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ABSTRACT 

A STRAIS GKI\MENT THLOKY of plasticity is introduced, based on the notion of statisGcally stored and 
geometrically ncccsaary dislocations. The strain gradient theory tits within the general framework of couple 
stress theory and involves a single material length scale 1. Minimum principles are developed for both 
deformation and flow theory versions of the theory which in the limit of vanishing 1. rcducc to lhcir 
conventional counterparts: J2 deformation and J, flow theory. The strain gradient theory is used to 
calculate the size cffcct associated with macroscopic strengthening due to a dilute concentration of bonded 
rlgid particles : similarly, predictions are given for the effect of void size upon the macroscopic softening 
due to a dilute concentration of voids. Constitutlvc potentials arc derived for this purpose. 

I. INTRODUCTION 

CONVETGTIONAL CONSTITUTIVE theories of plasticity possess no material length scale. 
Predictions based on these theories involve only lengths associated with the geometry 
of the solid. For example, if one uses a conventional plasticity theory to predict the 
efrect of well-bonded rigid particles on the flow stress of a metal matrix composite, 
the result will depend on the volume fraction, the shape and the spatial distribution 
of the particles, but not on their absolute size. There is accumulating experimental 
evidence for the existence of material size effects in plasticity, with the feature that 
the smaller the imposed geometric length scale relative to some material length scale, 
the stronger the material in its plastic response. Indentation tests show that inferred 
hardness increases with diminishing indent size for indents in the micron to sub- 
micron range (BROWN, 1993). In particulate reinforced metal matrix composites, 
small particles give rise to an enhanced rate of strain hardening compared to the same 
volume fraction of larger particles (KELLY and NICHOLSON, 1963 ; EBELING and 
ASHRY, 1966). Recent torsion tests on copper wires of diameter in the range I2 -170 
Aim show that the thinner wires behave in a stronger manner than the thicker wires 
(FLECK et cd., 1993). A theory has been advanced by FLECK ct al. (1993) for such 
phenomena based on the idea that a strain gradient leads to enhanced hardening due 
to the generation of geometrically necessary dislocations. Strain gradients exist in the 
region of an indent in an indentation test and near to the particles in a particulate 
composite. The smaller the indent or the smaller the particles. the larger the strain 
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gradient and the larger the density of geometrically necessary dislocations. all othci 
things being equal. In a torsion test the magnitude of the imposed strain gradient 
scales inversely with the wire diameter for a given lcvcl of surface shear strain. In each 
cast‘ the prcscnce of a strain gradient leads to enhanced hardening. Conversely, strain 
gradients are absent in a simple tension lest (prior lo the onset of necking) ; FI.IXX c’t 
ol. (1993) found that the uniaxiat tensile response of the copper wires was independent 
of wire diameter. 

It is now welt established that the strain hardening ofmclats is due to the XCLI~LI- 

lation of dislocations. In a uniform strain field. dislocation storage is by random 
trapping and leads to the formation ofdipoles. These dipoles act as a forest of sessile 
dislocations and strain hardening is associated with the elevation of the macroscopic 
Ilow stress required to cut the dipoles [see for crumple, Hur.r. and Bnc~)l\; ( 19X4)]. 

The randomly trapped dislocations are termed .strrfi.sticrrl/~. .stor.cti rli.vloc~rrtiot~.s. The 
van Mises effective plastic strain can be thought of as 21 useful scalar measure of theit 
density in conventional plasticity theory. Gradients of plastic shear result in the 
storage of ,yc~o/)lc~fr.ic~n//~~ ~~w~.s.sr~,:1~ clisloc~rrtiorn (Nm. 1953 : COTTRELI.. 1964 : ASH~Y. 
1970. I97 I ). A welt-known example of this is in the plastic bending of a beam, whcrc 
the plastic curvature K of the beam can be considered to be due to the storage of extra 
half-planes of atoms, or, equivalently. to a uniform density of cdgc dislocations. The 
density /I(; ofthese “geometrically necessary” edge dislocations is given by /~/h. where 
h is the magnitude of the Burgers vector of the dislocations. Note that 11~1 gives the 
magnitude of the strain gradient in the beam. and so I)(, varies linearly with strain 

gradient. 
FI.EX‘K (11 trl. (I 993) have developed ;1 deformation theory version of plasticity Lvhich 

models the hardening due to both statistically stored and geometrically necessary 
distocaGons. The degree of hardening due to statistically stored dislocations is assumed 

to scale with the von Mises effective strain. Hwrdcning due to geometrically necessary 
dislocations is taken to scale with an isotropic scalar measure of the strain gradient 
in the deformed solid, and with a material length parameter /; this is made precise in 
Section 2 below. The theory fits neatly within the general framework of couple stress 
theory and reduces to conventional J2 deformation theory in the absence of strain 
gradient effects. that is. when the geometric length scales arc large compared to 1. In 
both the previous paper by FLECK et d. (1993) and in the current paper finite 
strain cffccts are neglected: no distinction is made between the initial undcformcd 

configuration and the current deformed configuration. 
The outline of the paper is as follows. Couple stress theory is reviewed in order to 

introduce the stress and strain measures which are employed in the strain gradient 
theory. The deformation theory version of the strain gradient theory is outlined, and 
minimum principles are established for solving boundary value problems. A fcaturc 
of the theory is the prediction of boundary layers near an interface or rigid boundary. 
The form of the boundary layer is explored and analytical expressions for it are given 
for the elastic solid. A JL flow theory version of the strain gradient theory follows 

naturnlty from the simpler deformation theory. and minimum principles arc given in 
rntc form. As in the case of their conventional counterparts. the deformation and flow 
theory versions give identical predictions when loading is proportional. Two examples 
are given where proportional loading is exhibited : macroscopic slrcngthcning of :I 
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power law solid due to a dilute concentration of rigid spherical particles and softening 

due to a dilute concentration of spherical voids. The average macroscopic reponse is 
given in terms of a constitutive potential which makes use of the solution for an 
isolated inclusion (rigid particle or void) in an infinite solid. Detailed calculations are 
given for the isolated rigid particle and isolated void, and explicit predictions are 
presented on the effect of inclusion size. The results suggest that strain gradient effects 
have only a relatively minor influence on the softening due to voids and on their rate 
of growth, but large strengthening effects are predicted for rigid particles. 

In couple stress theory it is assumed that a surface element dS of a body can 
transmit both a force vector T dS (where T is the force traction vector) and a torque 
q dS (where q is the couple stress traction vector). The surface forces are in equilibrium 
with the unsymmetric Cauchy stress, which is decomposed into a symmetric part 0 
and an anti-symmetric part t. Now introduce the Cartesian coordinates s,. Then 
(r~,,+z,,) denote th e components of T, on a plane with unit normal n, such that 

T, = (c,, + 0~ (I) 

Similarly let ,u!, denote the components of 4, on a plane with normal II, 

Y, = P!,H>. (2) 

We refer to p as the couple stress tensor; it can be decomposed into a hydrostatic 
part ,uI (where I is the second order unit tensor) and a deviatoric component m. 
KOITER (1964) has shown that the hydrostatic part of p does not enter the field 
equations and can legitimately be assumed to vanish ; thus p = m. 

Equilibrium of forces within the body gives 

g/r., + T,,., = 0 (3) 

and equilibrium of moments gives 

I 
T,h = - z~,,kfl~,,,,,,~ (4) 

where we have neglected the presence of body forces and body couples. Thus z is 
specified once the distribution of m is known. 

The principle of virtual work is conveniently formulated in terms of a virtual 
velocity field zi,. The angular velocity vector d, has the components 

d, = $,,&. (5) 

Denoting the rate at which work is absorbed internally per unit volume by ii. the 
equation of virtual work reads 

~.i.dV=I,T,ii;+y.B,,dS. (6) 

where the volume V is contained within the closed surface S. With the aid of the 
divergence theorem and the equilibrium relations (3) and (4), the right-hand side of 
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(6) may be rearranged to the form 

(7) 

whcrc the infinitesimal strain tensor is ::,, E ~(u,.,+u,,,) and the infinitesimal curvature 
tensor is x,, s O,,,. Note that the curvature tensor can be expressed in terms of the 
strain gradients as x,, = o,~J:,~,~,. For the case of an incompressible solid, n,,:l,, = .s,,:!,, 
where s is the deviatoric part of 0. 

