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ABSTRACT

A STRAIN GRADIENT THEORY of plasticity is introduced, based on the notion of statistically stored and
gcometrically necessary dislocations. The strain gradient theory fits within the general framework of couple
stress theory and involves a single material length scale /. Minimum principles are developed for both
deformation and flow theory versions of the theory which in the limit of vanishing /, reduce to their
conventional counterparts: J, deformation and J, flow theory. The strain gradient theory is used to
calculate the size effect associated with macroscopic strengthening due to a dilute concentration of bonded
rigid particles : similarly, predictions are given for the effect of void size upon the macroscopic softening
due to a dilute concentration of voids. Constitutive potentials are derived for this purposc.

I. INTRODUCTION

CONVENTIONAL CONSTITUTIVE theories of plasticity possess no material length scale.
Predictions based on these theories involve only lengths associated with the geometry
of the solid. For example, if one uses a conventional plasticity theory to predict the
effect of well-bonded rigid particles on the flow stress of a metal matrix composite,
the result will depend on the volume fraction, the shape and the spatial distribution
of the particles, but not on their absolute size. There is accumulating experimental
evidence for the existence of material size effects in plasticity, with the feature that
the smaller the imposed geometric length scale relative to some material length scale,
the stronger the material in its plastic response. Indentation tests show that inferred
hardness increases with diminishing indent size for indents in the micron to sub-
micron range (Brown, 1993). In particulate reinforced metal matrix composites,
small particles give rise to an enhanced rate of strain hardening compared to the same
volume fraction of larger particles (KELLY and NICHOLSON, 1963 EBELING and
AsHBY, 1966). Recent torsion tests on copper wires of diameter in the range 12--170
um show that the thinner wires behave in a stronger manner than the thicker wires
(FLECK er al., 1993). A theory has been advanced by FLECK et al. (1993) for such
phenomena based on the idea that a strain gradient leads to enhanced hardening due
to the generation of geometrically necessary dislocations. Strain gradients exist in the
region of an indent in an indentation test and near to the particles in a particulate
composite. The smaller the indent or the smaller the particles. the larger the strain
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gradient and the larger the density of geometrically necessary dislocations. all other
things being equal. In a torsion test the magnitude of the imposed strain gradient
scales inversely with the wire diameter for a given level of surface shear strain. In each
case the presence of a strain gradient leads to enhanced hardening. Conversely, strain
gradients are absent in a simple tension test (prior to the onset of necking) ;: FLECK ¢f
al. (1993) found that the uniaxial tensile response of the copper wires was independent
of wire diameter.

It is now well established that the strain hardening of metals is duc to the accumu-
lation of dislocations. In a uniform strain field, dislocation storage is by random
trapping and leads to the formation of dipoles. These dipoles act as a forest of sessile
dislocations and strain hardening is associated with the elevation of the macroscopic
flow stress required to cut the dipoles [sec for example, HULEL and Bacon (1984)].
The randomly trapped dislocations are termed statistically stored dislocations. The
von Mises effective plastic strain can be thought of as a useful scalar measure of their
density in conventional plasticity theory. Gradients of plastic shear result in the
storage of geometrically necessary dislocations (NYE, 1953 1 COTTRELL, 1964 ; ASHBY,
1970. 1971). A well-known example of this is in the plastic bending of a beam, where
the plastic curvature x of the beam can be considered to be due to the storage of extra
half-planes of atoms, or, cquivalently. to a uniform density of edge dislocations. The
density pg; of these “"geometrically necessary™ edge dislocations is given by |« |/h. where
b is the magnitude of the Burgers vector of the dislocations. Note that [w] gives the
magnitude of the strain gradient in the beam. and so p; varies linearly with strain
gradient.

FLECK er al. (1993) have developed a deformation theory version of plasticity which
models the hardening due to both statistically stored and geometrically necessary
dislocations. The degree of hardening due to statistically stored dislocations is assumed
to scale with the von Mises effective strain. Hardening due to gecometrically necessary
dislocations is taken to scale with an isotropic scalar measure of the strain gradient
in the deformed solid, and with a material length parameter /; this is made precise in
Section 2 below. The theory fits neatly within the general framework of couple stress
theory and reduces to conventional J, deformation theory in the absence of strain
gradient effects, that is, when the geometric length scales are large compared to /. In
both the previous paper by FLECK et «f. (1993) and in the current paper finite
strain effects are neglected : no distinction is made between the inttial undeformed
configuration and the current deformed configuration.

The outline of the paper is as follows. Couple stress theory is reviewed in order to
introduce the stress and strain measures which are employed in the strain gradient
theory. The deformation theory version of the strain gradient theory is outlined, and
minimum principles are established for solving boundary value problems. A feature
of the theory is the prediction of boundary layers near an interface or rigid boundary.
The form of the boundary layer is explored and analytical expressions for it are given
for the elastic solid. A J, flow theory version of the strain gradient theory folows
naturally from the simpler deformation theory, and minimum principles arc given in
rate form. As in the case of their conventional counterparts, the deformation and flow
theory versions give identical predictions when loading is proportional. Two examples
are given where proportional loading is exhibited : macroscopic strengthening of a
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power law solid due to a dilute concentration of rigid spherical particles and softening
due to a dilute concentration of spherical voids. The average macroscopic reponse is
given in terms of a constitutive potential which makes use of the solution for an
isolated inclusion (rigid particle or void) in an infinite solid. Detailed calculations are
given for the isolated rigid particle and isolated void, and explicit predictions are
presented on the effect of inclusion size. The results suggest that strain gradient effects
have only a relatively minor influence on the softening due to voids and on their rate
of growth, but large strengthening effects are predicted for rigid particles.

1.1. Review of couple stress theory

In couple stress theory it is assumed that a surface element dS of a body can
transmit both a force vector T d.S (where T is the force traction vector) and a torque
q dS (where q is the couple stress traction vector). The surface forces are in equilibrium
with the unsymmetric Cauchy stress, which is decomposed into a symmetric part 6
and an anti-symmetric part . Now introduce the Cartesian coordinates x;. Then
(0,;+1;;) denote the components of T, on a plane with unit normal #, such that

T; = (0;;+1;)n,. nH
Similarly let y,; denote the components of ¢; on a plane with normal »;
q4; = Wih;. (2)
We refer to u as the couple stress tensor; it can be decomposed into a hydrostatic
part ul (where I is the second order unit tensor) and a deviatoric component m.
KoITER (1964) has shown that the hydrostatic part of u does not enter the field
equations and can legitimately be assumed to vanish; thus g = m.
Equilibrium of forces within the body gives
G/'l'./+T/1'./ = O (3)
and equilibrium of moments gives
Tjk = _.:l’_ei[knlpi,/n (4)

where we have neglected the presence of body forces and body couples. Thus 7 is
specified once the distribution of m is known.
The principle of virtual work is conveniently formulated in terms of a virtual
velocity field #;. The angular velocity vector ¢, has the components
9, = %()i/klil\‘j' (5)

Denoting the rate at which work is absorbed internally per unit volume by U, the
equation of virtual work reads

j Udv = J [T+ q:0,]1dS, (6)
v S

where the volume V is contained within the closed surface S. With the aid of the
divergence theorem and the equilibrium relations (3) and (4), the right-hand side of
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(6) may be rearranged to the form

J\ [T/l.l/ + (ll(}I] d‘s - J‘ [O'HJE'/ + nlh‘ X,H'} d l/‘ (7)
5 I

where the infinitesimal strain tensor is ¢, = («,,+u,,) and the infinitesimal curvature
tensor is x,; = 0, ,. Note that the curvature (ensor can be expressed in terms of the
strain gradients as y,; = ¢4é,,. For the case of an incompressible solid, ¢
where s is the deviatoric part of a.

= ;8

i RAVALT

2. DEFORMATION THEORY VERSION

FLECK et al. (1993) have developed a strain gradient version of J, deformation
theory. In this section, we summanze their theory and give the associated minimum
principles. A conscquence of the higher order theory is the existence of a boundary
layer at bimaterial interfaces. The nature of the boundary layer is revealed by con-
sidering the case of simple shear at a bimaterial interface.

