
tile porous material model, such as the Gurson model, the onset of flow
localization can be studied by a simple model analysis, and such analyses
predict that the critical strain for localization is significantly reduced by
the presence of voids in the elastic-plastic material (Rice, 1977; Yamamoto,
1978).

For rate independent solids, the onset of localization can be formulated
as a bifurcation problem within the framework of a material instability
analysis, Hadamard (1903), Hill (1962), Mandel (1966), Rice (1977), with
the mode of localization corresponding to a shear band. All-around dis-
placement conditions are imposed so as to rule out geometric instabilities.
An element of a solid is considered subject to displacement boundary con-
ditions that in a homogeneous (and homogeneously deformed) solid would
give rise to a uniform deformation gradient field. Conditions are sought
under which bifurcation into a localized band mode can occur. Within this
framework the onset of localization coincides with the loss of ellipticity of
the equations governing rate equilibrium.

Current values of field quantities and material properties inside and out-
side the band are presumed identical so that one possible solution for the
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FIGURE 4.5. (a) Aggregate effective stress, 0., versus effective strain, €., and (b)
void volume fraction, f versus effective strain, €., for a material element subject
to uniaxial tensjon with a superposed hydrostatic tension, oy, with T = o4 /0o,.
The original Gurson yield function relation, Eq. 4.21, is used, the matrix is ideally
plastic and f, = 0.002.
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FIGURE 4.6. Body with an incipient band or plane of imperfection.

incremental quantities corresponds to the homogeneous one. At the consid-
ered stage of the deformation history, suppose that, as sketched in Fig. 4.6,
within a thin planar band of orientation n in the reference configuration
incremental field quantities are permitted to take on values differing from
the uniform values outside the band. The band is presumed sufficiently
narrow to be regarded as homogeneously deformed.

Two requirements must be satisfied across the band interface. First, com-
patibility requires continuity of the displacement rate. With the reference
and current configurations taken to coincide, this implies,

ud  ou? Lo (4.35)
— = éing .
ax,- ax,- v
Next, incremental equilibrium requires
njc'r?,- = n;ol; (4.36)

The material stress rate in Eq. 4.36 is related to the Jaumann stress rate
by

- . 1{04; OJu;
By = 0iy + oy — nc‘kakj iy = 2 (a— - a—;) (4.37)
2 1}

Substituting (4.35), (4.33) and (4.37) into (4.36) results in three homo-
geneous algebraic equations for the three unknowns ¢;. Setting the deter-
minant of coefficients equal to zero gives the condition for the onset of a
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localization bifurcation. The onset of localization depends on stress state
as well as on material properties.

With attention restricted to circumstances where |o|/E, f and
fexp(30,,/25) are small, Needleman and Rice (1978) solved for the value
of the matrix hardening rate at bifurcation. For an initially porous solid,
with no nucleation, under plane strain conditions they obtain

h 30n, ., 3
(g) = %fcosh(% smh(% (4.38)
<
while for axisymmetric straining
h E 3 3on, . 30y
Sl =—=4Z h{2Zh h(Z2%" )
(a) o 2l coh(Gy )sinh (57 (439)

The matrix hardening rate, h, varies during the deformation history.
Typically, k, has some positive value at initial yield and then decreases,
so that larger values of h correspond to earlier stages of the deformation
history. For a fully dense solid, f = 0, the localization results for an isotrop-
ically hardening Mises solid are recovered; an ideally plastic state, h, = 0,
is needed for localization under plane strain conditions and a strongly nega-
tive hardening rate is required under axisymmetric conditions. With an ini-
tial void volume fraction, a localization bifurcation is possible under plane
strain conditions while the matrix material is hardening. The value of the
critical matrix hardening rate depends sensitively on the stress triaxiality.
Even with an initial porosity, a localization bifurcation under axisymmetric
conditions is effectively excluded for a workhardening matrix, h > 0.