3 -. DEXORMATION TIIEORY VI:KSION 

FLE(.K cf ~1. (1993) have developed a strain gradient version of J, deformatian 

theory. In this section, we summarize their theory and give the associated minimum 
principles. A consequence of the higher order theory is the existence of a boundat- 
layer at bimaterial interfaces. The nature of the boundary layer is revealed by con- 
sidering the case of sirnplc shear at a bimaterial interface. 

The starting point in the deformation theory version of‘couplc stress theory is to 

assume that the strain energy density 11. of ;i homogeneous isotropic solid depends 
upon the scalar invariants of the strain tensor E and the curvature tensor x. Since the 
rotation is defined as 0, = :c,~,, IO,., [i.c. 0 = 1 curl (u)], we hitve x,, = icy,,,\ llA_,, = 0. Thus. 

x is an unsytnmetric deviatoric tensor. WC further assume the solid is incomprcssiblc 
and so the symmetric tensor E is also deviatoric. The con Mises strain invariant i;, = 

V :~L,,c,, is used to represent the contribution to II‘ from statistically stored dislocations 
and the invariant xC = \:’ ix;,x,,, is used to represent the contribution to 11. from 
geometrically necessary dislocations. Any contribution to 11‘ from the invariant x,,x,, 
is ncglccted for the sake of simplicity (though it could be included in an obvious and 
straightforward manner). It is r7iattlCli7atic~1lly convenient to assunic that \I’ depends 
only upon the single scalar measure 6 where 

6’ E i1, +I'Xcf_ (8) 

Hero. I is the material Icngth scale introduced into the constitutivc law, rcquircd on 
dimensional grounds. Following the arguments presented by FI,ECK r~i I[/. ( 1093). I 
may be interpreted loosely as the free slip distance between statistically stored dis- 
locations. If we take the density /)c of statistically stored dislocations to be linear in 
iI, and the density /J(, of geometrically necessary dislocations to be linear in xc, then 
C? may be interpreted as the harmonic mean of i’s iind /J(;_ and is ;I uscf~11 mcasurc of 

the total dislocation density. 
Next define an overall stress III~~SL~I-~ E as the Lvork conjugate of ~9~ with 

and note that the overall stress X is a unique function of the overall strain measure 
6’. The work done on the solid per unit volume equals the increment in strain energy. 

ij,,x = .~,,(j~,~+lll,,ijX~,~ (IO) 
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which enables one to determine s and m in terms of the strain state of the solid as 

and 

(I la) 

Substitution of (I la) into the expression 1:: = <i:,,c,, and (I 1 b) into xi = :x),x,, gives, 
via (8), 

c’ = o;+/ %l;. (12) 

where oc = j$s,,.s,, is the usual von Mises effective stress and 111, = J’~~H,,/H,, is the 
analogous effective couple stress. The measures gc and HZ, are the work conjugates of 
I:, and xc, respectively, such that dn, = crc dt:,+rlz, dXu. Indeed, this work relation may 
be used as the defining equation for ne and nz,. The deformation theory is fully 
prescribed once a functional form is assumed for C in terms of R. In Section 4 below 
we adopt the power law relation 

e C” 

1 0 (cl P = c,, 
(13) 

The constitutive description (8))( 12) may be derived in an alternative direct manner 
through the following formal mathematical device. In the absence of couple stresses 
the deviatoric part of the symmetric Cauchy stress tensor s may be represented by a 
five-dimensional vector. When couple stresses are present the role of s is replaced by 
that of the l3-dimensional vector C = (s, 1~ ‘m’), where mT is the transpose of m ; C 
is made up of the five symmetric components of s and the eight components of the 

unsymmetric, deviatoric tensor 1 ‘mT. Similarly, when couple stresses are present the 
five-dimensional deviatoric strain measure E’ = E- iI tr (a) is replaced by the l3- 
dimensional vector P: = (a’, 1~). 

In the general case the solid is assumed to be conqwrssihle such that Q, # 0. The 
strain energy density 1~ of the couple stress hyperelastic solid is taken to depend only 
upon the volumetric strain a,,, = chh and the scalar invariant A = J:&*&. This defi- 
nition of A is identical to that given in (8). The total differential of 11% may be written 
X-3 

&i’(e, c,,) = CM + CT,,,& ,,,, (14) 

where C = ?u~/i?& is the overall effective stress and CJ,,, = ?H~/&,, = 40,~ is the mean 
stress. Note that X is the work conjugate of 6, and G,,, is the work conjugate of i-: ,,,. 
The work increment per unit volume is 

&(&,E,,,) = b: &+m’ : 6x = s: B~‘+rn-‘: 6~+a,,,&,,, = X*66+0,,6& ,,,. (15) 

The stress state corresponding to any given strain state follows directly from (I 4) and 
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and 
i II‘ 

v,,,= _ (I&T) 
( J41, 

Substitution of (16;~ b) for Ihe components of d E (E’,/x) inlo /: = \::A -8 results 
in the explicit expression (12) for the overall effective stress. 

For the case of a linear elastic solid. the strain energy density II‘ may be m:rittcn as 

E ! I’ 

'I‘ = 2(1 + I') I - 21, 
I:,: +':,,':i,+/'~J,, . 

! 
(17) 

where E is Young’s modulus and 1’ is Poisson’s ratio. The explicit dependence of II’ 
upon the invariants E,,, and A is indicated by rearranging ( 17) to the form 

II’ = J Kc,, + IGC; ', (IX) 

where K = .E‘,‘3( I -211) is the bulk modulus and G = E/2( I + Y) is the shear mod~~lus 

ol‘ the solid. 

In the case of an i/lc.oir?/~‘V,\:si/?/~~ solid II‘ depends only capon L . 31~1 the km cf,,,dl:,,, 
is dropped from the expression (15) for the work increment per unit volume : equations 

(I 5) and (16) then reduce to (IO) and (I I ). respectively. 

KOITER (1964) has given a principle of minimum polential energy and a principle 
of minimum complementary energy for a linear elastic solid which supports couple 
stresses. These minimum principles can bc extended straightforwardly in the small 
strain context for a non-linear elastic solid where the strain energy density II’ depends 
upon both E and x. Uniqueness of solution emerges naturally in the proofs of the 
minimum principles. 

Consider a body of volume L/and surface Scomprised of a non-linear elastic solid ; 
the solid satisfies the constitutive law given by the first part of equations (I 6a c) (that 
is. gi, = ilt./?~,, and III,, = ?~t~;ix,~). A stress traction r!” and couple stress traction L/:’ 
act on ;I portion S, of the surface of the body. On the remaining portion S,, of the 
sur-face the displacement is prescribed as l/:’ ad the rotation is prescribed as 0:‘. Then 

the following minimum principles may be stated. 

Pril7c~ip/~, of’n~iui~~~m~ po/mtiul cvrcyq~‘. Considcr all admissible displaccmcnt lields 

II, which satisfy 11, = I/:’ and 0, = ~o~,,,I/,,,, = 0:’ 011 ii part 01‘ the boundary S,,. Let i:,, e 

I(i/,,+rt,.,) and x,, = !~~#,i,~~/‘.,,~ be the state of strain derived from II,. and take (a. ml 

10 be the stress field associated with (E. x) bia ci,, = ?II’:‘?x,, and HI,, = i~l.:ix,,. 
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Define the potential energy P(u) as 

P(u) = 
s 

~‘(a, x) d V- 
c s 

[ ?-,%l, + q,%,] dS. (19) 
.\ I 

where the surface integral is taken over that part S7. of the surface of the body over 
which loading ri and y, are prescribed. Then the principle of minimum potential 
energy is : 

The uniqueness of solution is implied in the statement that the minimum is absolute. 