The starting point in the deformation theory version of couple stress theory is o
assume that the strain energy density w of a homogeneous isotropic solid depends
upon the scalar invariants of the strain tensor ¢ and the curvature tensor %. Since the
rotationisdefined as 0, = Ye; 1, ;{i.c.® = scurl (w)], wehave y, = ey, = 0. Thus,
¥ 1s an unsymmetric deviatoric tensor. We further assume the solid is incompressible
and so the symmetric tensor ¢ is also deviatoric. The von Mises strain invariant ¢, =
N 36,6, 18 used to represent the contribution to w from statistically stored dislocations
and the invariant y, =/ ﬁx,‘,x,‘, is used to represent the contribution to w {rom
geometrically necessary dislocations. Any contribution to i from the invariant y,y,,
is ncglected for the sake of simplicity (though it could be included in an obvious and
straightforward manner). It is mathematically convenient to assume that w depends
only upon the single scalar measure ¢ where

A7 =l 17y 8

Here, /1s the material length scale introduced into the constitutive law, required on
dimensional grounds. Following the arguments presented by FLECK e af. (1993)./
may be interpreted loosely as the free slip distance between statistically stored dis-
locations. If we take the density pg of statistically stored dislocations to be linear in
& and the density p¢; of geometrically necessary dislocations to be linear in %, then
& may be interpreted as the harmonic mean of pg and p;, and is a useful measure of
the total dislocation density.
Next define an overall stress measure X as the work conjugate of 4. with

5 - di ()

9
dé ®)

and note that the overall stress X is a unique function of the overall strain measure
&'. The work done on the solid per unit volume equals the increment in strain cnergy.

O = 8,08+ 01,08 ;4 (10
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which enables one to determine s and m in terms of the strain state of the solid as

= =T =30 (1a)
and
my= " ox ey (11b)
X CXji é

Substitution of (11a) into the expression &} = 3e;¢,; and (11b) into x = 3y, %, gives,
via (&),

S =g+ *m. (12)
where ¢, = \/gs,.,.s-,., is the usual von Mises effective stress and m, = \/r%m,-,m,-,- is the
analogous effective couple stress. The measures g, and m, are the work conjugates of
¢ and y., respectively, such that dw = ¢, de.+m. dy.. Indeed, this work relation may
be used as the defining equation for ¢, and n1.. The deformation theory is fully
prescribed once a functional form is assumed for Z in terms of &. In Section 4 below
we adopt the power law relation

& ( z >
=l ). (13)
6 0 21)

The constitutive description (8)—(12) may be derived in an alternative direct manner
through the following formal mathematical device. In the absence of couple stresses
the deviatoric part of the symmetric Cauchy stress tensor s may be represented by a
five-dimensional vector. When couple stresses are present the role of s is replaced by
that of the 13-dimensional vector £ = (s,/” 'm"), where m" is the transpose of m; X
is made up of the five symmetric components of s and the eight components of the
unsymmetric, deviatoric tensor /" 'm". Similarly, when couple stresses are present the
five-dimensional deviatoric strain measure & = g¢— I tr (¢) is replaced by the 13-
dimensional vector & = (&', /).

In the general case the solid is assumed to be compressible such that g, # 0. The
strain energy density w of the couple stress hyperelastic solid is taken to depend only
upon the volumetric strain ¢, = g, and the scalar invariant § = \/%6 -&. This defi-
nition of & is identical to that given in (8). The total differential of w may be written
as

(&, ) = 36+ GOt (14)

where £ = dw/d& is the overall effective stress and ¢, = 0w/de, = $04 is the mean
stress. Note that X is the work conjugate of &, and a,, is the work conjugate of ¢,,.
The work increment per unit volume is

Iw(&.ey) =0:06+m' :dy =s:68 +m'":dy+0,08, =L 88+0,56,. (15)

The stress state corresponding to any given strain state follows directly from (14) and
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(15) as
aw dwdd 2% |
S = = = =R ¢
g 08 e 34 ¢ (16a)
. v ow &8 2 Z/ L6b
n = = = b
Iy 08 loy 368 X (166)
and
Cw
Oy = - . (I()C)
Cén

Substitution of (16a, b) for the components of & = (&'./y) into & = \,/E(’;’ - & results
in the explicit expression (12) for the overall cffective stress.
For the case of a linear elastic solid. the strain cnergy density w may be wrilten as

E Voo, s

= ‘m L /_n iR ) ]7

" 2(I+\')<l~2\'{ ot "/X'> i

where Eis Young's modulus and v is Poisson’s ratio. The explicit dependence of w
upon the invariants &, and & is indicated by rearranging (17) to the form

W= AKen + 3G, (18)

where K = E£/3(1 —2v) is the bulk modulus and ¢ = E/2(]1 4 v) is the shear modulus
of the solid.

In the case of an incompressible solid i depends only upon &. and the term 6,08,
is dropped from the expression (15) for the work increment per unit volume : equations
(15) and (16) then reduce to (10) and (1), respectively.

2.1 Minimum principles

KoI1Ter (1964) has given a principle of minimum potential energy and a principle
of minimum complementary energy for a linear clastic solid which supports couple
stresses. These minimum principles can be extended straightforwardly in the small
strain context for a non-linear elastic solid wherc the strain energy density w depends
upon both ¢ and y. Uniqueness of solution emerges naturally in the proofs of the
minimum principles.

Consider a body of volume I and surlace S comprised of 2 non-linear elastic solid ;
the solid satisfies the constitutive law given by the first part of equations (16a -¢) (that
is. a, = Cw/Cey; and my, = Sw/Cy,). A stress traction T} and couple stress traction ¢
act on a portion S of the surface of the body. On the remaining portion .S, of the
surface the displacement is prescribed as #! and the rotation is prescribed as ). Then
the following minimum principles may be stated.

Principle of minimwm potential energy. Consider all admissible displacement fields
u, which satisfy u;, = « and 0, = e, 1, = 0] on a part of the boundary S,. Let ¢, =
M, +1u,,) and Ly = Vet be the state of strain derived from w,. and take (6. m)
1o be the stress field associated with (&.x) via 6,; = Cw/éey and my, = Ciwicy,,.
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Define the potential energy P(u) as

P(u) = f wie, %) dV—J (T/u;+4¢/61dS. (19)
v 5,

where the surface integral is taken over that part S; of the surface of the body over
which loading T; and ¢; are prescribed. Then the principle of minimum potential
energy is:

Provided w is strictly convex in & and y the potential energy P(u), considered as a
functional in the class of kinematically admissible displacement fields w., attains an
absolute minimum for the actual displacement field.

The uniqueness of solution is implied in the statement that the minimum is absolute.

Proof: Take u to represent the equilibrium solution ; it is associated with the strain
state (g, ) and stress state {¢,m) via the constitutive law. The anti-symmectric part t
of the Cauchy stress follows directly from the spatial gradient of m by (4). Let u+Au
represent a kinematically admissible configuration associated with (e+Ae, x+Ay)
and the non-equilibrium stress state (6+Aa, m+Am). The difference in potential
energy of the body in the two states is AP = P(u+ Au) — P(u). Direct evaluation of
AP using (19) and the virtual work statement (7) gives

A i
AP = J [w(s +Ae. g+ Ay) — wie. 1) — Ae, 9%:’: 0 Ay, - “;B’X)] av.  (20)
v )

i y
Provided w(e, %) is strictly convex in & and 7 the integrand of (20) is positive and the
potential energy has a proper absolute minimum in the equilibrium configuration.

For the special case where 1 depends only upon & it may be shown that w- is strictly
convex in & and y provided X = dw(&)/dé is an increasing function of &. It is known
from convex function theory that w is convex in ¢ and y provided (i) w is strictly
convex in & and (ii) & is strictly convex in ¢ and y [see for example ROCKAFELLAR
(1970). p. 32]. With the definition (8) & is strictly convex in ¢ and y. Provided
¥ = dw(&)/d& is an increasing function of & (that is, provided the tangent modulus
E. = dZ/dé& is positive), w s strictly convex in &. Thus, for the case where iy depends
only on &, w is convex in ¢ and ¢ provided we ensure that £ = dw(£)/d& is an
increasing function of &. For such a solid, the potential energy (19) is minimized by
the actual displacement field.

