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ABSTRACT

CALCULATIONS are reported for the mixed mode toughness of an interface joining an elastic—plastic solid
to a solid which does not yield plastically. A potential function of the components of the crack face
displacements is used to generate the tractions along the interface where the fracture processes causing
separation occur. The two main parameters characterizing this potential are the work of separation per
unit area and a peak normal stress. This description of the interface separation process is embedded within
the continuum description as a boundary condition on the interface linking the adjoining solids. Small-
scale yielding in plane strain is considered with the remote field specified by the magnitude and phase of
the mixed mode stress intensity factors. Crack growth resistance curves are computed for a range of the
most important nondimensional material parameters and for various combinations of remote mixed mode
loading. Particular emphasis is placed on the ratio of the steady-state interface toughness to the “intrinsic”
work of separation as it depends on plastic yielding and on the combination of modes [ and 2. Plasticity
enhances the interface toughness for all modes of loading, but substantially more so in the presence of a
significant mode 2 component of loading than in near-mode [ conditions.

1. INTRODUCTION

PLASTIC DEFORMATION compriscs a major component of the total work of fracture in
ductile materials. Recent experimental work on the mixed mode toughness of inter-
faces has highlighted the importance of this role of plasticity and at the same time
has served to re-emphasize how difficult it is to quantify this role theoretically.
Measurements of the toughnesses of interfaces between solids where at least one is
ductile (e.g. CA0 and Evans, 1989; LiecHTI and CHal, 1992; THOULESS, 1990;
O'DowD et al., 1992) have revealed an exceptionally strong dependence on the mode
of loading, with near-mode 2 toughness in some systems as much as a factor of 10
higher than near-mode 1 toughness (measured in units of energy per unit area). While
itis notat all clear that this mode effect is entirely due to plasticity, it does appear likely
that plasticity is the main contributor. For brittle interfaces, Evans and HutcHiNsON
(1989) have proposed a model of asperity interaction behind the crack tip to account
for a mixed mode dependence of interface toughness. However, as argued by LIECHTI
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and CHAI (1992), the asperity model does not appear to account for the strong tough-
ness dependence on mode when one of the solids has appreciable ductility. Theor-
etical work on the elastic-plastic interface crack problem by a number of workers
(SHIH and Asaro, 1988 ; Zywicz and PARKsS, 1992 ; Bose and PONTE CASTANEDA, 1992 ;
MATAGA and PONTE CASTANEDA, 1992 ; SHiH, 1991; LiecHTI and CHaL, 1992) has
given insight into possible explanations for a strong mixed mode effect due to plasticity.
For a given level of loading, as measured for example by the overall energy release
rate G in small-scale yielding, the near-mode 1 loadings have the highest levels of
normal traction acting across the interface ahead of the tip in the plastic zone. For
prescribed levels of G, the near-mode 2 loadings produce plastic zones which are
approximately twice as large as those for the near-mode 1 loadings. While results
such as these are highly suggestive and inform the mixed mode problem, they don’t
constitute toughness predictions.

A predictive model must incorporate a local fracture criterion of some kind which
characterizes the fracture process on the interface deep within the plastic zone. Ideally,
the model would partition the work that goes into plastic dissipation from that which
is absorbed by the local fracture processes required to separate the interface. The
steps in the development of a model which incorporates a law governing the tractions
involved in interface separation have been taken by NEEDLEMAN (1987, 1990). He
embedded the local separation law in a continuum elastic—plastic description of the
solids joined across an interface, and he carried out interface cracking calculations
using finite element procedures for a number of applications, including particle
debonding in a plastically deforming solid. Crack initiation and subsequent growth
is calculated directly in terms of the parameters characterizing the separation law and
the continuum properties of the solids. TVERGAARD (1990) continued the development
of this approach with application to debonding and pullout of fibers in an elastic—
plastic matrix.