Proof’: Take u to represent the equilibrium solution; it is associated with the strain 
state (E. x) and stress state (a, m) via the constitutive law. The anti-symmetric part z 
of the Cauchy stress follows directly from the spatial gradient of m by (4). Let u+Au 
represent a kinematically admissible configuration associated with (a+ AZ. x + Ax) 
and the non-equilibrium stress state (a+Aa, m+Am). The difference in potential 
energy of the body in the two states is AP = P(u+Au) -P(u). Direct evaluation of 
AP using (19) and the virtual work statement (7) gives 

AP= 
(?)I(&, x) 

r1.(& + AE, x + AX) - M(E, x) - AE,, pTEp 
(?M’(&, x) 

‘Ii 
- Ax,, _-~m 1 df’. (20) 

1, 

Provided ~‘(a, x) is strictly convex in E and x the integrand of (20) is positive and the 
potential energy has a proper absolute minimum in the equilibrium configuration. 

For the special case where HZ depends only upon B’ it may be shown that H* is strictly 
convex in E and x provided C = drr(8)/db is an increasing function of 6. It is known 
from convex function theory that H’ is convex in E and x provided (i) )I’ is strictly 
convex in 6 and (ii) A is strictly convex in E and x [see for example RO(‘KAFEI.I~AR 
(1970). p. 321. With the definition (8) R is strictly convex in E and x. Provided 
C = dn(rS’)/dG is an increasing function of R (that is, provided the tangent modulus 
E, = dC/d& is positive), II‘ is strictly convex in W. Thus, for the case where II’ depends 
only on R. II’ is convex in E and x provided we ensure that C = dn(A’)/d& is an 
increasing function of 8. For such a solid. the potential energy (19) is minimized by 
the actual displacement field. 

P~incipk of fflinifmm cotflpl~mcntu~!, cne,:q?~. In order to develop a minimum 
principle for the complementary energy it is necessary to introduce the stress potential 
&a, m) which is the dual of u,(E, x), 

4(a,ml =[qdo,,+[x,,dw, = ~,,E,,+t?l,,X,,~lI.(E,X). (21) 

Thus the strain state (a, x) may be taken to be derived from the stress state (a, m) via 
I:,, = ?4ir7a,, and x,, = i?giic?m,,. 
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Dctine the complementary energy <‘(a, m) as 

C’(a,m) = 
i: 

&CT. m) d I”- i’ [ 7;~:’ + qj#‘] dS 
‘. 

(32) 

and consider all admissible equilibrium stress fields (6. m) which satisfy the traction 

boundary conditions (q5i,+~,,)~~, = T,” and M,,H, = (1:’ on S,. Let u;’ and 0,” be pre- 
scribed on the remaining portion S’,,. and define (E, 2) as tllc state of strain associated 
with the stress (a, m) via i:,, = c’c/,/?n,, and x,, = icl,,‘i/lr,,. Then. the principle of min- 
mum complementary energy may be staled as : 

Since the minimum is absolute, uniqueness of solution is assured. 
The proof proceeds along similar lines to that given above for Ihc principle of 

minimum potential energy. and is not given here. A full discussion for the linear GISC 

is given by KOITER (1964). For the actual solution (~.a. m) which gives rise to Ihe 

niinitnum value of potcntinl energy P,,,,,, and the minimum value of c[~iiiplernentar), 

cncrgy C,,,,,,. it is readily shown that 

L, + (‘I,,,,, = 0. (23) 

3.2. Bt~ttrlrrr~~ Ictwr ttc(~r (I hittrtrtc~rictl itttcyfitc.c 

The prcscnce of strain gradient dcpcndence within the constitutive law Icads to ;I 

higher order set of partial differential equalions governing deformation of the body 
and 10 higher order boundary conditions. An cxlra contribuGon q,ci, appcat-s in the 
boundary term ofthe virtual work statement (7). The higher order boundary condilion 
gives rise to the existence of a boundary layer adjacent to certain types of boundaries 
in the solid. We explore this phenomenon for the simple but instructive case of an 
interface between two elastic solids under t-cmotc simple shcnr, as shown in Fig. I. 
This simple example will inform the behaviour al the interface between ;I bonded 
particle and the matrix in the particle reinforcement problem studied later. 

It is assumed that both materials are incompressible and satisfy the constitutive 
description (8) ( I?). Marcrinl I lies above the interface and possesses ;I shear rnodul~~s 

G,. such that (13) may be I-e-expressed as C = iG,L ; the material Icngth scale / in 
(8). (1 1 b) and (13) is designated I, for material 1, Similarly, material 2 posscsscs :I 

shear modulus C;? and obeys X = X2(, * ; it is ascribed ;I mntcrial length scale /?. 

The bitnatcrinl is subjected lo remote simple shear. In the Cartesian reference frame 
defined in Fig. I. the only non-vanishing displacement component II, is taken to bc :I 

function solely of.\-,. The non-vonishingcoinponcnts of the strain tensor and curvature 
tensor may be expressed in terms of the engineering shear strain ;’ = II, 2 as 

1 ̂, 1:,2 = ::2, = 2, and x:;=fl;,= -1.. 2,.?. (34) 

The active stresses within the solid are T\ = CT:, +r ?,. T, s a,?+~,, and the couple 

stress ttt E ttt2?: these stress components may vary with _\-? but not with .I-, or .I-~. 
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FIG. I. A himaterial interface under remote simple shear. For the couple stress sohd, a boundary layer 
exists adjacent to the interface in both solids. 

Force equilibrium (3) demands that ss equals the remote shear stress z’. Moment 
equilibrium (4) gives 

tn,2 = ss-rr. (25) 

The constitutive law (8))( 13) reduces to 

t,+r,. = 2G,1 and m = -lfG,y,2 (26a) 

in material I, and 

rsft, = 2G2; and m = -liG2y.2 (26b) 

in material 2. Elimination of rs, cI. and n? from (25) using (26a, b) gives the governing 
differential equation for 7 as 

(27a) 

in material I. and 

I/‘“! f;’ = 7r 
-7 2/.12 

G2 
(27b) 

in material 2. In order to determine the unique solution to (27a) and (27b) we apply 
the following boundary conditions : 

(1) 
(11) 

(III) 

as 1.~~1 + ;(J, 7 -+ z’/G, in material I and ;’ + 7’ /G, in material 2; 

continuity of traction on the interface dictates that rs and LIZ are continuous ; 
we assume that no work is done at the interface. By the virtual work relation 
(7), the work done at an interface of surface S is i5 [T,Alc,+q,AO,] dS where T, 
is the stress traction and q, is the couple stress traction on the interface; the 
jump in displacement is Au, and the jump in rotation is AO, along the interface. 
Thus the supposition that no work is done at the interface implies that both U, 
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and (I, are continuous at the interface. Since 0, = - i;’ we conclude that ;’ is 
continuous at the interface. 

The higher order theory requires an extra boundary condition in addition to the 
standard boundary condition of continuity ol’displaccment at the interface. It is not 

&II- whether continuity of 0, is the most appropriate boundary condition to take on 
physical grounds. This choice has the ma-it that no work is then done by the couple 

stress traction at the interface. Other choices of boundary condition are possible. 
however. In general. the other choices wo~ki be associated with 21 ju1p in II, at the 
intcrfacc. 