Principle of minimum complementary energy. In order to develop a minimum
principle for the complementary energy it is necessary to introduce the stress potential
¢ (6, m) which is the dual of w(g, %),

¢(6,m) = f 8,,d6,»,+f i dm, = o8+ myy,—we y). 2n
0 0

Thus the strain state (g, %) may be taken to be derived from the stress state (¢, m) via
&, = 0¢/do,; and y,; = Op/dmy,.
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Define the complementary energy ({6, m) as

C(6,m) = J $(a.m)d VWJ [T +¢,0)1dS (22)
1 S

and consider all admissible equilibrium stress fields (e.m) which satisfy the traction

boundary conditions (¢, +t,)n, = T} and m,n; = ¢} on Sy, Let «) and 0 be pre-

scribed on the remaining portion S, and define (&, x) as the state of strain associated

with the stress (6. m) via ¢, = d¢p/Co, and y,; = ¢¢p/cm,,. Then, the principle of mini-

mum complementary energy may be stated as:

Provided ¢ is strictly convex in e and m the complementary energy Cle.m), considered
as «a functional in the statically admissible stress fields (o.m), attains an absoluic
mininnan for the actual stress field.

Since the minimum is absolute, uniqueness of solution is assured.

The proof proceeds along similar lines to that given above for the principle of
minimum potential energy. and is not given here. A full discussion for the linear case
is given by KOITER (1964). For the actual solution (u, e, m) which gives rise to the
minimum value of potential energy P, and the minimum value of complementary
energy C. 1Uts readily shown that

len + ('mm = 0. (21)

2.2, Boundary layver near a bimaterial interface

The presence of strain gradient dependence within the constitutive law lcads to a
higher order set of partial differential equations governing deformation of the body
and to higher order boundary conditions. An cxtra contribution ¢,0, appears in the
boundary term of the virtual work statement (7). The higher order boundary condition
gives rise to the existence of a boundary layer adjacent to certain types of boundaries
in the solid. We explore this phenomenon for the simple but instructive case of an
interface between two elastic solids under remote simple shear, as shown in Fig. 1.
This simple example will inform the behaviour at the interface between a bonded
particle and the matrix in the particle reinforcement problem studied later.

It is assumed that both materials are incompressible and satisfy the constitutive
description (8) (12}, Matcrial | lies above the interface and possesses a4 shear modulus
G . such that (13) may be re-expressed as £ = 3G & ; the material length scale / in
(8)., (11b) and (12) is designated /, for material 1. Similarly, material 2 possesses a
shear modulus G, and obeys £ = 3G,4& ; it 1s ascribed a material length scale /5.

The bimaterial is subjected to remote simple shear. In the Cartesian reference frame
defined in Fig. 1. the only non-vanishing displacement component u is taken to bec a
function solely of x,. The non-vanishing components of the strain tensor and curvature
lensor may be expressed in terms of the engincering shear strain ;) = -~ as

fa=cy =5 oand Y =05, = =4y (24)

i

The active stresses within the solid are 1 = 6>, +7~,. 7, = d,.+1,> and the couple
stress nr = n1,+: these stress components may vary with x, but not with x; or x..
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FiG. . A bimaterial interface under remote simple shear. For the couple stress solid, a boundary layer
exists adjacent to the interface in both solids.

Force equilibrium (3) demands that tg equals the remote shear stress t“. Moment
equilibrium (4) gives

Mma = Tg—Ty. (25)
The constitutive law (8)—(13) reduces to
15+1,=2G,y and m= —1iG,y, (26a)
in material 1, and
Ts+1p =2G,y and m= —[3G.y > (26b)

in material 2. Elimination of 15, &, and m from (25) using (26a, b) gives the governing
differential equation for y as

— vty = G, (27a)
in matenial 1, and
_1137,,_}_7:T1 (27b)
2372 G,

in material 2. In order to determine the unique solution to (27a) and (27b) we apply
the following boundary conditions:

(Iy as |xs] = o0, 7> t7/G, in material | and 7 — t” /G in material 2;
(IT) continuity of traction on the interface dictates that tg and m are continuous ;
(ITT) we assume that no work is done at the interface. By the virtual work relation
(7). the work done at an interface of surface S is fs[T,Au,A— ¢;A0,1dS where T;
is the stress traction and ¢; is the couple stress traction on the interface; the
Jump in displacement is Aw; and the jump in rotation is A8, along the interface.
Thus the supposition that no work is done at the interface implies that both u,
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and 0, are continuous at the interface. Since 0, = — };

» we conclude that 5 is
continuous at the interface.

The higher order theory requires an extra boundary condition in addition to the
standard boundary condition of continuity ol displacement at the interface. It is not
clear whether continuity of (- is the most appropriate boundary condition to take on
physical grounds. This choice has the merit that no work is then done by the couple
stress traction at the interface. Other choices of boundary condition are possible,
however. In general, the other choices would be associated with a jump in )4 at the
interface.

The solution to (27a, b) with the boundary conditions (I HI) is

T’(l G:/: Cl:*(]\ w\/\) (78 )
o= — . ) [CHE ! 20¢
es G\, +Gals Gy ‘

in material 1, and

T G\l G.(;J‘J\,,‘) 25b)
‘TG, G/l +Gols G, © -

in material 2. Along the interfacc v, =0 and both (28a) and (28b) reducc to
v =1"({,+1,)/(G],+G-l,). For the general case of finite G,. G, /, and /5. the bound-
ary layer has an exponential decay length of /,/,/2 in material 1 and /3,"\,//2 in material
2. A typical solution is sketched in Fig. 2(a). The shear strain y in the more compliant
layer is reduced near to the interface with the adjacent stiffer layer: similarly the
magnitude of 3 in the stiffer layer is clevated in the vicinity of the interface with the
more compliant layer.

[t is instructive to consider the imiting solutions (28a. b). In the limit of /, = 0 or
[, — 0 one of the two solids is unable to carry couple stresses and the shear strain is
~ =1’ /G, throughout solid I and 7 = 77 /G, in solid 2. This is the classical elasticity
result and shows a jump in 7 but not t¢ at the interface.

Now take the limit G- — . with G, /, and /- finite. Then, solid 2 can support
couple stresses and m1 is finite at the interface. The shear strain 3 vanishes in solid 2
as expected, and in solid 1 7 is given by

'

T 5
v= (I—c¢ 7 0). (29
1= ) )
Again, the thickness of the boundary layer in solid 1 is given by the decay distance
1,/\/2. The effective curvature y, = Vil = (1//6) ]y 2] and the strain mcasure

5

¢ = Jer+ 11y insolid 1 are

¢

‘

Xe= e~ (30)
\/”3GI/I
and
‘ T’ v TN
&=, (I=2el42e ) (3
V3G,
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FiG. 2. A bimaterial interface under remote simple shear. (a) Typical form of the boundary layer at the
interface between two dissimilar elastic solids. (b) The nature of the boundary layer ncar the interface
between an elastic solid and a rigid solid.

respectively. These distributions y(x,), x.(x,) and &(x,) are sketched in Fig. 2(b).
They have the following physical implications when interpreted for a dislocated solid.

The density pg of statistically stored dislocations scales approximately with |y| and
the density pg of geometrically necessary dislocations scales approximately with ..
Thus near the rigid boundary pg is lowered and p; is raised. The combined total
density of dislocations scales with &'; a small reduction in & exists near to the rigid
boundary {with a minimum value ofr"/(\/60.) at x, = (In 2/\/2)/1 = 0.490/))]. We
know from dislocation theory that rigid boundaries repel dislocations due to a repul-
sive image force. Thus we might expect the dislocation density to be lowered near to
a boundary. This effect is mimicked in an approximate manner by the predictions of
the strain gradient theory.

3. FrLow THEORY VERSION

In this section we first review conventional J, flow theory for an elastic—plastic
solid. A strain gradient version of J, flow theory is then proposed. Stability and
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minimum principles follow in a straightforward fashion. Briefly, the strain gradient
version of J, flow theory is generated by following the prescription given above for
deformation theory. In the presence of couple stresses. the deviatoric, symmetric
Cauchy stress s is replaced by the 13-dimensional vector X and the plastic strain rute
" is replaced by the 13-dimensional vector &7

In conventional J, flow theory, couple stresses are neglected and the strain tensor
& is decomposed additively into an elastic part ¢ and a plastic part &
strain is related to the Cauchy stress o via the lincar relation

. The clastic

g = M 1O (32a)

-
where

(I+v)

. N N Voo
Ao = (0404 0,05) — EO,/-()A,. (32b)

+v
2K
Here, £ is Young's modulus and v is Poisson’s ratio. We note in passing that the
inverse of . # is givenby & = .4 ' = 0w/de” where, in the abscnee of couple stresses,
wis defined by the reduced form of (17) with vanishing /.