The present paper applies this same general approach to predict mixed mode
toughness of an interface joining one solid which is ductile with another which is not.
The present work is a continuation of an earlier study by TVERGAARD and HUTCHINSON
(1992), which hereafter will be referred to as T&H, in which such “first principles”
predictions were made for the mode 1 toughness of a homogeneous elastic—plastic
solid. That study, which will be briefly reviewed in the next section, presented results
for the enhancement of toughness due to plastic deformation as it depends on the
primary parameters of the fracture process and the continuum properties of the solid.
The approach is capable of partitioning the total steady-state work of fracture into the
work of the fracture processes and the plastic dissipation occurring in the surrounding
plastic zone. In the present study a separation law for the interface is introduced which
is derived from a potential of the normal and tangential crack face displacements. Tt
generalizes the separation law used in T&H which involved only normal crack face
displacements. The work per unit area needed to separate the interface, I'y, 1s inde-
pendent of the combination of crack face displacements which lead to separation.
This separation law is embedded in the continuum description of the two adjoining
solids as a boundary condition along the interface line, precisely as in the earlier work
of Needleman, Tvergaard and T&H. In the absence of plasticity, the model predicts
the mode-independent interface toughness I';. The thrust of this paper is to use the
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model to isolate the influence of plasticity on mixed mode crack growth resistance
and toughness and to establish the enhancement of toughness above I'y. Asperity
interaction behind the crack tip, as modeled by Evans and HUTCHINSON (1989), is
not taken into account. If present, it would contribute an additional source of mixed
mode toughness.

An approach with a number of common features but applied at a much finer scale
was taken by BELTZ and RiIcE (1991) who used a displacement potential to model
separation of an interface between elastic solids under mixed mode loading. They
determined the range of mixed mode loadings such that the crack advanced by
separation of the crack faces (interpreted as cleavage) and the complementary range
in which the nature of the tangential crack face displacements suggests that dis-
locations will be emitted. Suo et al. (1992) have considered a model which falls
between the present model and that of Beltz and Rice. They envision a crack tip which
does not emit dislocations and propose a model which consists of a dislocation-free
crack tip core region shielded by a plastic zone under small-scale yielding conditions.
They compute the relation of the near-tip energy release rate to the applied energy
release rate and in this way they can partition the work of separation from the work
absorbed by plastic dissipation.

1.1. The traction—separation law of the interface

The fracture process associated with the traction—separation law introduced below
is not specified at this stage. In the mode 1 study of T&H, several processes were
considered in some detail, including void nucleation, growth and coalescence, and
second-phase particle crack-bridging. Tt is not expected that the approach as it is
introduced here will apply directly to atomic separation processes on the interface
without the addition of more refinements. The dominant scale of the fracture process
in many interface systems can indeed be measured in microns rather than nanometers.
Thus, the traction—separation law for the interface should be regarded as a phenom-
enological characterization of the zone where the separation takes place along the
interface and not a description of atomic separation. In principle, the fracture process
parameters introduced below might be identified, or inferred, by carrying out a few
well chosen experiments or they might be predicted using a micromechanical model,
as was done for the case of the void failure mechanism in T&H.

Let 3, and §, be the normal and tangential components of the crack face dis-
placements across the interface in the zone where the fracture processes are occurring,
asindicated in the insert in Fig. 1. Let 45 and J7 be special values of these components,
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Fi1G. 1. Traction—generalized displacement relation used to characterize interf{ace separation.
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and define a nondimensional crack separation measure as
b= /(65,155)7 +(8,6%) (1.1)

such that the tractions drop to zero when A = 1. With ¢(4) displayed in Fig. 1, define
a traction potential as

y
D, 0,) = 6;J a(A)dr. (1.2)

0
The normal and tangential components of the traction acting on the interface in the
fracture process zone are therefore

o0 o) 9, o0 o(d) 0% 4,

T, = =t =0 =—— — —. 1.
99, Ao Y86, A 8% of (1.3)
The traction law under a pure normal separation (6, =0) is T, = (1) where
A = 6,/6:; while under a pure tangential displacement (6, =0), T, = (6};/0:)a(4)
where 1 = §,/6¢. The peak normal traction under pure normal separation is ¢ and the
peak shear traction is (6;/07)d in a pure tangential displacement. The work of sep-
aration per unit area of interface I' is given by (1.2) with 1 = 1. For the relation o(4)
specified in Fig. I,

The parameters governing the separation law are 4, 65, o; together with the shape
factors 1, and A,. Equivalently, the parameters can be taken as I'y, &, d5/d5, 4, and
Ag.