The solution to (2721, b) with the boundary conditions (I III) is 

in material I. and 

(Xa) 

(Xb) 

in material 2. Along the interface _I-~ = 0 and both (XI) and (Xb) reduce to 

;I = T’ (/, +12)/(G,/, + G2/?). For the general case of finite C;,. G,. /, and I-. the bound- 
ary layer has an exponential decay length of I,:,. 2 in material 1 and /?it ‘2 in material 

2. A typical solution is sketched in Fig. 2(a). The shear strain J’ in the more compliant 
layer is reduced near to the interface with the adjacent stifler layer; similarly the 
magnitude of ;’ in the stiffer layer is clcvated in the \,icinity of the interface with the 

more compliant layer. 
It is instructive to consider the limiting solutions (Xa. b). In the limit of I, + 0 OI 

II + 0 one of the two solids is unable to carry couple stresses and the shear strain is 
= T ’ /G‘, throughout solid I and ;’ = 7 ’ /G2 in solid 2. This is the classical elasticity 

result and shows a jump in ;I but not 5s at the intcrfacc. 
Now take the limit G2 + ‘X with G,, I, and I, finite. Then. solid 2 can support 

couple stresses and HI is finite at the interface. The shear strain ;’ vanishes in solid I! 
as expected. and in solid I ;’ is given b\ 

;’ = ; (1 _-c’ \ -‘i ’ ), (3) 
I 

Again. the thickness of the boundary layer in solid 1 is given by the decay distance 

1,:’ _. ‘I? The effective curvature xC = ,/~:Jx~~I = (1/,,‘6) 1;,,2) and the strain mcasurc 
A = ,, ‘i:<< +/fr,z in solid I are 

xc= T e ,Z’ / 

\/‘3G,I, 
(30) 

md 

8 = z’ (1_2c-,J‘4+2e ?,‘\:/,)I? 

J3G, 
(31) 
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(a) 
Srn 

- 

tm ---- (b) 

FIG. 2. A himaterial interface under remote simple shear. (a) Typical form of the boundary layer at the 
interface between two dissimilar elastic solids. (b) The nature of the boundary layer near the interface 

between an elastic solid and a rigid solid. 

respectively. These distributions Y(.Y?), x~(_\-~) and A(.Y?) are sketched in Fig. 2(b). 
They have the following physical implications when interpreted for a dislocated solid. 

The density ps of statistically stored dislocations scales approximately with 12’1 and 
the density /lo of geometrically necessary dislocations scales approximately with xc. 
Thus near the rigid boundary ps is lowered and pG is raised. The combined total 
density of dislocations scales with B‘; a small reduction in A exists near to the rigid 
boundary [with a minimum value of r’/(fiG,) at A~? = (In 2/J2)1, = 0.4901,)]. We 
know from dislocation theory that rigid boundaries repel dislocations due to a repul- 
sive image force. Thus we might expect the dislocation density to be lowered near to 
a boundary. This effect is mimicked in an approximate manner by the predictions of 
the strain gradient theory. 

3. FLOW THEORY VERSION 

In this section we first review conventional .I1 flow theory for an elasticcplastic 
solid. A strain gradient version of J2 flow theory is then proposed. Stability and 
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minimum principles follow in ;I straightforward fashion. Briefly. the strain gradient 
version of J, flow theory is generated by following the prescription given above for 
deformation theory. In the presence of couple stresses, the dcviatoric. cymmctric 
Cauchy stress s is replaced by the 1%dimensional bcctor Z: and the plastic strain rate 
Cl“ is replaced by the 1 Sdimensional vector Al“. 

In conventional J2 flow theory, couple stresses arc neglected and the strain tcnsot 
I-: is decomposed additively into an elastic part xc’ and ;I plastic part 8”‘. The elastic 
strain is related to the Cauchy stress r~ via the linear relation 

pi 
‘ii = N,,/</“/,/. (321) 

where 

/i 
(1+13) _ 

iii/ = 7r ((),i,o,,+(j,,ij,,~)~ &,(s,,. (32b) 
_: 

Ha-e. E is Young’s modulus and 1’ is Poisson’s ratio. We note in passing that the 
inverseof.Uisgivenbyy = .N ’ = ?‘II,/?E’ where. in the absence ofcouple strcsscs, 
II’ is defined by the reduced form of (I 7) with vanishing 1. 

The plasticity relations ofconventional J2 flow theory provide ;L connection bctwccn 
the plastic strain rate 9 and the stress rate 6; the plastic strain 8”’ is determined b) 
integration of ip’ with respect to time. In .I, theory. i I” is taken to be incompressible. 
and the yield surface (I) is written as 

cl,(o, Y) = fJ- Y = 0, (33) 

where cc is the von Mists efrective stress. O, = , A.Y,,.~,,. and Y is the current flo~ 
stress, For ;I hardening solid. the material response is plastic when (1) = 0 and ri, > 0 ; 
and the response is elastic when CD < 0. or CL, = 0 and 6, < 0. The plastic strain rate 
,I” is assumed to be linear in the stress rate 6. and to lit normal to the current yield 

surface. giving 

(34) 

where the hardening rate /I is chosen SO that the uniaxial tensile response is reproduced. 
This dictates that /I equals the tangent modulus of the stress versus plastic strain CLII-vc‘ 

in simple tension. The work rate ii pa- unit volume of the elastic plastic body is 

i: = m[, ii,, = (i,, ,i;; + .\‘,, ii,!;’ (35) 

and so ii may be partitioned into an elastic part 0” = rIJ,,I:,c; and ;I plastic part 
<!I” = .Y,,$. Substitution of (34) into i;l” = .sj,iil;’ gives c!l” = (~,ti~//~ which may be 

rewritten as i/l” = o,riJ’ where the effective plastic strain rate riJ’ = ri,,‘l~. Observe that 
{:“I = ‘I L ‘z,li;‘ii,‘;’ by direct evaluation. making LISC of (34). 

Now assume the existence of couple stresses in the elastic plastic body. The elastic 
strain state (&I, x”) is assumed to be related to the stress state (6, m) via the elastic 

strain energy density 11.” , giving via ( IS) and (I 7) 
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an d 

where 

(37) 

The length scale [Cl has no physical significance and is introduced in order to partition 
the curvature tensor x into its elastic part xzl, = r,,a~:;‘),i,, and plastic part x,;i, = o,,~$,‘,,,,. 
A sensible strategy is to take /,, << I so that the dominant size effect is associated with 
plastic rather than elastic strain gradients. Explicit expressions for the elastic moduli 
LZ’and .I are obtained by differentiation of (38) with respect to aC’and Ix”, respectively, 
giving 

E 21% 
“Y 

“A’ = 2(l +I,) i I-21, 6,, 6k, + (),A 6,, + 6,,6,, 1 

and 

(39) 

(40) 

The elastic strain state is obtained from the stress state by inversion of (37))(40) 

&J 
= .N:a, (41) 

where .N= 9 ’ and in component form is 

, N 
(l+v) . . 

r,A, = 2E~ h,,+wk I;k,h,. (42) 

Similarly, 

lx” = X: I- ‘m’. (43) 

where .iy’ is the inverse of .g and has the components 

(44) 

A prescription is now given for the dependence of the plastic strain rate upon the 
stress rate in the presence of couple stresses. The argument parallels that given fo’ 
the deformation theory solid in the discussion following ( 13). In the presence of couple 
stresses, the deviatoric, symmetric Cauchy stress s is replaced by the l3-dimensional 
vector X = (s. I ‘m’) comprising the five components of s and the eight components 

of I ‘m’. Similarly, the plastic strain rate ip’ IS replaced by the l3-dimensional vector 
(5”’ = (C”‘, 12). The yield surface (33) generalizes to 

qc,Y)=Z-Y=o. 

where the overall effective stress C is defined by 

(45) 



in ugreement with (12). When the solid is subjcctcd to a uniaxial tensile stress C. Z: = 0 

nnd yield occurs when CJ = Y by (45); vd’c intcrprct II as the i’niaxial tlow stress. 

Equation (45) is ;I natural generalization 01‘ (33) once it is assumed that s is replaced 

by C = (s. I ‘m’ ) and IT, by C in the couple stress version of the theory. 

Plastic straining is assumed to be normal to the yield surface and the plastic strain 

rate is taken to bc linear in the stress rate : (34) then gencralizcs to 

&I,’ = 
I id) 

h(C) iz: i. (47) 

where (4:“” = (iI”, Ii) has already been defined. In the case of uniaxial tension, whcrc 
the axial stress is CJ and the plastic strain is ::I”. WC find I = (T and (47) reduces to 

ti 
$‘I= 

/l(O) 
(48) 

T~LIS the intcrprctation of/~ remains the same as for conventional J2 flow theory. 