The plasticity relations of conventional J» flow theory provide a connection between
the plastic strain ratc " and the stress rate 6 : the plastic strain & is determined by
integration of €™ with respect to time. In J, theory. £ is taken to be incompressible.
and the yield surface @ is written as

D, Y)=a.— Y =0, (33)

where o, 18 the von Mises effective stress, g, = \,w"js',/‘%',,, and Y is the current flow
stress. For a hardening solid, the material response is plastic when ® = 0 and 6. > 0;
and the response is ¢lastic when @ < 0, or @ = 0 and 6, < 0. The plastic strain rate
£" is assumed to be linear in the stress rate 6. and to lic normal to the current yicld
surface. giving

| oD
e (34)

il —

o) Co

where the hardening rate /1 is chosen so that the uniaxial tensile response is reproduced.

This dictates that 4 equals the tangent modulus of the stress versus plastic strain curve
in simple tension. The work rate U per unit volume of the elastic plastic body is

: el ooapl
U = 06,6, = 0,8 + 5,8 (35)

i
and so U may be partitioned into an elastic part U =g, and a plastic part
U = 5,6 Substitution of (34) into U™ = s, gives UY = g.6./h which may be

AT Gy
rewritten as U™ = ¢.4" where the effective plastic strain rate &' = 6./ Observe that
8=/ 3ERé by direct evaluation, making usc of (34).

Now assume the existence of couple stresses in the clastic-plastic body. The clastic
strain state (¢, %) is assumed to be related to the stress state (o, m) via the clastic
strain encrgy density w*, giving via (15) and (17)

-
o=9:" = | (36)

el

cEé
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and P
1..T . cl W 37
[/ 'm Z.f./x :/ﬁfx“‘i’ (~ )
where
i E v T el 77 el e
= ) (1 o, ) el 4 x,-,'x,-}>- (38)

The length scale /,; has no physical significance and is introduced in order to partition
the curvature tensor y into its elastic part x5, = ¢;é5h,; and plastic part x5} = ¢;xelh, -
A sensible strategy is to take /, « [ so that the dominant size effect is associated with
plastic rather than elastic strain gradients. Explicit expressions for the elastic moduli
& and .# are obtained by differentiation of (38) with respect to e and /%', respectively,
giving

L) = 2(|i ) <1 i“2\' (5,,-(5A,+(51k(5/,+(5,»,(5/A> (39)
and
g = E <’f'>3(s,k 5 (40)
(I+wvy \/
The elastic strain state is obtained from the stress state by inversion of (37)--(40)
' =40, (41)
where .4 = % ' and in component form is
.#M,:(gngm%+@@My—;@ﬁM (42)
Similarly,
e =0 3)

where 4" is the inverse of .# and has the components

. (I+v) (1Y, .
%i/A/:” *E /~1 ()ik()//- (44)

c

A prescription is now given for the dependence of the plastic strain rate upon the
stress rate in the presence of couple stresses. The argument parallels that given for
the deformation theory solid in the discussion following (13). In the presence of couple
stresses, the deviatoric, symmetric Cauchy stress s is replaced by the 13-dimensional
vector X = (s,/" 'm") comprising the five components of s and the eight components
of / 'm'. Similarly, the plastic strain rate ™ is replaced by the 13-dimensional vector
& = (6™, Iy). The yield surface (33) generalizes to

OE,Y)=X-Y=0, (45)

where the overall effective stress X is defined by
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Y0 =3E-X = s, b3l Cmgmy = 6l g (46)

in agreement with (12). When the solid is subjected to a uniaxial tensile stress o, % = a
and yield occurs when ¢ = ¥ by (45): we interpret Y as the uniaxial flow stress.
Equation (45) 15 a natural generalization of (33) once 1t ts assumed that s 1s replaced
by X = (s./ 'm')and 5, by E in the couple stress version of the theory.

Plastic straining is assumed to be normal to the yield surface and the plastic strain
rate is taken to be lincar in the stress rate: (34) then generalizes to

1 D

((;‘pl _ .
hX) cx =

(47)
where &™ = (8", /%) has alrcady been defined. In the case of uniaxial tension, where
the axial stress is o and the plastic strain is . we find £ = ¢ and (47) reduces to

ol a (4%)

&= .

(o) ‘
Thus the interpretation of ;i remains the same as for conventional J, flow theory.
The plastic work rate U™ s, via (10),
UM =g, 60 o 0 = X 47 (49)

On substitution of the expression (47) for £ into (49) we get U™ = T /h which may
be rewritten as U = ££™ wherc the overall effective plastic strain rate 6™ = /4. An
alternative expression for £ is obtained by evaluation of the invariant (/36" -&"
using (47), to give

i pl Z ) 7 pl 7 pl <
AN = Y WEM S (50)
For completencss. we introduce the effective plastic curvature rate 7 as ¥ =
p p
o 305 and note that €7 may be written in terms of & and 3! as
('(;pl — \/,"%({)}pl ,((jIpI _ /, ;pl pl+ 1[-,/}1/1X’];| = (( pl +(/Xp]) (51)

3.1 Swmmary of elastic-plastic constitutive relations

The main constitutive relations in the strain gradient formulation are now sum-
marized in index notation. Plastic flow is normal to the yield surface such that

39
g ! 524
‘ 2 X (524)
and
37 'my;
e = "y, 32b
xh W (52b)
by (47). The rate of overall effective stress T is given by the rate form of (46),
3y, 37 'm,
i Fom ! i (52¢)

Fox ity oy i
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The elastic strain rates follow from (41) and (43) as

& = »//i/k/du (53)

if
and
l')(icfl = 'W;//\// I”'1//” (54)

with . 4, and %, given by (42) and (44) respectively. Note that the current for-
mulation predicts that couple stresses remain present in the case of a purely elastic
response with vanishing plastic strains. This is for purely mathematical convenience,
and is given no physical significance. Indeed, the magnitude of the elastic couple
stresses may be made arbitrarily small by choosing the ratio /,// to be sufficiently
small.

In the above strain gradient versions of J, deformation theory and J, flow theory,
proportional loading occurs at a material point when all stress components of (¢, m)
lie along a fixed direction which is written as (¢°,m") ; the components of (6. m) then
scale in magnitude with a monotonically increasing scalar quantity, /. such that
(6.m) = A(¢",m"). When proportional loading is experienced by a material point the
predictions of the above strain gradient versions of J/, deformation theory and J- flow
theory coincide.

3.2. Minimum principles

The yield surface (45) is convex in the stress space (6, m) and the plastic strain rate
is normal to the yield surface. Hence the strain gradient version of J, flow theory (with
h > 0) satisfies the slightly more generalized form of Drucker’s stability postulates
(DRUCKER, 1951)

6,60 +n =0 (55a)

for a stress rate (¢, m) corresponding to a plastic strain rate (", %™). and

(6, —aX)El + (my; —nk) ! = 0 (55b)

for a stress state (&, m) associated with a plastic strain rate (¢, %), and a neighbouring
stress state (¢*, m*) on or within the yield surface.

Minimum principles are now given for the displacement rate and for the stress rate.
for the strain gradient version of J, flow theory. These minimum principles follow
directly from those outlined by Korter (1960) for phenomenological plasticity
theories with multiple yield functions, and from the minimum principles given in more
general form by HiLL (1966) for a metal crystal deforming in multislip. The presence
of couple stresses can be included simply by replacing s by  and é™ by £, as outlined
above.

Consider a body of volume ¥ and surface S comprised of an elastic—plastic solid
which obeys the strain gradient version of J, flow theory (52)—(54). The body is loaded
by the instantaneous stress traction rate 77 and couple stress traction rate ¢ on a
portion Sy of the surface. The velocity is prescribed as # and the rotation rate is (!
on the remaining portion S, of the surface. Then the following minimum principles
may be stated.
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Minimum principle for the displacement rate. Consider all admissible velocity ficlds
i, which satisfy =4 and 0, = le, 0, =0 on S, Let & = Mu,,+1,,) and
%ip = 20l ;, be the state of strain rate derived from 1, and define (6.m) to be the
stress rate field associated with (&, %) via the constitutive law for the strain gradicent
version of J. flow theory (52) (54). Then, the functional F(u), defined by

|

Fla) = J [0+ %] d LJ (7744 ¢70]dS (56)
I S

is minimized by the exact solution (u. €, %, ¢, m). The exact solution is unique since the
minimum is absolute.