1.2. Properties of the two solids

The solid below the interface is taken to be elastic with Young’s modulus E; and
Poisson’s ratio v,. The elastic properties of the solid above the interface are designated
by E and v. The tensile true stress—true strain behavior for the solid above the interface
is specified by

e=0/E for o <oy
= (6y/E)(o/oy)"" for &> oy (1.5)

where oy is the yield stress and N is the strain hardening exponent. The yield surface
is taken to be the isotropic hardening surface of Mises.

2. MobpeE 1 CRACK GROWTH RESISTANCE IN A HOMOGENEOUS MATERIAL

As background for the present study on mixed mode interface fracture, selected
results from the earlier mode 1 study of T&H will be presented. The solid is homo-
gencous and characterized by (1.5). Small-scale yielding in plane strain mode 1 was
analysed where the traction law on the crack line in the process zone is the pure
normal separation version of (1.3), i.e. T,, = o(1) where A = 6,/65. Define reference
quantities K, and R, as
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Ko = [ETo/(1-v)]"? 2.1
1 (K.} 1 ET,
R (o Rt = &2

Thus, K, represents the mode 1 stress intensity factor needed to advance the crack
when plastic dissipation 1s negligible, or, in other words, the stress intensity factor
needed to supply just the work of the fracture process I'y. The reference length R,
scales with the size of the plastic zone when K =~ K, ; (K/oy)?/(3n) is commonly used
to estimate the size of the plastic zone in plane strain.

Dimensional considerations dictate that the crack growth resistance Kz (Aa), where
Kj is the stress intensity factor at crack advance Aa under monotonic conditions, will
depend on the various parameters of the solid and the separation law in the following
way

TR . 23
Ko Ro Oy E :| ( )
The calculation of T&H reveals that, in addition to Aa/R,, /6y and N were the two
most important parameters controlling crack growth resistance with the others in
(2.3) playing a secondary role. Figure 2(a) displays crack growth resistance curves
for N = 0.1 for several levels of é/ay. Steady-state resistance,

Kg(A Aa 6
R( a)_:F|: 7 Naglav’)ﬂ’lz

K, = lim Ke(Aa), (2.4)

is plotted as a function of 6/gy in Fig. 2(b) for three levels of strain hardening.

In steady state, the ratio of the total work of fracture to the work of the separation
process is given by (K,,/K,)?. From Fig. 2 it is seen that plasticity will only make a
significant contribution to the total work of fracture if §/oy exceeds 2. When d/oy is
less than 2 a fully developed plastic zone cannot develop at the crack tip, as discussed
more fully in T&H. Another significant finding which emerged from the earlier work
is that the fracture process zone can extend well into the plastic zone. Similar details
will be spelled out for the mixed mode problem.

3. PLANE STRAIN INTERFACE CRACK IN SMALL-SCALE YIELDING

A schematic drawing of the mixed mode small-scale yielding problem is shown in
Fig. 3. The elastic solution governing the remote ficld of a semi-infinite interface crack
is the dominant crack tip singularity field (RIcg, 1988). That field has tractions acting
on the interface which are given in terms of the two stress intensity factor components,
K, and K;, by

Gy +io |, = (K| +1K,)(2mr) = Y3y~ (3.1

where r is the distance from the tip and i = \/—1. Here ¢ is the oscillation index
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FiG. 2. (a) Mode | crack growth resistance curves for a crack advancing in an homogeneous elastic—plastic

material with ¥ =0.1, v=1/3 and a/E = 0.003. (b) Steady-state toughness at three levels of strain

hardening. The solid line curves are for oy /F = 0.003 and the dashed line curve is for ay/E = 0.006. These
curves are from TVERGAARD and HUTCHINSON (1992).