The plastic work rate i:“’ is. via (IO), 

[)I)’ = ,y,, t:,;’ + ,]I,, xl;’ = r * & 1”. (49) 

011 substitution of the cxprcssion (47) for RI” into (49) wc get <;I” = X2//r which may 
bc rcwritkn as i:l” = Idr’ where the ova-all cfrective plastic strain rate &I” = t//r. An 

altcrnativc expression for (5 ‘1” is obtained by evaluation of the invariant ,//i&“’ *c?“’ 

us~11g (47). to give 

ii)’ = 2 

I1 = ’ 
’ $$Ql’ . &“I, (50) 

For completcncss. we introduce the elrective plastic curvature rate ii:,” as ii?’ = 
,, i;ii)‘il;’ and note that &I” may be written in terms of rij?’ and 1(:,j” as 

$I>’ = v. ~~I~’ .&PI = ~, $$$’ + yji;;;I ii;’ zzz ~ (;;p’)’ + (/fF’)?. (51) 

3. I S~imilrrr~~ of~citrstic plrrstic cw~stit~rtiw wltrtiom 

The main constitutive relations in the strain gradient formulation arc IIOW sum- 

mari7ed in index notation. Plastic flow is normal to the yield surface such that 

p = 3 .s,, 
‘ii 

2/7 rz 
c 

by (47). The rate of overall efl’ective stress I? is given by the rate form of (46). 

(5%) 

(S2b) 

i:= 
3 .s,, 3 I ‘I?? 
3 c .s,, + 

2 c 
” I ‘Ijl,, 
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The elastic strain rates follow from (41) and (43) as 

1839 

and 

.cI 
c,, = , N,,ud-A, (53) 

la;; = &\,I ’ ril,,\, (54) 

with I /T,,r, and .X‘,,i,, g iven by (42) and (44) respectively. Note that the current for- 
mulation predicts that couple stresses remain present in the case of a purely elastic 
response with vanishing plastic strains. This is for purely mathematical convenience. 
and is given no physical significance. Indeed, the magnitude of the elastic couple 
stresses may be made arbitrarily small by choosing the ratio I,‘// to be sufficiently 
small. 

In the above strain gradient versions of J2 deformation theory and JZ flow theory, 
proportional loading occurs at a material point when all stress components of (0, m) 

lie along a fixed direction which is written as (GO, m”) ; the components of (a, m) then 
scale in magnitude with a monotonically increasing scalar quantity, i, such that 
(a, m) = i(a”, m”). When proportional loading is experienced by a material point the 
predictions of the above strain gradient versions of _I? deformation theory and J2 flow 
theory coincide. 

The yield surface (45) is convex in the stress space (CT, m) and the plastic strain rate 
is normal to the yield surface. Hence the strain gradient version ofJ, flow theory (with 
/I > 0) satisfies the slightly more generalized form of Drucker’s stability postulates 
(DKUCKER. 1951) 

o,, ii;’ + Q&l;’ 3 0 

for a stress rate (&, m) corresponding to a plastic strain rate (I?“‘. iP’). and 

(55a) 

(c7,, -r+;’ + (I?$, -I$)$ 3 0 (55b) 

for a stress state (a, m) associated with a plastic strain rate (S”. i”‘). and a neighbouring 
stress state (a*. m*) on or within the yield surface. 

Minimum principles are now given for the displacement rate and for the stress rate. 
for the strain gradient version of JZ flow theory. These minimum principles follow 
directly from those outlined by KOITER (1960) for phenomenological plasticity 
theories with multiple yield functions, and from the minimum principles given in more 
general form by HILL (I 966) for a metal crystal deforming in multislip. The presence 
of couple stresses can be included simply by replacing s by X and iP’ by 8”. as outlined 
above. 

Consider a body of volume V and surface S comprised of an elastic-plastic solid 
which obeys the strain gradient version ofJ2 flow theory (52))(54). The body is loaded 
by the instantaneous stress traction rate Fp and couple stress traction rate 41’ on a 
portion S, of the surface. The velocity is prescribed as ti:’ and the rotation rate is al 
on the remaining portion S,, of the surface. Then the following minimum principles 
may be stated. 
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h’i!7if~77u~? pi7?cipkefiw the disp/mw?7cr?t txtc. Consider all admissible velocity fields 
li, which satisfy li, = $’ and Ci, = &J~,,,&, = 0:’ on s,,. jet ?:,, = :(li,,+ri,.,) ilnd 
xi,, = 2(i,,,~l,,.,,, be the state of strain rate dcrivcd from li,, and define (ti. ti) to bc the ‘I 

stress rate lield associated with (C, g) via the constitutive law for the strain gradient 
version ofJ2 flow theory (52) (54). Then, the functional F(ti), defined by 

F(ti) = 1 
j_ 

[ri,,ri,, +/i7,ii,,] d C.p 
i’ 

[-i-;‘G, +~j;‘Ci,] dS (56) 
- I .’ I 

is minimized by the exact solution (ti. & x, 0, ti). The exact solution is unique since the 
minimum is absolute. 

Mir~ir777r777 pritwi/dc~,/iw //7e .str~~.~.s rwtc,. Consider instead all admissible equilibrium 

stress rate fields (6. ti) which satisfy the traction boundary conditions (tit,+ ?,,)/J, = 

FF and I~I,,/I, = 4:’ on Sr. Let ti:’ and (I,” be prescribed on the remaining portion S,,. 
and define (E. i) to be the state of strain rate associated with the stress rate (6. ti) via 
the constitutivc law (52)-(54). Then, the functional H(&. rig), dcfincd by. 

H(a.ti) = ; [“~,rl,,+/il,,~,,]d1’- 
.i‘ 

[(ci,, + id, 117, !;;I + Ii7,,II, li;‘] ds (57) \ 
// 

is minimized by the exact solution (U. i. %. ti, ti). Uniqueness follows directly from the 
statcmcnt that the minimum is absolute. 

The proofs of the minimum principles for the displacement rate and stress rate 
require three fundamental inequalities. which are the direct extensions of those given 
by KOITEII (I 960) and H11.r~ (I 966). and are stated here without proof. Assume that 
at each material point a stress state (a.m) is known; the material may, or may not, 
be at yield. Let (& j) be associated with any assumed (ci. ti) via the constitutive lau 

(51) (54). Similarly. let (E*.X*) be associated with an alternative stress rate licld 
(a*. ti*). Then, the three inequalities arc 

~llld 

(il;fY;+li,,ci,, - X,,ci;) + (Xzfi7; + i,,ri7,, ~ 3i(,1i7;) 3 0. (SXC) 

The equality sign holds in the above three expressions if and only if a* = 6 :III~ 
m* = m. 

4. CONSTITUTIVE. POTENTIAL FOR A DILUTE CONCXNTRATION OF IN(I.LJSIONS 

HILL ( 1967) and RICE ( 1970) have developed techniques for estimating the macro- 
scopic average response of a heterogeneous material. based on the response at each 
material point. In the same spirit, DLJVA and HUTC‘HINSON (1984) derived constitutivc 
relations for ;I power law creeping body containing a dilute concentration of voids, 
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and DUVA ( 1984) estimated the stiffening of a power law material due to the presence 

of a dilute (and non-dilute) concentration of rigid spherical particles. The basic 
approach is to define in a rigorous fashion a constitutive potential for the body 
containing a dilute concentration of inclusions in terms of the change in potential due 
to the introduction of an isolated inclusion in the matrix material. The development 
given below is a generalization of that given by DUVA and HUTCHINSON (I 984) for 
the case of a solid which can support couple stresses. 

The formulation is done within the context of deformation theory. A power law 
stress-strain relation is taken for the matrix, and for the kernel problem of an 
isolated inclusion in an infinite matrix remote proportional loading is applied. These 
stipulations allow for a generalization of Illuyshin’s theorem to be enforced: pro- 
portional loading occurs at each material point within the body and results for 
deformation theory coincide exactly with the predictions of flow theory. 