Yamamoto (1978) showed that an initial imperfection, in the form of a
band with slightly increased porosity, could trigger localization in a porous
solid under axisymmetric conditions. Figure 4.7, taken from Yamamoto
(1978), shows critical strains to localization in a porous solid under both
plane strain and axisymmetric conditions. As expected, based on the bi-
furcation analysis, localization occurs at much lower strains under plane
strain conditions than under axisymmetric straining conditions. Also shown
in Fig. 4.7 (b) is the band orientation in plane strain, where §y = 0 cor-
responds to a band orthogonal to the tensile axis. As the critical strain
increases, i.e. for smaller imperfections, fy decreases. The tendency for 8,
to decrease with increasing localization strains also holds under axisym-
metric conditions. A similar analysis has been used by Needleman and Tri-
antafyllidis (1978) to study porosity induced local necking in thin sheets.
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FIGURE 4.7. (a) Curves of critical strain for localization as a function of the
initial void concentration in the band, fo. (b) Curves of critical strain for local-
ization versus initial band angle in plane strain. N is the hardening exponent of
the matrix material (from Yamamoto, 1978).
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FIGURE 4.8. Doubly periodic array of circular cylindrical voids.

4.5 Void Interaction Effects

An early investigation in which interaction effects are rigorously accounted
for is the numerical analysis of Needleman (1972) for an elastic-plastic solid
containing a doubly periodic array of circular cylindrical voids, as shown in
Fig. 4.8. Due to symmetries only the region hatched in Fig. 4.8 had to be
analyzed, and finite strain effects were fully accounted for in the computa-
tions. Thus, final failure by necking of the ligaments to zero thickness could
be approached in the numerical solutions, and linear extrapolations of the
overall stress-strain curves were used to estimate the average strain at coa-
lescence. The assumption of an array of parallel cylindrical voids is a strong
idealization, but is very convenient computationally, since this allows for
a planar analysis. It is expected that the results based on this idealization
give quite a useful indication of actual void coalescence behavior.

A numerical finite element study by Andersson (1977) for voids in a
rigid-perfectly plastic material has been continued to a stage very near fi-
nal coalescence with neighboring voids. Here the focus was on voids just
ahead of a moving crack tip, and therefore a state of uniaxial straining was
assumed, so that the voids grew under high hydrostatic straining. These
voids were taken to be initially spherical, and an axisymmetric model prob-
lem was solved, representing a periodic distribution of voids in the layer
ahead of the crack tip. The analyses were used to estimate the total work of
separation per unit area of new crack surface when crack growth occurs by
a void coalescence mechanism. It was also found that in the uniaxial strain
state analyzed the initially spherical voids grow into oblate spheroids rather
than elongating in the main tensile direction.
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An approximate representation of a material with a certain volume frac-
tion of spherical voids can be obtained in terms of a spherical unit cell
containing a concentric spherical void, where the loading or displacements
on the outer surface is chosen in agreement with the overall stress or strain
state of the material. This type of analysis accounts for the interaction
between neighboring voids in a very approximate manner. Upper bound
rigid-plastic analyses for such model problems have been used by Gurson
(1975), to obtain the approximate overall yield condition for a void con-
taining ductile material, as described in Section 4.3.