1 1—

and f is the second Dundurs’ parameter

1 p(1=2v) —p(1-2v)
T2 p(l—v)+p(1—-v)

with u = E/(2(14v)) and y, = E;/(2(1+v,)). Let the magnitude of the stress intensity
factors be defined by

B

(3.3)
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F1G. 3. Schematic of the small-scale yielding interface crack problem.

K| =./K}+Kj. (3.4

The relation between the energy release rate and this magnitude of stress intensity is

[—v2 1=y}
G=z'(1-/32)[ z t E’]lKlz- (3.5

Let L be a reference length characterizing the remote field to be defined in the next
section and define an L-dependent measure of mode mixity y by
_Im[(K, +iK,) L")

Re (K, +iK;)L"]

tan (3.6)
which reduces to the more familiar measure, tan = K;/K;, when ¢ =0. The
interpretation of i is aided by using (3.1) in (3.6) giving tan ¥ = 6,,/6,; atr =L on
the interface. Thus, ¥ measures the relative proportion of shear to normal stress on
the interface a distance L from the tip, as predicted by the elastic solution. The
displacement components associated with the singularity field in the upper half-space
(6 > 0) are given by

|K|r1/2 {(3_4‘}) ei0/2+g([)—n)—id7 e—iB/Z—s(B—n)—i:}?
2./2mn cash (rme)

Hlany +ius) = T 2ie 1%

—isin @ ei”/“'*‘("'"")“'p} (3.7

where ¥ depends on r according to
Y =y +eln(r/L). (3.8)

The expression for the components in the lower half-space is similar in form.
In specifying the small-scale yielding problem, the displacement components u, and
u, given by (3.7) are imposed remotely on a boundary atr = R, where R, is typically
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several times L. The remote loading is thus specified by |K|, ¥ and L. Using (3.5),
define a reference intensity factor to generalize (2.1) according to

1—v?  1=y2 |2 20\
Ko=|"p + % ) (3.9)

Thus, K, represents the value of |K| needed to advance the interface crack in the
absence of any plasticity. As already emphasized, this value is independent of ¥, a
deliberate consequence of using a potential to generate the relation of tractions to
crack face displacements of the interface. Let R, be again defined in terms of K, just
as in the homogeneous case (2.2), i.e.

1 (Ko} 21— 12" T,
—_ — =-—|— . -1
Ro 3n (0Y> 3n |: E T E, (1-B)o3 (3-10)

Since R, is the length quantity which scales with the size of the plastic zone (when
|K| = K,) and the fracture process zone length, it is natural to define another measure
of mixity, Y,, based on the reference length R, rather than L in (3.6). By (3.8), y» and
Y, are related by

lp() =¢+81n(R0/L) (311)

For the numerical examples presented below, ¢ = 0.0813 and R,/L varies from about
0.002 to 0.004 corresponding to a phase shift ¢ In (R,/L) varying between —25° and
—30°,

4. FmNITE ELEMENT MODEL AND CHOICE OF PARAMETERS

The finite strain formulation and numerical finite element scheme used here is the
same in almost all respects as that used and described in the earlier study of T&H in
Section 2. The reader is referred to that section for details which will not be repeated
here. A Mises yield condition is used to generalize the uniaxial relation to multi-axial
states. The tractions generated by the separation potential (1.2) are taken as true
tractions rather than nominal tractions. This has some influence since there is some
readjustment in crack face area due to finite straining in the vicinity of the crack tip,
but the effect is not a dominant one.