M inimum principle for the stress rate. Consider instead all admissible equilibrium
stress rate fields (¢, m) which satisfy the traction boundary conditions (6,4 7;,))n, =
T and nirn, = ¢ on Sy. Let & and 0! be prescribed on the remaining portion S,.
and define (£.%) to be the state of strain rate associated with the stress rate (6. m) via
the constitutive law (52)—(54). Then, the functional H(g.m), dcfined by,

1 .
H(g.m) = | f [ﬁ',,;i,/—i—))'z,,)(,,]dV—J UG, + T+, 001 dS (57)
| s,

1s minimized by the exact solution (4, €. %, , m). Uniqueness follows directly from the
statement that the minimum is absolute.

The proofs of the minimum principles for the displacement ratc and stress rate
require three fundamental incqualities, which are the direct extensions of those given
by KOITER (1960) and HiLL (1966), and are stated here without proof. Assume that
at each material point a stress state (a,m) is known ; the material may, or may not,
be at yield. Let (& 9) be associated with any assumed (6.m) via the constitutive law
(52) (54). Similarly. let (£*,%*) be associated with an alternative stress rate field
(6*.m*). Then, the three inequalities are

(&, =BG, — B+ Ly — A D —nrh) = 0, (58a)
(EEgk 46,0, —2686,)+ GlEms 4o,y — 2 8m,) 20 (58b)

and
(Ehok46,0,—28,6%)+ GLEml 4, —20,m%) 2 0. (58¢)

The equality sign holds in the above three expressions if and only if 6* = ¢ and
m* = m.

4.  CONSTITUTIVE POTENTIAL FOR A DILUTE CONCENTRATION OF INCLUSIONS

HiLL (1967) and RicE (1970) have developed techniques for estimating the macro-
scopic average response of a heterogencous material, based on the response at cach
material point. In the same spirit, Duva and HUTCHINSON (1984) derived constitutive
relations for a power law creeping body containing a dilute concentration of voids,
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and Duva (1984) estimated the stiffening of a power law material due to the presence
of a dilute (and non-dilute) concentration of rigid spherical particles. The basic
approach is to define in a rigorous fashion a constitutive potential for the body
containing a dilute concentration of inclusions in terms of the change in potential due
to the introduction of an isolated inclusion in the matrix material. The development
given below is a generalization of that given by Duva and HuTCHINSON (1984) for
the case of a solid which can support couple stresses.

The formulation is done within the context of deformation theory. A power law
stress—strain relation is taken for the matrix, and for the kernel problem of an
isolated inclusion in an infinite matrix remote proportional loading is applied. These
stipulations allow for a generalization of Illuyshin’s theorem to be enforced: pro-
portional loading occurs at each material point within the body and results for
deformation theory coincide exactly with the predictions of flow theory.

We consider as a macroscopic representative volume element a block of material
with volume ¥ consisting of a dilute concentration p of inclusions in an incompressible
nonlinear matrix. Specifically, the matrix is taken to be a power law deformation
theory plastic solid with constitutive description (8)--(13), and the inclusions are either
traction-free voids or bonded rigid particles. In the sequel, we shall use the term
“inclusion™ to refer to either voids or rigid particles. The matrix material is char-
acterized by a potential of the stress ¢(e, m), where

p s ! 'm! 20{;‘0 Z 7+ 1
(6.m :f &-dx =J :,»-dx,-~+j I, A 'my) = <> . (59
¢ ) 0 o b S o X AU, (n+1)\Z, (59

so that the strain at a material point in the matrix is

o o 26
(gr = <= ;Iv. = . N l = T
oxt s, M= Tam i (60)

The dual potential of ¢(6.m) is the strain energy density function w(g, y). defined by

& £ Iy n (5' (n+ Din
w(e, ) = J X-dé = J s,-,da,-,+J I Yo d(Iy;) 206’0<( ) , (61)
0 0 i}

- (n+1) &y
so that
ow ow ow
L= g = ! 'm. = -
o8 T e, " poy,, (62)
Note that
dlo.m)+w(e, ) =X & =s,8,+m;y,; = L& = a5, +m .. (63)

4.1. The macroscopic potential

Let (6, m) and (&, %) denote the macroscopic, or average, stress and strain state of
a representative block of material of volume V containing a distribution of either
voids or rigid particles. The macroscopic constitutive potential ®(6, m) of the block
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provides the macroscopic strain according to

~ b /g b 64
&= ; V= A .
1) (’3-’/ X ((/ l”l,',') () )
where @ 1s related to the distribution of local potential by
Vd(e.m) = J Ple.m)dV, (65)
Illl

with ¥, denoting the region occupied by matrix material. There is no contribution (o
® from the voids or rigid particles since the pointwisc potential ¢ vanishes for both
voids and rigid particles.

For a dilute concentration of inclusions with volume fraction p the macroscopic
potential can be written as

®(6,m) = (6. m)+ pd,(G.m). (66)

where @,(d,m) is the change in potential due to the introduction of an inclusion of
unit volume into an infinite block of matrix material that is subjected to the remotc
uniform stresse¢” = 6. m" = m.

To define ®,(4, m) consider an isolated inclusion of volume ¥, centred in a spherical
matrix of volume V,, and of finite outer radius R, as shown in Fig. 3. Uniform stress
tractions T,° = (g;; + 1 )n; and couple stress tractions ¢/ = mi;; n, are applied to the
outer surface of the matrix. [Since m’ is taken to be uniform © = ¢’ vanishes by (4).]
Definc the change in potential V,®,(¢”.m") due to the introduction of the inclusion
by

Vid(e”.m”") = J [ple.m)— (e’ .m" )] dV—V (6’ .m"). (67)

m

This expression may be rearranged to a more convenient form using the principle of
virtual work and (63) to give

Vo= VI 'Vm

FiG. 3. Geometry and conventions for the isolated inclusion calculations.
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Vidi(e”.m") = J [p(oe,m) —Pp(a” ., m" ) —Ge; — ;] dV
}

+J (Touf +G,0/1dS—Vip(6“.m*), (68)
A

where the tilde symbol denotes the change in quantity due to introduction of the
inclusion,

6—6¢". m=m-m”*; T=t-1°; f,- = —(6,+1T)n and g, = —myn,

(69)

G

Il

A negative sign is present in the definitions (69) of T, and §; as the unit normal on
the surface A4, of the inclusion is taken to point into the matrix, as illustrated in Fig.
3. The integrand of the volume integral in (68) decays sufficiently rapidly at large
distances from the inclusion that @, can be evaluated ecither as the limit of the finite
problem as the outer radius R becomes unbounded, or directly from the infinite
problem where the remote stress is (67, m” ).

4.2, Relation between the muacroscopic potential and the minimum principle for the
boundary value problem

A minimum principle for the displacements may be used to find approximate
Rayleigh—Ritz solutions for an isolated inclusion in an infinite matrix under remote
stresses (6”,m”). The principle for the non-linear solid without couple stresses is
from HiLL (1956) and was modified by BUDIANSKY e7 al. (1982) to be applicable to
infinite regions. Here, the minimum principle is developed for the infinite non-linear
body which supports couple stresses. The starting point is {19) for the finite non-
linear body containing couple stresses.

Consider a finite block of volume V' containing an isolated inclusion of volume V),
centred in a spherical matrix of volume V,, and of finite outer radius R. The outer
surface of the block is subjected to the uniform tractions T/ = (6 +7,)nn; and
g; = m;; n;, where n is the outward normal to the spherical block. Take u as any
admissible displacement field and (s, y) as the associated strain quantities. Then the
actual field in the block minimizes

P(u) = J w(g, ) dV~j (T7u;+q¢70,]dS, (70)

Fiu Ap
which is a restatement of (19) in the current notation. Let the displacement field and
strain field be decomposed into the uniform remote field (denoted by a superscript
o) associated with (67, m*) and an additional field (denoted by the tilde symbol ~)

w, =g, X;+0; 0=y .\‘,+§,»; g, =&; +&; and ;= X7+ (71)

The additional field is associated with the presence of the inclusion and vanishes at
infinity. The change in potential energy upon introducing the inclusion (void or rigid
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particle) into the spherical block is

P(u) = J Dvie. ) —wie . )]d Vj [T/ d,+q; 01dS—Vow(e .37 ). (72)
lvl\

’I(

Next. note that

J [T/ id,+q/ 0]dS = —j (T d,+q; 0} dS—FJ o & +m/ 3, 1dV,  (73)
tie A Vi

where T/ = — (g, +1t7)n,and ¢/ = —mi;; n, on the surfuce A, of the inclusion since
the unit normal n is taken to point into the matrix there. Substitution of (73) into
(72) enables P, (u) to be written in the more convenient form

Pi(u) = J [wie.x)—wie" . Y=o, & —m/i g, ]1dV
lm

+J (T id,+q, 0]dS—Viwie’ ") (74)
!