We consider as a macroscopic representative volume element a block of material 
with volume Vconsisting of a dilute concentration /I of inclusions in an incompressible 
nonlinear matrix. Specifically, the matrix is taken to be a power law deformation 

theory plastic solid with constitutive description (8))( 13) and the inclusions are either 
traction-free voids or bonded rigid particles. In the sequel, we shall use the term 
“inclusion” to refer to either voids or rigid particles. The matrix material is char- 
acterized by a potential of the stress d(a. m), where 

&a,m) = rfi.dX = ll;,,d.s,,+[ ‘m’IX,,d(l l,~r,,) = (E;“;) (<I+‘, (59) 

so that the strain at a material point in the matrix is 

(60) 

The dual potential of 4(a. m) is the strain energy density function IV(E, x), defined by 

so that 

(62) 

Note that 

Cb(C m) + dE, X) = c . 8 = .s,,I:,, +I?$, x,, = Cb = ccc, +,,l,Xc. (63) 

4.1 Tlw rmcroscopic potential 

- - 
Let (5, rib) and (E, x) denote the macroscopic, or average, stress and strain state of 

a representative block of material of volume V containing a distribution of either 
voids or rigid particles. The macroscopic constitutive potential @(r?, fi) of the block 
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provides the macroscopic strain according to 

(64) 

where cf, is related to the distribution of local potential by 

with V,,, denoting the region occupied by matrix material. There is no contribution to 
CD from the voids or rigid particles since the pointwise potential (I, vanishes for both 
voids and rigid particles. 

For a dilute concentration of inclusions with volume fraction 0 the macroscopic 
potential can be written as 

qo, rn) = C/)(6. rn) +pq(a, Ii), (66) 

where a,(~?. fi) is the change in potential due to the introduction of an inclusion of 
hit volume into an infinite block of matrix material that is subjected to the remote 
uniform stress 6’ = 0. m’ = ri. 

To define @,(a, fi) consider an isolated inclusion of volume V, centred in a spherical 
matrix of volume V,,, and of linitc outer radius R. as shown in Fig. 3. Uniform slrcss 
tractions T,’ = (0,; + T,; )n, and couple stress tractions y,’ = /II,; /I, are applied to the 

outer surface of the matrix. [Since m ’ is taken to bc uniform Z = T’ vanishes by (4).] 

Detinc the change in potential V,@,(o’ , rn’ ) due to the introduction of the inclusion 

by 

V,@,(a’ . m’ ) = 
i 

[&a,m)-$(a .m’ )] db’--- V,C/)(CF~ ,m’ ). (67) , 
,I, 

This expression may be rearranged to a more convenient form using the principle ol 
virtual work and (63) to give 
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V,@,(a’,m’) = 
s 

[@(a, m) ~ $(a * ,m’)-C,,.z,T -+z,,~,;]dV 
’ 111 

1843 

+ 
s 

[F,=,u; +ci,B:]dS-V,~(a”,m’), (68) 
“I 

where the tilde symbol denotes the change in quantity due to introduction of the 

inclusion, 

6 E 6__6’ ; fi=m-_m”; fEz--zL; T, = - (6,i+f,,)n, and q, = -@,ni. 

(69) 

A negative sign is present in the definitions (69) of 7, and 4, as the unit normal on 
the surface A, of the inclusion is taken to point into the matrix, as illustrated in Fig. 
3. The integrand of the volume integral in (68) decays sufficiently rapidly at large 
distances from the inclusion that @, can be evaluated either as the limit of the finite 
problem as the outer radius R becomes unbounded, or directly from the infinite 
problem where the remote stress is (a”. m’ ). 

A minimum principle for the displacements may be used to find approximate 
RayleighbRitz solutions for an isolated inclusion in an infinite matrix under remote 
stresses (o’, m’-). The principle for the non-linear solid without couple stresses is 
from HILL (I 956) and was modified by BUDIANSKY et al. (1982) to be applicable to 
infinite regions. Here, the minimum principle is developed for the infinite non-linear 
body which supports couple stresses. The starting point is (19) for the finite non- 
linear body containing couple stresses. 

Consider a finite block of volume V containing an isolated inclusion of volume V, 
centred in a spherical matrix of volume V,,, and of finite outer radius R. The outer 
surface of the block is subjected to the uniform tractions T,’ = (g,: +z,T)n, and 

(I( = OZ,; II,, where n is the outward normal to the spherical block. Take u as any 
admissible displacement field and (E, x) as the associated strain quantities. Then the 
actual field in the block minimizes 

P(u) = 
b 

W(E, x) d V- 
111 s 

[T,’ u, + q: fl,] dS, (70) 
A I< 

which is a restatement of (19) in the current notation. Let the displacement field and 
strain field be decomposed into the uniform remote field (denoted by a superscript 
X) associated with (a’, m” ) and an additional field (denoted by the tilde symbol -) 

The additional field is associated with the presence of the inclusion and vanishes at 
infinity. The charp in potential energy upon introducing the inclusion (void or rigid 
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particle) into the spherical block is 

P,(u) = 
j 

[NjC. X) - II.(E’ . x ’ )] d I’- , 

II> .i‘ ’ Ii 

Next. note that 

[r,‘li,+y,‘~,]dS-_‘,u,(c’.y.’ ). (73) 

? 
CT,’ ii,+(/; fi;] ds = - CT,’ 17,-tIj,/ ci;] ds+ [vi; c,, -t 117,: f),] d 1’. (73) 

’ I< ‘I II 

where T,’ = -- ( mt; + ti; )H, and 11,’ = - w,: 11, on the suifxe A, of Ihe inclusion since 
the unit normal n is taken to point into the matrix there. Substitution of (73) into 
(73) enables P,(u) to be written in the more convenien[ form 

+ 
! 

[7’,‘fi,f(/,‘ij]dS- C’,W(E’.X ). (74) 
‘I 

In the limit R --f Y.. the above expression for P,(u) gives the change in potential enet-gq 
due to the introduction of an inclusion into the infinite block of tnatrix malcrial. 
Further. if P,(u) is regarded as a functional in u it provides the minimum principle 
for the infinite region. 

The expression (74) for P,(u) is of the same form as the relation (6X) fat 
Y,@,(o’. m’ ). In fact. a straightforward connection exists between V,@,(a’,m’ ) and 

the minimum value P,,,,,, of P,(u). Upon stmlming (6X) and (74) we find. after some 
tnanipitlation. 

P 1,111, +V,@, = [T,LI,+I/,O,]~S. (75) 
‘I 

For a traction-free void T, = L/, = 0 on the void surface. and for ;I bonded rigid particle 
we take II, = (I, = 0 on the surface of the particle [as discussed more f11lly in (he 
paragraph following (37)]. Thus. for both types of inclusion. the right-hand side ot 
(75) vanishes. and 

P ,,,,, 1 + v,m, = 0. (76) 

This relation closely parallels (23) and provides a simple way of calcitl~tting 
I’,4),(0 ’ , m ’ ) directly from the solution to the minimum problem. 

5. STRENGTHENING DUE TO A DIIAJTE CONCENTRATION OF 

Rrc;n> SPHERK‘AL. PARTI(‘I,I:S 

Consider I macroscopic volume element consistin g of ;I dilute concentration IJ of 
rigid particles embedded in a power law deformation theory matrix ( 13). The particles 
are spherical. and are cqui-sized of radius (1. The average stress on the macroscopic 
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volume element is taken to be 8 and the average couple stress rig is assumed to vanish. 
This is reasonable provided the macroscopic strain gradients are small over length 
scales much greater than the microstructural length scale 1. The average strain is E 
and the average curvature X vanishes. The local couple stress and curvature in the 
vicinity of each particle does not vanish, however, and gives rise to a particle size 
dependence of macroscopic strength. The macroscopic response is given by (64) and 
(65) in terms of the change in macroscopic potential CD, (6, ti = 0). Numerical estimates 
are given for @,,(a, 0) in Section 5. I below. First, some deductions are made for the 
functional form of @,,(I?, 0) and the inverted form of the constitutive law 0 = r?(E). 