The number of nondimensional parameters in the mixed mode interface model is
large. Crack growth resistance can be written in the nondimensional form (2.3) with
the inclusion of the following additional nondimensional parameters: 8;/35, 5/L, Y,
E/E, and v,. In all, the model has 12 nondimensional parameters. Aside from the
difficulty of presenting the functional dependencies on such a large parameter set, the
calculations themselves are computationally intensive. A single resistance curve such
as that presented in Fig. 6 requires up to 75 h of CPU time on a relatively fast work
station. For these reasons, we have focused on dependencies on the few most important
variables and have relied on the earlier mode 1 study for insight into the role of some
of the other parameters. The numerical results presented below have all been computed
for the case of a rigid lower half-space (E; — o0). This has two benefits. It reduces the
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set of parameters by two, and it means that only the upper half-space need be meshed,
significantly reducing the size of the numerical problem. As remarked upon later, it
is felt that the mixed mode toughness predictions will not be strongly affected by
neglecting the elasticity of the lower material as long as the elastic mismatch is properly
taken into account in shifting from the near-tip field to the remote loading. The
material above the interface has

y=1/3, oy/E=0.003 N=0.I. 4.1)

The roles of oy/E and N were studied in T&H [e.g. see Fig. 2(b)] for the mode 1
problem for the homogeneous material. They are expected to play similar roles in the
mixed mode problem ; they have been fixed at the representative values chosen above.
The rigid lower half-space together with v = 1/3 gives from (3.3) and (3.2)

fp=—1/4 and &=0.0813. 4.2)

The two primary parameters which will be varied in the numerical computations
are ¢/oy and ¥, one characterizing the separation law and the other the mixed mode
loading. In most of the computations the choices

8¢/6S =1, A, =0.15, i, =0.5 (4.3)

have been used but a few results will be reported with other values of 8;/85. The
“shape” parameters of the separation law, 1, and 4,, were shown in the earlier study
to be of secondary importance. With A as the size of the smallest elements of the mesh
along the interface (see Section 2 of T&H for the mesh layout), the choices for 85 and
L are

8¢ =0.05A and L = 2000A 4.4)

so that §°/L = 2.5 x 10~ °. This choice is not limiting since the L-dependence is known
through expressions like (3.11). The outer boundary on which the displacements are
prescribed is usually chosen to be R, = 4.5L. By (1.4), (3.10) and (4.1)(4.4), the
ratio of the two reference lengths is
R _omE % ool .5)
L oy oy L Oy

and it is this ratio which leads to the shift between iy and i, noted beneath (3.11).

5. MixED MODE PREDICTIONS

A few results for the plastic zones and interface traction distributions for the
stationary crack will be reported first. These have been computed using &/5y = 20,
effectively suppressing any separation along the line of the crack (i.e. 65 and R, are
no longer relevant parameters in these results). More extensive results for the station-
ary problem can be found in SHIH and Asaro (1988), Zywicz and Parks (1992) and
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F1G. 4. Smali-scale yielding boundaries of the plastic zone of the stationary crack for several mixed mode
loadings.

SHiH (1991). Boundaries of the plastic zones are shown in Fig. 4 for four values of
. The axes in this figure are the usual ones for small-scale yielding, i.e. x,0%/|K|%.
For the interface crack problem with nonzero ¢ one must also specify the ratio of
some measure of the plastic zone size to L for the problem to be fully prescribed (since
R, has been rendered irrelevant). Here the choice R,/L has been used where

L (1KY
== 5.1
Ry 3n (UY ) ©-D
and an associated phase measure is defined as
Y, =¥+eln(R,/L). (5.2)

For the results presented in Figs 4 and 5 the values of R,/L taken in the calculations
were 0.0409, 0.0314, 0.0180 and 0.0206 for Y equal to 0°, 15°, 30° and 45°, respectively.
The values of both y and y,, are recorded in the figures.

The normal and shear tractions acting on the interface ahead of the stationary
crack discussed above are shown in Fig. 5. The highest normal stress a given distance
ahead of the tip is seen to be achieved for the loading with ¥, 2 0°. This loading
might be described as being locally mode 1-like. Given the relatively large shift of
phase of about 15° between the local () and remote () measures of mode mixity,
itis clear that the local measure is the most meaningful from the standpoint of thinking
about the effect of loading in the vicinity of the plastic zone.