A detailed understanding of the effect of voids on the occurrence of ma-
terial instabilities requires a micromechanical analysis that accounts for
the nonuniform stress and strain fields around voids and the interaction
between neighboring voids. Early studies of this type were carried out by
McClintock, Kaplan and Berg (1966) and by Nagpal, McClintock, Berg and
Subudhi (1972). Tvergaard (1981) carried out a full bifurcation analysis for
the doubly periodic array of circular cylindrical voids previously analyzed
by Needleman (1972). Here, the solution obtained by assuming symmetry -
conditions on all four edges of the region hatched in Fig. 4.8 represents
the fundamental solution with a homogeneous macroscopic strain state,
but taking full account of the nonuniform strain fields on the micro level
around voids. The possibility of bifurcation into another periodic pattern
was analyzed on the basis of Hill’s (1958) general theory of uniqueness
and bifurcation for elastic-plastic solids. In this bifurcation analysis several
symmetry properties of the repetitive pattern were employed so that again
only the hatched region in Fig. 4.8 had to be analyzed, and the analysis
also incorporated the necessary conditions of equilibrium and compatibility
on the shear band interface, which could only be satisfied on the average
between the two different periodic deformation patterns. In Fig. 4.9 the
first critical bifurcation points and the corresponding angles of inclination
of the shear bands are marked on curves of nominal traction versus over-
all strain, for the model material subject to uniaxial plane strain tension.
In predictions based on a continuum model bifurcation into a shear band
mode is associated with loss of ellipticity of the governing differential equa-
tions, but in this full bifurcation analysis accounting for discrete voids the
equations remain elliptic.

Bifurcation into a localized mode has also been studied for a periodic
array of spherical voids (Tvergaard, 1982), based on an axisymmetric anal-
ysis for a circular cylindrical unit cell containing a spherical void. The outer
surface of the unit cell had to remain cylindrical throughout the deforma-
tions, to approximately represent compatibility with neighboring cells, and
a fixed ratio of the average true principal stresses was prescribed. This
axisymmetric model cannot represent shear bands with arbitrary angle of
inclination to the direction of tension, as was possible in the planar analy-
sis (Tvergaard, 1981), but the special case of bands perpendicular to this
direction was analyzed, as is mainly relevant under high triaxial tension.
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FIGURE 4.9. Nominal traction versus average strain for material containing a
doubly periodic array of circular voids (from Tvergaard, 1981).

The analyses made use of the fact that during localization a slice of mate-
rial undergoes deformation, while equilibrium and compatibility with the
undeforming material outside this slice of material is retained. Based on
a comparison of these bifurcation results with corresponding results using
the material instability analysis described in Section 4.4, Tvergaard (1981,
1982) proposed modifying the yield condition (4.21) to
& — af h 3q20h 2_g

—&—2+2q1f cos (-“-2-g-~)—1—qsf = (4.40)
with

@1=15 go=1 g3=g>=225 (4.41)

Analyses based on the same axisymmetric cell model problem have been
carried out by Koplik and Needleman {1988) with the purpose of determin-
ing critical conditions for the onset of failure by coalescence of neighbor-
ing voids. These calculations show a shift from the state of axisymmetric
elastic-plastic deformations to a mode of uniaxial straining where the plas-
tic deformations localize to the ligament between neighboring voids. This
localization is closely related to the bifurcations found by Tvergaard (1982).
The two events would occur simultaneously if a longer cylindrical cell with
two voids was analyzed, and earlier localization was also found by Koplik
and Needleman (1988) in cases where a longer unit cell was considered.
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Figure 4.10 shows results of these analyses for the values 1, 2 and 3 of
the macroscopic stress triaxiality, T = %,,/Z.. Based on their cell model
calculations, Koplik and Needleman (1988) suggested g; = 1.25 and g, = 1
in Eq. 4.40. It is seen in Fig. 4.10 that after the onset of localization the
macroscopic effective strain E, grows very little, while the macroscopic
Mises stress ¥, decays rapidly, and the rapid increase of the void volume
fraction f marks the development of coalescence. It is also seen that the
failure strain is significantly reduced for increasing stress triaxiality. In or-
der to account for this rapid drop in stress carrying capacity, Tvergaard
and Needleman (1984) suggested replacing f in Eq. 4.40 with the function
*(f), so that

Ug * 3q20'h *y2
o= 32_+2q1f COSh("*"“z'b_—)—l—(qlf ) =0 (442)

where
f = fes
= .
fc‘i';!_;:(f_f(:) fzf
Here, f; is the void volume fraction at which the stress carrying capacity
vanishes, so that f*(f;) = f: =1/q1.