By isotropy, @,(5,0) depends at most upon the three invariants of 5: the mean 
stress CT,,, = +Oih, the von Mises effective stress 5, = Vs $,,s,, (where S is the deviatoric, 

symmetric part of the macroscopic Cauchy stress), and the third invariant J3 = 
(s,, .‘,A $,) ’ ?. Since the matrix and particle are assumed to be incompressible there is 
no dependence of 0, upon c,,,. We will ignore the dependence of Q, upon the third 
invariant as DUVA (I 984) has shown it has a relatively minor effect in the limit I = 0. 
Then, because Q,, is homogeneous of degree n + I in cr. one can write 

,I+ I 

CD, = -cofY,, (-1 ; ,fp(liu, n). 
0 

(77) 

where the kernel problem of an isolated rigid particle is required in order to determine 
values for the non-dimensional function .&. The function .f;l provides a convenient 
measure of the strengthening effect due to the presence of rigid particles, and depends 
upon both the ratio l/u and the strain hardening index N. The change in potential Q,, 
is negative for the case of a bonded, rigid particle and so a minus sign has been 
introduced in (77) to make the function ,f, positive, for the sake of convenience. 

The macroscopic strain 5 is given in terms of the macroscopic stress 5 via (64), (66) 
and (77) as 

which may be inverted directly to give, to leading order in p, 

(78a) 

(78b) 

The above derivation of the strengthening due to a dilute concentration of particles 
is based on the macroscopic potential 0. An equivalent approach is to define a 
macroscopic strain energy density W of the heterogeneous body in terms of the strain 
energy density M’ at each point of the matrix defined in (6l), giving 

VW(E,X) = 
I 

\~(a, x) d I’. (79) 
’ ‘,,I 

With the aid of relation (63) this may be re-written as 

- - 
W(E; X) = w(E; X) + p w, (a, x), (80) 
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where W, is interpreted as the change in the strain energy density due to the presence 
of a rigid particle of unit volume in an infinite matrix medium subjected to the remote 

- - 
strain state (E, x). The macroscopic average stress S is related to the macroscopic strain 
rby 

- _ 
_ (:WE,X) 

.S), = 
7; 
( h, 

Finally, identification of W, from expressions (78)-(X1) gives 

(81) 

(82) 

and a comparison of (77) and (82) shows that W,(E,X) = -@,(c?, ti). 

The change in potential CD, due to the prcsencc of an isolated rigid particle in an 

infinite matrix is calculated using the numerical procedure outlined in Appendix A. 
In brief, the boundary value problem is an isolated rigid particle in the power law 
matrix (I 3), with remote axisymmetric loading 

cr;, = S: u;, = oi2 = T. (83) 

using the notation introduced in Fig. 3. Since the body is incompressible the response 
is independent of the mean stress a,; = IS+ f T. and without loss of generality we put 

fl,,, ’ = 0. The remote effective stress u,’ is given by oi = IS- TI, and is taken to be 
the measure of remote stress on the body. The boundary value problem is solved by 
minimizing the potential energy functional (74) using a Rayleigli-Ritz procedure. 
This problem has been considered previously by D~J~A (1984) for 21 conventional 
power law deformation theory solid: for the conventional solid Ihc appropriate 
boundary condition is a vanishing displacement on the surface of the bonded rigid 
particle. The solution for the more general couple stress solid approaches that of Ihc 
conventional solid in the limit I + 0. In fact, the results in the current study for / = 0 
are more accurate than those presented by D~JVA (I 9X4) since more terms were taken 
in the scrics expansion of the minimization proccdurc. 

The result (78b) for the strengthening due to a dilute concentration of particles 
reduces in the case of uniaxial tension (5, C) to 

(84) 

Thus the factor p(tt+ 1)./,/n is the relative strengthening due to the particles at a given 
strain C. Calculated values of,f, arc shown in Fig. 4 as a function of /!(I for selected 
values of tt in the range ILIO. Recall that fr gives a direct non-dimensional measure 
of the macroscopic strengthening due to a dilute concentration of the rigid particles. 
It is noted from Fig. 4 that,f, increases dramatically with increasing /,ltr. For example. 
at tt = 5. /,i increases from 0.80 at /!o = 0 to 4.82 at lirr = I. The role played by the 
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FIG. 4. The strengthening of a power law couple stress solid due to bonded rigid particles of radius (I 

strain hardening index n is more modest, with a small decrease in f, with increasing 
n. 

The numerical results for .f, are well approximated by the formula 

.r6 a+a(n)l 3 

.h = fl ( .I 
for 0 d l/a < 0.5. Here, .f;, is the value of .fP at I/u = 0, and u(n) is a numerical 
coefficient obtained by curve fitting (85) to the numerical results over 0 d l/a d 0.5. 
Values for j0 and sl are listed in Table 1 over a range in values for n. The formula 
(85) is compared with the numerical results in Fig. 5 : the agreement is adequate for 
our purposes. 

I 1.25 0.693 

3 0.800 0.904 

5 0.666 1.02 

IO 0.546 1.16 
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We interpret (85) in the following manner : a particle of radius u in the couple stress 
medium is equivalent to a particle of radius rr+ xl in the conventional J2 deformation 
theory solid insofar as strengthening is concerned. This is consistent with the notion 
that ;1 boundary layer of thickness al surrounds the rigid particle in the couple stress 
medium. The case of a boundary layer in a linear solid under remote simple shear has 
already been discussed in Section 2.2. In that case the exponential decay length of the 

boundary layer was (l/,/2)/ = 0.711. which is in close agreement with the fitted value 
CX(H = I)1 = 0.691 in the particle problem. The formula (85) suggests a remarkably 
strong size effect for the bonded rigid inclusion. 

It is emphasized that the higher order strain gradient theory demands an extra 
boundary condition at the surface of the bonded rigid particle in addition to the 
standard boundary condition u = 0. The most appropriate additional boundary con- 
dition remains an open issue: it may be that our choice of 0 = 0 on the surface of the 
particle results in a greater size effect than some other choice. It should also be borne 

in mind that the strain gradient plasticity law we have employed loses its physical 
basis in the limit (I:‘/ + 0. In that limit. plastic flow becomes controlled by individual 
dislocation particle interactions rather than the interaction of a large number ot 
dislocations with a single obstacle. 

The nature of the strain field in the vicinity of the rigid particle is explored further 
in Fig. 6 for the cast II = 5. The variation of the strain measures c,. xC and R with 
polar angular coordinate (1) around the particle is shown in Figs 6(a)-(c) at a fixed 
radius I’ = I. 1~. and for a range of values of I/r/. In the absence of couple stresses 
(/,‘(I = 0). a local amplification exists in C, and xC due to the presence of the particle: 
I:, peaks at (11 z 30 and xc peaks at (r) 2 45 . The amplification is fairly local to the 
particle : this is demonstrated by the rapid drop-all‘ in xc with increasing radius I’ for 
the case //rr = 0 as shown in Fig. 6(d). Nevertheless, it is the presence of the large 
values of xc near the particle which lcads to local strengthening around the particle, 



FIG. 6. Strain licld near a bonded rigid particle, for n = 5 kind H range of calues of I/t/. Plot of (a) clT~tivc 
strain I:,. (b) etTcctiw curvature xC and (c) overall strain measure A versus polar coordinate w. all for it 
radish I‘ = I IO. (d) Distribution of eft‘cctive curvature y., around pnrticle for ii range of lixed radii. and for 

vanishing //cr. 

and to enhanced macroscopic strengthening when the constitutive law includes a 
strain gradient term. 

When //cl is finite, the boundary condition u = 0 = 0 on the surface of the rigid 
particle implies that c, vanishes there. Near to the particle boundary and within the 
matrix the magnitude of both C, and xc diminishes with increasing l/u as illustrated in 
Figs 6(a) and (b). The overall strain measure 8 = /T-1 ,, c, + 12i: varies in a complicated 
manner with /ill, see Fig. 6(c). As I/U is increased from zero, the magnitude of 8 
changes from the limiting value of x’ = C, to 8 z 1~~ at large 1;~. At a fixed radius 
I’ = I. 1 u, G exhibits a minimum for l/u = 0.3. over most of the range of 0. This 
behaviour is qualitatively consistent with that exhibited in the shear boundary layer 
shown in Fig. 3(b) for the linear solid; there A shows a minimum at a distance of 
approximately 0.51 from the rigid boundary. 