A selection of computed crack growth resistance curves are shown in Fig. 6 plotted
as |K|g/K, as a function of Aa/R,. While an intensity-based presentation has been
chosen to present the results, it should be noted that they can be converted immediately
to a presentation using the energy release rate. In particular, with I'y as the energy
release rate needed to advance the crack, by virtue of (3.5) and (3.9)

Ie/To = (IK[r/Ko)®. (5-3)

Crack growth initiates at K, or equivalently when I'y = T'y. This can be understood
in terms of the (near) path independence of the J-integral prior to any crack growth
using an argument identical to that given in Section 3.1 of T&H. Steady-state condi-
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FIG. 5. (a) Normal and (b) tangential tractions on the interface ahead of the stationary crack. In computing
these results the parameter 6/ was taken to be 20 thereby eliminating any influence of the fracture process
on these distributions.

tions are attained, to a good approximation, with no further increase in crack growth
resistance after advances ranging from a fraction of R, to more than five times Ry,
depending on é/0, and to a lesser extent on . In almost all instances the steady-state
toughness, | K|, is approached monotonically from below, but there are a few cases
such as one shown in Fig. 6 where |K|g overshoots slightly and then decreases

IKlg
KD
al A
O/OY=3,O,¢=0°
3t
A o
O/Oy=3_o,¢=45
2+ A
0/p,=2.4=0°
N
1 ( \O/OY=2‘4,U¢)=27°
A
k O/o,=2.44=45"
O -l i L
0 1 2 3 4 5 [}

7 8
A

FiG. 6. Interface crack growth resistance curves for various choices of ¢/oy and .
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somewhat. At the maximum there is a significant tangential contribution to the
separation while later on this contribution tends towards zero. The values identified
by |K],, in Fig. 7 below are the peak values of resistance computed and not strictly the
steady-state limits, but in all instances the distinction is small. Similar non-monotonic
behavior has been predicted for crack growth resistance in transformation toughening
materials (STUMP and BUDIANSKY, 1989).

Steady-state mixed mode toughness is plotted as a function of §/oy in Fig. 7 for
several different modes of loading as specified by fixed values of . The values of ¥
in (3.11) associated with these curves vary weakly with ¢/oy by (4.5), but are less than
Y by between 25° and 30°. Thus, for example, the curve for y = 38 has a y a little
above 0° and is the closest to a mode 1 loading of those shown. For the curves labeled
Y = 0°, 387 and 45°, the separation process is dominated by the normal component
of displacement é,. The parameter J;/07 plays a relatively unimportant role in these
cases. On the other hand, for the two curves with ¢y = —45° and — 52°, the tangential
component ¢, is much larger than ¢, in the range of low 6/oy and then gradually
decreases and becomes comparable to 4, as /oy increases. In these cases the manner
in which the tangential interface displacement is included in the separation law has a
significant influence on the toughness predictions.

In Fig. 8, the steady-state toughness is plotted as a function of ¥, for fixed values
of ¢/oy, in Fig. 8(a) with the choice 0;/8f = 1 and in Fig. 8(b) with 835/5¢ = 100.
Recall that the peak stress in a purely tangential displacement of the crack faces is
05/9¢ times the peak stress ¢ in a purely normal separation. Thus, the curves in Fig.
8(b) with 5/ = 100 correspond to an interface law which, for all practical purposes,
suppresses any tangential displacement at the interface so that separation must occur
by purely normal displacements. While there is some dependence on the parameter
03/d¢ in the separation potential, as will be remarked upon further below, the main
influence seen in Fig. 8 is the dependence on /6y and ¥/,

&
Klsg
Ko
5 L
[}
. -52

D 1 2 3 4§ s
Oy
Fi1G. 7. Steady-state interface toughness for various values of mixed mode loading as specified by the
remote mixity measure .
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F1G. 8. Steady-state interface toughness as a function of the local mixity measure y,: (a) with 85/6f = 1
and (b) with 8¢/6¢ = 100. The case shown in (b) effectively suppresses any relative tangential displacement
of the interface in the fracture process zone.