In the limit R — o, the above expression for P (u) gives the change in potential energy
due to the introduction of an inclusion into the infinite block of matrix material.
Further, if P;(u) is regarded as a functional in u it provides the minimum principle
for the infinite region.

The expression (74) for P(u) is of the same form as the relation (68) for
Vi@ (e’.m"). In fact. a straightforward connection exists between V,® (¢’ ,m’ ) and
the minimum value P, of P;(u). Upon summing (68) and (74) we find, after some
manipulation,

Pmm+ qu)l = J [T/I/I/-FC[,-(),] ds. (75)
h

For a traction-free void T, = ¢, = 0 on the void surface. and for a bonded rigid particle
we lake i, = 0, = 0 on the surface of the particle [as discussed morc fully in the
paragraph following (27)]. Thus. for both types of inclusion. the right-hand side of
(75) vanishes, and

Pmin + VI(DI = 0. {76)

This relation c¢losely parallels (23) and provides a simple way of calculating
V@, (6", m" ) directly from the solution to the mimimum problem.

5. STRENGTHENING DUE TO A DILUTE CONCENTRATION OF
RIGID SPHERICAL PARTICLES

Consider a macroscopic volume clement consisting of a dilute concentration p of
rigid particles embedded in a power law deformation theory matrix (13). The particles
are spherical. and are equi-sized of radius «. The average stress on the macroscopic
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volume element is taken to be ¢ and the average couple stress m is assumed to vanish.
This is reasonable provided the macroscopic strain gradients are small over length
scales much greater than the microstructural length scale /. The average strain is &
and the average curvature ¥ vanishes. The local couple stress and curvature in the
vicinity of each particle does not vanish, however, and gives rise to a particle size
dependence of macroscopic strength. The macroscopic response is given by (64) and
(65) in terms of the change in macroscopic potential @, (6, m = 0). Numerical estimates
are given for ®(4,0) in Section 5.1 below. First, some deductions are made for the
functional form of ®,(a,0) and the inverted form of the constitutive law ¢ = 6(z).

By isotropy, ®(é.,0) depends at most upon the three invariants of ¢: the mean
stress ¢,, = 1G4, the von Mises effective stress 6. = V’/ 35,5, (where s is the deviatoric,
symmetric part of the macroscopic Cauchy stress), and the third invariant J; =
(55 5;) """ Since the matrix and particle are assumed to be incompressible there is
no dependence of @, upon 4,,. We will ignore the dependence of ®; upon the third
invariant as Duva (1984) has shown it has a relatively minor effect in the limit / = 0.
Then, because @, is homogeneous of degree n+ 1 in ¢, one can write

n+ 1
(Dlz*zof')@o< > ,f;)([//(hﬂ% (77

2“(J
where the kernel problem of an isolated rigid particle is required in order to determine
values for the non-dimensional function f,. The function f, provides a convenient
measure of the strengthening effect due to the presence of rigid particles, and depends
upon both the ratio //a and the strain hardening index n. The change in potential @,
is negative for the case of a bonded, rigid particle and so a minus sign has been
introduced in (77) to make the function f, positive, for the sake of convenience.

The macroscopic strain £ is given in terms of the macroscopic stress ¢ via (64), (66)
and (77) as

& =

bl

.\ s,
30 [ Ze iog1_ R ,
&, <Z()> o U=pr+1f,;, (78a)

which may be inverted directly to give, to leading order in p,

50 (1 nyn 5,-, n+l
Zo((g:()) £, I+p T Jo (- (78b)

The above derivation of the strengthening due to a dilute concentration of particles
is based on the macroscopic potential ®. An equivalent approach is to define a
macroscopic strain energy density W of the heterogeneous body in terms of the strain
energy density w at each point of the matrix defined in (61), giving

(i)

§; =

VW) = f wie, x)dV. (79)

14 m

With the aid of relation (63) this may be re-written as
W(E 7)) = wE D +pWiEx), (80)
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where W is interpreted as the change in the strain energy density due to the presence
of a rigid particle of unit volume in an infinite matrix medium subjected to the remote
strain state (&, ). The macroscapic average stress § is related to the macroscopic strain
&by

_ OWE)
5= 0z, (81
Finally, identification of W, from expressions (78)—(81) gives
é— (n+ 1n
WI = Zn(g[)( ,k> /p (82)
&y

and a comparison of (77) and (82) shows that W (s, 1) = — ®,(¢, m).

5.1. Isolated rigid particle in an infinite matrix

The change in potential @, due to the presence of an isolated rigid particle in an
infinite matrix is calculated using the numerical procedure outlined in Appendix A.
In brief, the boundary value problem is an isolated rigid particle in the power law
matrix (13), with remote axisymmetric loading

U{}ZS: (7{]: 5’3:71 (83)

using the notation introduced in Fig. 3. Since the body is incompressible the response
is independent of the mean stress a,, = 1S+ 37, and without loss of generality we put
a. = 0. The remote effective stress ¢ is given by ¢/ = |S— T/, and is taken to be
the measure of remote stress on the body. The boundary value problem is solved by
minimizing the potential energy functional (74) using a Rayleigh—Ritz procedurc.
This problem has been considered previously by Duva (1984) for a conventional
power law deformation theory solid: for the conventional solid the appropriate
boundary condition is a vanishing displacement on the surfacc of the bonded rigid
particle. The solution for the more gencral couple stress solid approaches that of the
conventional solid in the limit / — 0. In fact, the resuits in the current study for / = 0
are more accurate than those presented by Duva (1984) since more terms were taken
in the series expansion of the minimization procedure.

The result (78b) for the strengthening due to a dilute concentration of particles
reduces in the case of uniaxial tension (4,¢) to

G = z”{wp(”“),/;,}( *> (84)
n &

Thus the factor p(n+1) f,/n is the relative strengthening due to the particles at a given
strain & Calculated values of f, are shown in Fig. 4 as a function of //u for selected
valucs of n in the range 1-10. Recall that f, gives a direct non-dimensional measure
of the macroscopic strengthening due to a dilute concentration of the rigid particles.
It is noted from Fig. 4 that f, increases dramatically with increasing //a. For example.
at n = 5. f, increases from 0.80 at //u = () to 4.82 at /ju = 1. The role played by the
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F1G. 4. The strengthening of a power law couple stress solid due to bonded rigid particles of radius «.

strain hardening index » is more modest, with a small decrease in f, with increasing
n.

The numerical resulis for f, are well approximated by the formula

o (s )

a

for 0 < //a < 0.5. Here, f, is the value of f, at //a =0, and «(n) is a numerical
coeflicient obtained by curve fitting (85) to the numerical results over 0 < //a < 0.5.
Values for f, and « are listed in Table 1 over a range in values for n. The formula
(85) is compared with the numerical results in Fig. 5: the agreement is adequate for
our purposes.

TABLE 1. Curve fitted par-

ameters £y and o in (85) for

the strengthening f, due to an
isolated rigid particle

n fo o
[ 1.25 0.693
3 0.800 0.904
5 0.666 1.02
10 0.546 1.16
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FiG. 5. Comparison of approximate formula (85) for the strengthening due to bonded, rigid particles with
the futl numerical solution.

We interpret (85) in the following manner : a particle of radius @ in the couple stress
medium is equivalent to a particle of radius ¢+ 2/ in the conventional J» deformation
theory solid insofar as strengthening is concerned. This is consistent with the notion
that a boundary layer of thickness o/ surrounds the rigid particle in the couple stress
medium. The case of a boundary layer in a linear solid under remote simple shear has
already been discussed in Section 2.2. In that case the exponential decay length of the
boundary layer was (l/\/Z)/ = 0.71/, which is in close agreement with the fitted value
a(n = 1)l = 0.69/ in the particle problem. The formula (85) suggests a remarkably
strong size effect for the bonded rigid inclusion.