The cell model studies in Koplik and Needleman (1988) and similar stud-
ies in Becker et al. (1988) suggested that f. and f; vary slowly with stress
triaxiality and with matrix strain hardening, but depend strongly on the
initial porosity. Figure 4.11, from Tvergaard (1990}, shows the dependence
of f. on initial porosity according to these cell model studies. Figure 4.12
compares the overall stress strain behavior and void growth based on the
modified Gurson constitutive relation with corresponding results based on
Gurson’s original yield function (Eq. 4.21) for the case with T = 3 in
Fig. 4.5. The modified constitutive relation gives failure at realistic values
of the void volume fraction.

The studies of void interaction effects discussed here are all based on sim-
plifying assumptions that allow for planar analyses with cylindrical voids
or axisymmetric analyses with spherical voids. More realistic models would
generally require full three-dimensional numerical solutions, but such com-
putations put very large requirements on computer time and storage. Full
3D computations have been carried out by Hom and McMeeking (1989)
and Worswick and Pick (1990} for the growth of initially spherical voids in
periodic cubic arrays. Very good agreement was found between the predic-
tions of these full three dimensional analyses and corresponding predictions
of axisymmetric cell models. The results of the 3D studies have been mainly
used to evaluate the validity of approximations involved in various dilatant
plasticity continuum models for porous materials. Tvergaard (1988) has
analyzed 3D cubic arrays of larger voids in a matrix containing smaller
voids. In this analysis the formation of the larger voids with approximately

(4.43)
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FIGURE 4.10. Finite element results for a cylindrical cell model with a spherical
void and an initial void volume fraction f, == 0.0013, for different values of the
stress triaxiality T° (from Koplik and Needleman, 1988).



164 4. Void Growth in Plastic Solids

0.5 .
fC
A
e
i
0.10f Vs 4
i
i
rd
//
L~ (=}
i
oost > .
-{o’
0 PR
0 0.05 f, o010

FIGURE 4.11. Dependence of the critical value f, in Eq. 4.43 on the initial
void volume fraction f; according to various cell model studies (from Tvergaard,
1990).

spherical shape is formulated in terms of a porous ductile material model,
and the focus is on the prediction of final fracture.

4.6 Boundary Value Problem Solutions

Calculations of localization and failure in a homogeneously deformed ma-
terial element, provide much insight into the behavior of the constitutive
relation. However, such calculations cannot capture a key feature that de-
termines the observed ductile failure mode in test specimens and structural
components; the redistribution of stress and deformation accompanying
progressive micro-rupture. Here, some calculations that illustrate the de-
velopment of failure modes in full specimens will be reviewed.

A characteristic feature of ductile fracture in structural metals is the
contrast between the shear fracture mode observed in plane strain tensile
specimens and the cup-cone mode observed in axisymmetric tensile speci-
mens. In both cases, the deformations remain essentially homogeneous up
to the maximum load point after which a diffuse neck develops. In the
round bar tension test, diffuse necking is followed by a cup-cone type frac-
ture, while typically in a plane strain tensile test of the same material,
the deformation mode shifts to one involving localized shearing while the
diffuse neck is rather shallow.
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FIGURE 4.12. Comparison of overall stress strain behavior and void growth
predictions based on the original, Eq. 4.21, and modified, Eq. 4.42, Gurson con-
stitutive relations for a material element subject to uniaxial tension with a su-
perposed hydrostatic tension, oy, with T = ¢4 /0.. The matrix is ideally plastic
and fo = 0.002.
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Figures 4.13 and 4.14 show the fracture behaviors obtained from finite
element calculations based on the modified Gurson constitutive relation,
Eq. 4.42. In the calculations symmetry conditions are imposed so that only
one quadrant of the specimen needs to be analyzed numerically and de-
formed finite element meshes are shown for this quadrant. Figure 4.13 is
from Tvergaard and Needleman’s (1984) finite element analysis of necking
and failure in the tensile test, which incorporates a model for void nucle-
ation into the formulation. The predicted fracture mode reproduces the
essential features of a cup-cone fracture. Among the features typically ob-
served in axisymmetric tensile tests of ductile metals is that voids initiate
and grow in the center of the neck finally coalescing to form a central crack.
There is a tendency for the crack to zig-zag, which is a consequence of shear
localization being inhibited by the additional plastic work associated with
the hoop strains that accompany shearing in the axisymmetric geometry.
As the free surface is approached this axisymmetric constraint is relaxed,
permitting the cone of the cup-cone fracture to form. This analysis shows
how the interaction of the tendency to localization in a material weakened
by void nucleation and growth together with a constraining geometrical
effect lead to the cup-cone fracture. The development of failure has a sig-
nificant effect on the overall load-displacement response of the specimen as
shown in Fig. 4.18 (a). There is no corresponding geometrical constraint
in plane strain tension so that, once initiated, a shear band can propagate
across the entire specimen as illustrated in Fig. 4.14, which were obtained
by Becker and Needleman (1986) using a rate dependent material model
where Eq. 4.42 serves as a flow potential. In this case, the load drop is
associated with the formation of the shear band and failure subsequently
ensues as strain accumulates in the band.