With the exception of the curve in Fig. 8 for /oy = 1.4 for which plasticity plays
a relatively small role, there is a strong mixed mode effect on toughness. The minima
of these curves do fall near , = 0 indicating the merits of using the “local” measure
¥, to present the predictions. The strong dependence of the interface toughness on
¥, predicted is in agreement with trends observed experimentally in systems where
plastic deformation occurs at the crack tip in at least one of the materials joined across
the interface (LIECHTI and CHal, 1992; Cao and Evans, 1989 ; THOULESS, 1990;
O’DownD et al., 1992). All the experimental data taken to date for such systems seem
to display an increase in toughness accompanying an increase in relative proportion
of mode 2 to mode 1. The strong trends seen in Fig. 8 must be attributed to the effect
of plasticity since the work of separation I' is mode-independent and the other details
of the separation potential (1.2) seem to be relatively less important, as will be
discussed subsequently.

There is some distinct asymmetry in the toughness variations with ¥, with respect
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to the minima of these curves. The general shape of these curves, including the
asymmetry, is roughly consistent with the experimentally measured mixed mode
toughness curves obtained by LIECHTI and CHAI (1992) for an epoxy—glass interface.
These researchers made careful estimates of the plastic zone sizes under the full range
of loadings and verified that the tests were well within the small-scale yielding range
for their specimens. There is another feature of the predictions in Fig. 8 which appears
to be consistent with data taken for a Niobium-AlLQ; interface by O’ Dowb et al.
(1992). These workers could only obtain interface toughness data for i, < 0° since the
interface crack kinks into the brittle Al,O; for i, > 0°. (Note that these workers take
the ductile material to be below the interface so that their phase measure has the
opposite sign to that being used here.) However, the toughness data for this interface
intersects the vertical axis at o = 0 with a nonzero slope, much like the curve for
é/oy = 3 does. Moreover, the general trend is similar over the range of the present
predictions.

The minimum steady-state mixed mode toughness for the interface crack is sub-
stantially higher than the mode | steady-state toughness for the homogeneous material
at a given value of /ay. Recall that the solid line curve for N = 0.1 in Fig. 2(b) for
the mode 1 toughness was computed with precisely the same material and separation
potential parameters as for the mixed mode results in Fig. 8. Thus, for example, the
minimum value of {K|,/K, for the interface crack with ¢/ay = 3 is 2.1 while the
corresponding value for the mode 1 crack is only 1.4. Presumably, the constraint of
the material below the interface which undergoes no plastic deformation is the source
of the relative toughness enhancement. We believe that the curves of mixed mode
toughness in Fig. 8, which are plotted in terms of the local measure of mixity, would
not be significantly different if they had been calculated using finite values of E/E,,
and even with E/E, = 1, although this assertion has not been verified.

With /, denoting the length of the process zone, extending from the points along
the interface where the peak stress is first attained to the point where 4 = 1, the ratio
I,/ R, accompanying the results in Fig. 8(a) is shown in Fig. 9. In accordance with the
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Fi1G. 9. Normalized length of the steady-state fracture process zone for the case 6¢/8¢ = 1.
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trends observed for the mode 1 problem, the length of the fracture process zone can
be a significant fraction of the plastic zone size when plasticity effects are rather small
and diminishes relative to the plastic zone size with increasing 6/oy. (Recall that the
plastic zone size is approximately equal to R, when 6/oy is less than about 2 and
becomes large compared to R, as 6/oy increases above 2.)

The effect of varying the parameter 35/d; is seen in Fig. 10 where the mixed mode
toughness prediction is displayed for ¢/oy = 2.4. As already mentioned, the curve for
05/6¢ = 100 corresponds to an interface separation law which effectively suppresses
tangential interface displacements. The law associated with the curve for é3/6; = 0.5
has a peak stress in a pure tangential “‘separation™ displacement which is §/2 making
it relatively easier for the interface to separate under loadings with a substantial mode
2 content, as can be seen in the figure. The main conclusion to be drawn from Fig.
10 is that for relatively small amounts of mode 2 (i.e. |iy| < 20°) the dependence of
the toughness on the tangential component of the displacement of the separation
potential as specified by §5/67 is of relatively minor consequence but, not surprisingly,
becomes more important as the mode 2 content of the loading becomes larger.