It i1s emphasized that the higher order strain gradient theory demands an extra
boundary condition at the surface of the bonded rigid particle in addition to the
standard boundary condition u = 0. The most appropriate additional boundary con-
dition remains an open issue ; it may be that our choice of @ = 0 on the surface of the
particle results in a greater size effect than some other choice. It should also be borne
in mind that the strain gradient plasticity law we have employed loses its physical
basis in the limit «// — 0. In that limit, plastic flow becomes controlled by individual
dislocation-particle interactions rather than the interaction of a large number of
dislocations with a single obstacle.

The nature of the strain field in the vicinity of the rigid particle is explored further
in Fig. 6 for the case n = 5. The variation of the strain measures ¢, x. and & with
polar angular coordinate w around the particle is shown in Figs 6(a)-(c) at a fixed
radius r = l.la, and for a range of values of //a. In the absence of couple stresses
(//a = 0), a local amplification exists in ¢, and ¥, due to the presence of the particle;
¢. peaks at w ~ 30 and y, peaks at w x> 45 . The amplification is fairly local to the
particle : this is demonstrated by the rapid drop-off in %, with increasing radius r for
the case //a = 0 as shown in Fig. 6(d). Nevertheless, it 1s the presence of the large
values of y. ncar the particle which leads to local strengthening around the particle,
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30° 60°
w

FiG. 6. Strain field near a bonded rigid particle, for n = 5 and a range of values of //«. Plot of (a) cflective

strain #,. (b) effective curvature y, and (¢) overall strain measure & versus polar coordinate o, all for a

radius » = 1.1a. (d) Distribution of effective curvature ¥, around particle for a range of fixed radii, and for
vanishing //u.

and to enhanced macroscopic strengthening when the constitutive law includes a
strain gradient term.

When //a is finite, the boundary condition u = @ = 0 on the surface of the rigid
particle implies that ¢, vanishes there. Near to the particle boundary and within the
matrix the magnitude of both ¢, and y. diminishes with increasing //a as illustrated in
Figs 6(a) and (b). The overall strain measure & = /741y varies in a complicated
manner with //a, see Fig. 6(c). As //a is increased from zero, the magnitude of &
changes from the limiting value of & = ¢, to § ~ [y, at large //a. At a fixed radius
r= 1.1a, & exhibits a minimum for //a = 0.3, over most of the range of (. This
behaviour is qualitatively consistent with that exhibited in the shear boundary layer
shown in Fig. 2(b) for the linear solid; there & shows a minimum at a distance of
approximately 0.5/ from the rigid boundary.

6. SOFTENING DUE TO A DILUTE CONCENTRATION OF SPHERICAL VOIDS

Now consider a dilute concentration of traction free voids in a power law matrix
characterized by (13). The voided solid is subjected to an average stress 6 and strain
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gradients are taken to be sufficiently mild at the macroscopic level that the average
couple stress m (and ) vanishes. The voids arc taken to be spherical in shape and of
uniform radius «. The macroscopic response is given by (64) and (65) in terms of the
change in potential ®; due to introduction of an isolated void in an infinite matrix
subjected to the remote uniform stress 6. By isotropy. ®, depends at most upon the
three invariants of 6: the mean stress 6,, = 16,,. the von Mises effective stress 4, =

J%i,-,-f,, and the third invariant J; = (5,5, 5,;)""*. We argue that the dependence of ®,
upon the third invariant is relatively minor compared to its dependence on 6., and &..
Then, because @, is homogeneous of degree n+ | in 6. one can write

T

sl
Z(,> fAX i n), (86}

(bl = Z[Kﬂ)(

where
X =6,/6.. (87)

The kernel problem of an isolated void in an infinite matrix is required in order to
determine values for the non-dimensional function 7. The function /. provides a
convenient measure of the softening due to the presence of voids.

The macroscopic strain £is given in terms of the macroscopic stress 6 via (64). (66)
and (86) as

-\ o= - \n | = ~ 4 — ;o

G. S 3/ a. 3 ) of 1 {a.\c
_::/), ¢ if 6( © i 1 —X‘\ o '\j ‘
)l/ 2 (}<ZU> 2“ +P ] {2 <Z(}> z() li(”+ )/\ (‘\’X:l+ 3 (Z()) (—)X (U}

(88)

in agreement with the formula (1.11) in DuvA and HUTCHINSON (1984). Unlike the
case of the dilute concentration of rigid particles, (88) cannot be inverted in an explicit
manner ; the results (79) and (80) still hold and W (£.5) = —®, (6, m).

6.1. Isolated void in an infinite matrix

Accurate numerical solutions have been obtained for the kernel problem of an
isolated spherical void of radius ¢ in an infinite power law matrix obeying the consti-
tutive relations (8)—(13). The matrix is subjected to the remote axisymmetric loading
(S, T) as defined in (83). The solution procedure is based on minimization of the
potential energy functional (74), and the use of (76) and (86) in order to extract the
values of f.. Further details on the numerical procedure are given in Appendix B.

For axisymmetric remote stress states, all dependence of @, on ¢” can be expressed
using the remote mean stress g, = }S+:7 and ¢ = $— T, since they arc lincar
combinations of S and T. Furthermore, becausc ®, is even and homogencous of
degree (n+ 1) in ¢”, @, can be written quite gencrally for axisymmetric loading as

s\l
b.(67) = Z{,r’i(,<;c > foxan, (89)
]

(

where x = g, /0” and the remote effective stress o/ = |6 |. The distinction between
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xin (89) and X in (86) is deliberate. Only if ®@,(6™) 1s independent of the third stress
invariant J, = (7 s%s%)"? is it true that expressions (86) and (89) for ®,(¢™)
coincide. We shall find that (89) is almost even in x, and we thereby argue that (86)
is a good approximation to (89) for axisymmetric stress states, and indeed is accurate
for general stress states.

The function £, (x, //a, n) is a non-dimensional measure of the softening due to the
presence of a dilute concentration of voids ; f; is plotted against x in Fig. 7 for selected
values of //a in the range of 0-3, and n» = 5. It is clear that f, decreases slightly with
increasing //a: in other words, the degree of macroscopic softening decreases with
decreasing void size. The effect is not a large one, however. For example, for x = 0,
7. decreases from 1.29 to 0.848 when //a is increased from 0 to 3. Note further from
Fig. 7 that numerical results for £, are almost even in x. For S > T, x is positive and
X =x. For § < T, xis negative and X = —x. Only if f, were even in x would the
representation (86) reproduce exactly the axisymmetric results.

Results for the limit of vanishing //a¢ coincide with those given by Duva and
HUTCHINSON (1984). Also, their low and high triaxiality approximations carry over
to the current case with only slight modification due to //a, as will now be discussed.

Low triaxiality approximation. For any given n and //a, f, is well approximated by
the quadratic formula
fxja,m) = f*(a,n) + ik a, m)x?, (90)

where f* equals the value of f, at x = 0 and the curvature x is evaluated by fitting
(90) to the mean of the values of f, at x = 4 1. Results for f* and « are listed in Table

x:Zn,S:

FiG. 7. The softening due to a dilute concentration of spherical voids : f,(x,//a. n) for axisymmetric remote
stressing in the low triaxiality range, n = 5.
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TABLE 2. Curve fitted parameters t* and x
in the low triaxiality approximation (90)
Jfor the softening f, due to an isolated void

n=73 n=>=
lia 7 IN /¥ I§
0 1.17 2.93 1.29 3.23
0.1 1.15 2.95 2.16 3.26
0.3 1.04 3.00 .14 3.30
1 0.837 2.94 0.924 3.17
3 0.764 2.83 (.848 3.01

2. and are plotied against //a in Fig. 8 for n = 3 and 5. It is clear that x varies littlc
with //a or with n. There is a relatively small increase in /* with decreasing //v and
with increasing n.

The dilatation A}V of the void 1s related to /; by

AV_ oD, s o/ \ o’ Of. o1
Voo ooy, DI P on

m

On noting that the remote strain is given by

O_/ " |O_/
=8 o . 92
" <>:> , .