These results illustrate the ability to qualitatively predict observed duc-
tile failure behaviors. A meaningful quantitative comparison between pre-
dictions and experiment is more complex because of the path dependent
and progressive nature of ductile fracture. Becker et al. (1988) have com-
pared quantitative predictions of void growth, strength and ductility with
detailed measurements in round notched bars. Various notch geometries
were studied in order to obtain different stress histories. The tensile speci-
mens were machined from partially consolidated and sintered iron powder
compacts. The only experimentally determined quantities input into cal-
culations in Becker et al. (1988) were the uniaxial stress-strain curve for
the matrix material and the initial void volume fraction. The parameters
d1, 92, fo and f; entering the porous plastic constitutive description were
chosen to provide a reasonable fit of both strength and void growth predic-
tions with results of micro-mechanical models of periodic arrays of voids
as discussed in Section 4.5.

Figure 4.15 (a) shows a finite element mesh illustrating the axisymmetric
specimen geometry and predicted evolution of the minimum section area,
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FIGURE 4.13. () Curves of load versus imposed strain and (b) crack growth in
the neck for axisymmetric tension. In (b), triangular elements that have under-
gone a complete loss of stress carrying capacity are painted black (from Tvergaard
and Needlerman, 1984).
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a complete loss of stress carrying capacity are painted black (from Becker and
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In(R%/R?), and the void volume fractions, f, measured at the center of
the specimens. Also shown in Figs. 4.15 (b) and 4.15 (c) are measurements
for eight specimens with 7% initial void volume fraction and one specimen
with a 1% initial void fraction. The predictions are quite good at lower
strains but the model somewhat under predicts void growth at large strains.
Similar good agreement was found in comparisons made between prediction
and experiment for other notch geometries.

4.7 Additional Considerations

When voids deform in a material subject to low triaxial tension the void
volume grows little or the voids may even collapse into shapes like cracks
or needles, as has been found by Budiansky, et al. (1982) for isolated voids.
Often voids nucleate from a particle by debonding of the particle-matrix
interface, and in such circumstances contact between the particle and the
void surface may have a significant effect on void growth (Fleck, Hutchin-
son and Tvergaard, 1989). Figure 4.16 shows curves of normalized void
dilatation rates versus stress triaxiality for an isolated void that has nucle-
ated from a rigid spherical inclusion, in an elastic-perfectly plastic material
subject to an axisymmetric stress state. At values of the triaxiality param-
eter around zero it is seen that the interaction with the particle enforces
a void volume increase, because the contact with the particle gives rise to
an internal pressure on the void surface in the transverse direction. For
triaxialities higher than about 0.6 the presence of a particle inside the void
has no influence, as the void expands in all directions.