6. DiSCUSSION AND SUGGESTIONS FOR FURTHER WORK

The strong dependence of interface toughness on the relative proportion of mode
2 to mode 1 seen in experimental data is predicted by an elastic—plastic continuum
model with an embedded traction—displacement law characterizing the fracture pro-
cess on the interface. The increase in toughness with increasing proportion of mode
2 to mode 1 is predicted to be a consequence of plastic deformation outside of the
fracture process zone ; the work of the fracture process is modeled as being mode-
independent. Studics such as the present one, as well as earlier studies cited, give
convincing evidence that “first principles” computation of crack propagation are
feasible with present day computational facilities. Approaches which build in the
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F1G. 10. Influence of the separation law parameter 65/6¢ on the steady-state interface toughness for the
case dloy = 2.4.
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fracture process hold promise for linking predictions for small-scale yielding (which
can be encompassed by linear elastic fracture methodology) with those for large-scale
yielding (for which no universal methodology exists), since no restriction on the extent
of the plastic deformation need be imposed.

Computational models which embed a fracture process zone hold promise to
circumvent a related difficulty in nonlinear fracture analysis which appears to be
particularly acute for interface cracks. Several studies (SHARMA and ARAvas, 1992 ;
MATAGA and PONTE CASTANEDA, 1992) have shown that the elastic—plastic singularity
field of a crack on an interface lying between solids with dissimilar elastic—plastic
properties usually has an exceedingly small domain of dominance. So small, in many
instances, that the singular fields have no physical meaning. This state of affairs
invalidates any fracture approach based on the near-tip singularity field. An approach
based on an embedded model of the fracture process zone does not make use of any
notions involving a crack tip singularity ficld within the plastic zone. Indeed, it was
seen that the size of the fracture process zone can be a significant fraction of the size
of the plastic zone, a clear indication that a singularity-based approach under such
circumstances is doomed. This pessimistic assessment may not always be warranted
however. The work of BOSE and CASTANEDA (1992) indicates that under some con-
ditions of interface crack growth the zone of dominance may be large enough to
invoke a singularity-based approach. Moreover, these authors discovered that a mode
1-like singular field prevails even when the remote loading as measured by ¢ has a
significant mode 2 component. These two features lead these authors to propose a
growth criterion based on a critical value of the near-tip plastic stress intensity factor,
although no predictions are actually made.

While an approach using an embedded fracture process model circumvents the
issue of domain of validity of a singularity field, it introduces other problems. In
particular, in the present approach, the traction—displacement law must be a
sufficiently realistic representation of the actual fracture process such that the par-
ameters I', o, 85, etc. can be inferred from selected experiments or can be computed
using micromechanical models. In T&H some initial attempts were made 1o compute
the fracture process parameters for the mechanism of void nucleation, growth and
coalescence using a micromechanics model. In the present study of the mixed mode
loadings it has been seen that the predictions do not seem to be unusually sensitive
to features of the traction—separation law such as the relative peak in the traction
stress in pure shear to that in pure normal separation as specified by the parameter
85/0;. We have carried out a preliminary study extending that in T& H to include both
tangential and normal crack face displacements in the micromechanics model of
separation by void growth and coalescence. We find that over a fairly broad range of
tangential to normal displacements the work of separation I'j is essentially constant
and the value of /8y is approximately 0.2, This suggests that the toughness curve
for such an interface would be somewhat lower than the lowest curve in Fig. 7. The
present approach is not tied to the necessity of using a potential to generate the
interface tractions, and some calculations have been carried out for potential-less
laws. More effort will be necessary to establish the traction—separation laws for specific
fracture processes if approaches of the type used here are to be employed as predictive
tools,
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