T T I
n=5
3 _ }K =
B n=3
K. f
2 - ]
1 n=5 .
n=3 }f
0.5 1 ] |
0 1 2 3
4a

FiG. 8. Effect of size ratio //a upon the curve fitted parameters /* and x in the low triaxiality approximation
(89).
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AV af(xlfa.n)

- 93
eV ox ©3)
Thus, a low triaxiality approximation for the normalized void dilatation is given by
differentiation of (90) with respect to x. The resulting approximation is in good
agreement with the full numerical solution. as illustrated in Fig. 9(a). Plainly, the
normalized dilatation is not sensitive to the normalized void size, a//.

. (a)
T T T
numerical soin
- ——— low triaxiality approxn. {90}
‘e
2 % -0
AV
eV
0 P
7
’///
4
-2 r— //// -
< rd
7 -
-4 | |
-1 -0.5 0 05 1
x = Lnfy
(b)
100 £ T
E 7
: o
10F E
av F ]
RV L 1
1 -

numerical soln.

-~ — — —~ high triaxiality approxn. (84)
l I 1 1
0 1 2 3 4 5

x = In/p

1

0.1

FI1G. 9. (a) Comparison of the low triaxiality approximation (90) and (93) with the full numerical solution

for the void growth rate as a function of the triaxiality ratio x = 6 /o*, for the representative case n = 5.

(b) Comparison of the high triaxiality approximation (94) with the full numerical solution for the void
growth rate as a function of the triaxiality ratio x.
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High triaxiality approximation. BUDIANSKY et al. (1982) derived a high triaxiality
approximation for the normalized dilatation

AV . RIRY G | " 94
oy ] o y(n. m (94a)

where. using their notation,

R (94b)
n-

—G(n.m) = (n— l)[”"‘.‘/(m)}

and m = x/|x], g(1) = 0.4319 and g(— 1) = 0.4031.

The high triaxiality approximation was obtained by neglecting all but the spherically
symmetric contribution to the displacement field in the minimization procedure. The
spherically symmetric field dominates at moderate to high triaxialities, and involves
only uniaxial straining of each material element. It introduces no curvature ¢ to any
material point surrounding the void and so the high triaxiality approximation remains
valid in the couple stress formulation. This is the underlying reason why no strong
size effect 1s noted for the void problem. A comparison of the high triaxiality approxi-
mation with the full numerical solution is given in Fig. 9(b). At high triaxialities, the
dependence of £, and AV/e¢ iV upon //a disappears, and the approximation (94) is an
accurate representation for all //a.

Evolution of void shape. BUDIANSKY ¢t al. (1982) found that the shape to which a
spherical void evolves is sensitive to the value of n. For S slightly greater than T (and
both positive), the void grows towards a prolate shape for #» < 2, and towards an
oblate shape for n > 2.

=3
[a}

>
o

-1 -0.5 0 05 1
1, =L
x = 7L

m

FiG. 10. Initial shape change of spherical void.
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Let Aa be the increment in growth of the void from its centre to its pole, and Ab
be the corresponding increment in the radius of the equator. The change in void shape
as described by Aa/Ab is plotted against 6* /o, = 3(S—T)/(S+2T) = 1/xin Fig. 10,
for n in the range 1-5. The results for a range of values of //a confirm the previous
finding of BUDIANSKY ¢t al. (1982) for vanishing //a: for n > 2 there exists a limited
range of ¢” Jo > 0 over which the void grows towards an oblate shape. Similarly,
for n > 2, there exists a imited range of ¢” /o, < 0 over which the void adopts a
prolate shape. The phenomenon is moderated by the presence of strain gradient
hardening : the reversal in slope of the Aa/Ab versus ¢” /o,, curve becomes less severe
with increasing //a.
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APPENDIX A NUMERICAL ANALYSIS OF ISOLATED RIGIY PARTICLE

The kernel problem for the macroscopic strengthening due to a dilute concentration of rigid
particles consists of an isolated rigid spherical particle of radius «. bonded (o an infinite matrix
under remotc axisymmetric loading S = 1X. 7= — |¥, as shown in Fig. 3. The matrix obeys
the strain gradient version of J, deformation theory outlined in Scction 2. and the power law
refation (13) 1s adopted.

The boundary value problem is solved by a Rayleigh-Ritz minimization of the potential
energy functional (74) in a similar manner (o that outlined by BUDIANSKY ¢f al. (1982).
Application of the principle of virtual work o (74). together with (63) and the boundary
condition u = 0 on the particle surface enables (74) to be simplified to

P (u) = J [we.x)—wE . =0 —s, & ]1dV+Viple” .m” =0). (A1)
lm

In order to minimize P, the displacement field u is written as a serics expansion in the spherical
polar co-ordinates (r, ) shown in Fig. 3. By incompressibility the displacement ficld (ur,. 1)
satisfics

III lltw ['{A‘r.uy

u,+2 4+ T cotw+ =0 (A2)
I I 2

and so the displacement components (u,, «,,) may be expressed in terms of the strcam function

Y(r. o) as

] |
(Y sinw),,. wu,= 1, (A3)
’

= — 5.
Fsin @
In the absence of the rigid particle the stream function is

.

33
6
in terms of the Legendre function P,(cos w). The presence of the bonded rigid particle modifics
W to

Y=y (rw) = ¢ P, (cos w), (Ad)

o=+ (AS)

where /7 is chosen to ensure that both u and 0 associated with the primary ficld (f * +4 ")
vanish at the surface of the particle. giving

I

~, £1, R LA S
W(r,w) = 6 P, (cos )| — 104"+ P (A6)

The secondary field f contains free amplitude factors in order to minimize P (u) in (Al). A
scrics expansion of the strcam function, with duc regard to the symmetries of the problem,
leads to

J M
117(".. (,’)) = Z Z i l///,”()‘. {"))'* (A7)
j-24 RS U R

O s
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where
‘/7/”; — P,_“,(COS (1))[1’ "'—{—AI’ 1m+l)+Br 1m+:)+(vr (4 3)]. (A8)

The parameters A, B and C arc chosen (o ensurc that the contribution to u and 0 associated
with cach term ,,, vanishes on the surface of the particle, » = «. This implics that

A= —3a B=3u. C=—d. (A9)

For convenience, the amplitude factors «,,, are denoted collectively by {4, }, and these are the
variables with respect to which P, is minimized. Explicit expressions for both P, and the
gradient {¢P/¢A,} are used in the Newton—Raphson minimization procedure. By the change
of variable u = «/r, the r-integration in the volume integral of (A1) is converted to an integration
over the range 0 < u < 1. A 10 point Gaussian quadrature formula is used for integration with
respect to i and with respect to o ; duc to the symmetry of the problem the integration interval
for w is from 0 to n/2. The number of terms in the series expansion (A7) is varied in order to
obtain adequate accuracy: by sctting J = 6 and M = 4 in (A7) results are accurate to within
0.5%.

APPENDIX B: NUMERICAL ANALYSIS OF ISOLATED VOID

The numerical analysis for an isolated void in a power law matrix (13) follows closely that
given in Appendix A for the rigid particle. With remote axisymmetric stressing S and 7. as
shown in Fig. 3. the potential cnergy functional (74) is rewritten as

Piu) = j Dee. ) —wie” . =0)—s; 8] dV—J‘ [o;na}dAd—Viwe .x” =0). (Bl)
lm

1
i

Since the matrix in incompressible (A2) holds and the displacements u, and «, arc again
cxpressed in terms of a stream function y(r, ) by (A3), where now we take ¢/ (r, ) to be

él§3 . J A
(r.m) = NG P, (cosw)+Aycotm+ Y Y . "Pi(cosw).  (B2)
J— 2460 m—0.1. 20

The lead term in (B2) is the remote ficld; the sccond term is the spherically symmetric
contribution and scales with the free amplitude factor 4,,. The remaining terms scale with the
amplitude factors «,,,. In contrast to the case of the bonded rigid particle no additional
constraints arc nceded to cnforce the appropriate boundary condition on the surface of the
void : minimization of P, ensures satisfaction of the natural boundary condition that the void
1s traction free.

The reduction of the minimization problem (o a standard algebraic problem for the unknown
amplitude factors {A4,.,q,,} follows the minimization procedurc given in Appendix A, and
explained in more detail by Bupiansky ef «l. (1982). A total of 16 free amplitude factors were
taken for {A4,.a,,; with J =6 and M =4 in (B2); this gives a solution which is accurate to
within about 0.1%.