Contact between particle and void surface is an important effect in sim-
ple shear, where an unfettered void closes as it deforms. This has been
studied by Fleck et al. {1989) in terms of a planar elastic-perfectly plastic
analysis for a row of voids in a shear field, with the geometry (Fig. 4.17)
chosen to model experiments of Cowie, Azrin and Olson (1987). The de-
velopment of the average shear stress, ¥, and the cross-sectional void
area, A, versus shear strain, v, are shown in Fig. 4.18 for a superposed
tensile or compressive stress, Zgq. It is seen that for negative X5, the void
volume still increases in the presence of a particle, but decays when there
is no particle. The same type of behavior has been found for pure shear,
222 = 0.

When the stress triaxiality is high, material elasticity can have a major
effect on the course of void evolution, even though the elastic strains remain
small. This is because of the existence of a cavitation instability driven by
the elastic energy in the surrounding material, For an isolated void in an
elastic-plastic solid subject to remote hydrostatic tension there is a critical
stress at which the void growth rate becomes unbounded, Bishop, Hill
and Mott (1945), Hill (1950). This instability does not occur for a rigid-
plastic solid. There has been much recent interest in cavitation instability
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Fig. 4.17 (from Fleck et al., 1989).

phenomena from a variety of perspectives, e.g. Ball (1982), Horgan and
Abeyaratne (1986), Abeyaratne and Hou (1989). Here, we illustrate the
phenomenon by outlining the classic analysis for an isolated void in an
isotropic, incompressible elastic-plastic solid subject to remote hydrostatic
tension. The development and notation follows that in Huang et al. (1991).

We define R as the distance, in the current state, of a material point
from the void center, R; is the initial void radius and R is the current

void radius.
Equilibrium is expressed by

do,  2(o, — gp)
iR 7T R

and incompressibility implies

=0

= =26 = >Inl1 - (R - BY)/R]

The stress-strain relation for a Mises solid is of the form

& —=
o (8
where
& =|o, — o] €= |e|
The boundary conditions are
or(Rg) =0 ar(00) = 0es

From equilibrium and incompressibility,

=y [ f[gln[l_ (0= (R Rop

3
oy z

dz
z

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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1991).

The cavitation limit, oo, — S, is reached when Ry/R; — oco. From

Eq. 4.49,
g 2
S . -2/ f[—ln[l - z-s]] dz (4.50)
Oy 1 3 z

For a perfectly plastic solid, Eq 4.50 gives the result, Hill (1950),

S 2 2
o ~ 3 [1 + ln(3€y )] (4.51)

Figure 4.19, from Huang et al. (1991), shows curves of remote stress
versus cavity radius for a power law solid, & « V. Because of the cavi-
tation limit, the void growth rate at high stress triaxiality can be signifi-
cantly greater than predicted based on a rigid-plastic analysis, as shown in
Fig. 4.20.

Micromechanical analyses of porous solids have generally presumed that
the voids are distributed in some regular pattern. However, void distribu-
tion effects have been shown to play a significant role in limiting ductility,
both experimentally, Dubensky and Koss (1987), and theoretically, Becker
(1987). Becker (1987) analyzed void growth and coalescence in a small
material element, with the material characterized by the modified Gurson
(1975) constitutive relation, but with a nonuniform initial distribution of
the void volume fraction. Becker (1987) found a significantly smaller frac-
ture strain for a solid with a non-uniform porosity distribution than for a
solid with a uniform porosity at the average value. There was a negligible
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effect of the nonuniformity prior to the localization that precedes fracture.
The quantification of distribution effects on ductile fracture processes re-
mains a challenge for future research.

The phenomenological yield surfaces that have been proposed for porous
plastic solids have all been smooth. Because of the non-homogeneous stress
state around a void, a change in loading direction can result in unloading
of part of the current plastic zone. This leads to a vertex on the yield
surface as illustrated in Mear (1990). The vertices found by Mear (1990)
were “blunt” so that the response did not differ greatly from what would
be predicted based on a smooth yield surface.
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