6. SOFTENING DUE TO A DILUTE CONCENTRATION OF SPHERICAL VOIDS 

Now consider a dilute concentration of traction free voids in a power law matrix 
characterized by (I 3). The voided solid is subjected to an average stress ci and strain 
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gradients are taken to be suficicntly mild at the macroscopic level that the average 
couple stress fi (and t) vanishes. The voids arc taken to be spherical in shape and ol 
uniform radius II. The macroscopic response is given by (64) and (65) in terms of the 
change in potential Q, due to introduction of an isolated void in an infinite matrix 
subjected to the remote uniform stress c?. By isotropy, 0, depends at most capon the 
three invariants of c!: the mean stress or,,, = Ic,~,~. the von Mises cfl‘ective stress 6,. = 
,,/$,,~~~ and the third invariant J? = (.?,,.F,L ,&,) “3. We argue that the dependence of (D, 
upon the third invariant is relatively minor compared to its dependence on (T,,, and Cr,.. 
Then, because a,, is homogeneous of degree II + I in 0, one can write 

where 

x = (T,,,:‘ci,. (X7) 

The kernel problem of an isolated void in an infinite matrix is required in order to 
determine values for the non-dimensional function ,I;. The function f; provides ;I 

convenient measure of the softening due to the presence of voids. 
The macroscopic strain Eis given in terms of the macroscopic stress 0 via (64). (66) 

and (86) as 

(X8) 

in agreement with the formula (I.1 I) in Duv,\ and HUTCHINSON (1984). Unlike 117~‘ 

case of the dilute concentration of rigid particles. (88) cannot be inverted in an explicit 
manner; the results (79) and (80) still hold and W, (E. X) = -Q, (6, ti). 

Accurate numerical solutions have been obtained for the kernel problem of‘ an 
isolated spherical void of radius (I in an infinite power law matrix obeying the consti- 
tutive relations (8)-( 13). The matrix is subjected to the remote axisymmetric loading 
(S, T) as defined in (83). The solution procedure is based on minimization of the 
potential energy functional (74), and the use of (76) and (86) in order to extract the 
values of,/;. Further details on the numerical procedure are given in Appendix B. 

For axisymmetric remote stress states, all dependence of 0, on 0’ can be expressed 
using the remote mean stress o,:, = IS’+ :T and (T’ = S- T. since they arc linear 
combinations of S and T. Furthermore. because @, is even and homogcncous ol 
degree (n + 1 ) in cr ’ . 0, can be written quite generally for axisymmetric loading as 

where x = cr,:, :a’ and the remote efrectivc stress a,.’ = )(r ’ I. The distinction between 
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,Y in (89) and X in (86) is deliberate. Only if @“(a”) is independent of the third stress 

invariant 53 = (sj, Sjkski) 1 cc 5 ‘/3 is it true that expressions (86) and (89) for @,,(a”) 
coincide. We shall find that (89) is almost even in x, and we thereby argue that (86) 
is a good approximation to (89) for axisymmetric stress states, and indeed is accurate 
for general stress states. 

The function ,fl (.u, l/u, n) is a non-dimensional measure of the softening due to the 
presence of a dilute concentration of voids ; ,f\ is plotted against s in Fig. 7 for selected 
values of l/tr in the range of O-3, and n = 5. It is clear that ,f; decreases slightly with 
increasing I/u: in other words, the degree of macroscopic softening decreases with 
decreasing void size. The effect is not a large one, however. For example, for .Y = 0, 
,fi decreases from I .29 to 0.848 when I/u is increased from 0 to 3. Note further from 
Fig. 7 that numerical results for ,f; are almost even in .Y. For S > T, .I’ is positive and 
X = .Y. For S < T, s is negative and X = --s. Only if ,f; were even in .Y would the 
representation (86) reproduce exactly the axisymmetric results. 

Results for the limit of vanishing I/m coincide with those given by DUVA and 
HUTCHINSON (1984). Also, their low and high triaxiality approximations carry over 
to the current case with only slight modification due to l/c/, as will now be discussed. 

LOH~ triayiulity crppro.Crnutiot~. For any given II and l/u, ,f; is well approximated by 
the quadratic formula 

.fl (Y, l/u, 12) = ,f‘*(I/Lz, n) + &q/u. n).u’, (90) 

where .f* equals the value of ,f; at s = 0 and the curvature ti is evaluated by fitting 
(90) to the mean of the values of,fi at .Y = + I. Results for f’* and I\: are listed in Table 

I 

I 

I 

d 0.1 

I 

FIG. 7. The softening due to a dilute concentration of spherical voids : f, (s, l/cl, n) for axisymmetric remote 
stressing in the low triaxiality range, 11 = 5. 



I, = 3 II = 5 

I:(1 I ‘* Ii I * Ii 

0 1.17 7.93 I.29 3.73 
0. I I.15 2.95 2.16 3.26 

0.3 I .04 i.00 I.14 3.30 
I 0.837 2.94 0.924 3.17 
3 0.764 1.83 0.X48 3.01 

7 and are plotted against Err in Fig. 8 l’or 11 = 3 and 5. It is clear that I; varies littlc -. 
with //II or with II. There is a relatively small incr-ease in f’* with decreasing /:r/ and 
with increasing II. 

The dilatation A I; of the void is related to /; bq 

On noting that the remote strain is given bq 

the normalized dilatation of the void is 

(92) 
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AV (7.f; (.u, l/u, n) 
).;,v = ---~~>_y . 

Thus, a low triaxiality approximation for the normalized void dilatation 
differentiation of (90) with respect to X. The resulting approximation 

IX53 

(93) 

is given by 
is in good 

agreement with the full numerical solution. as illustrated in Fig. 9(a). Plainly, the 
normalized dilatation is not sensitive to the normalized void size, a//. 

(a) 

A’.’ 

Q 

. , 
L 

2 

0 

-2 

-I. 
-1 -0.5 0 0.5 1 

Z ='w$ 

(b) 

- numerlcol soln. 
_--- high trioxiolity opproxn. (9CI 

FIG. 9. (a) Comparison of the low triaxiality approximation (90) and (93) with the full numerical solution 
for the void growth rate as a function of the triaxiality ratio z E ai /ci’ , for the representative case n = 5. 
(b) Comparison of the high triaxiality approximation (94) with the full numerical solution for the void 

growth rate as a function of the triaxiality ratio X. 
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Hi$]h triu.~idi/j. N/~/~I.(/.\-i/lzlitiot?. RUIIIANSKY cut rrl. (19X2) derived a high triaxiality 
approximation for the normalized dilatation 

where. using their notation, 

-G(/?./l?) = (I?- I) 
/I +,q(lil) F 1 , 

II- 

(94a) 

(04b) 

and III = .Y:.)_I-I, ,q( 1) = 0.43 I9 and g( - I ) = 0.403 I. 
The high triaxiality approximation was obtained by neglecting all but the spherically 

symmetric contribution to the displacement field in the minimization procedure. The 

spherically symmetric field dominates at moderate to high triaxialitics, and involves 
only uniaxial straining of each material element. It introduces no curvature x to an) 

materinl point surrounding the void and so the high triaxiality approximation lrcmainx 

valid in the couple stress formulation. This is the underlying reason why 110 strong 
sire effect is noted for the void problem. A comparison of the high triaxiality approxi- 
mation with the full numerical solution is given in Fig. C)(b). At high triaxialities, the 
dependence of,!; and AV/c(, V 11pon /:‘(I disappears. and the approximation (94) is an 

accurate representation for all /,“(I. 

Erollrtiotl of’ coid .sI~~pc. BUDIANSKY c’t rrl. (1982) found that the shape to which ;I 
spherical void evolves is sensitive to the value of II. For S slightly greater than T (and 
both positive). the void grows towards a prolate shape for 11 ==I 2, and towards an 
oblate shape for II > 2 

1.5 

1 
Aa 
Ab 

I / / / 
/ 
'1 // ,’ 

3 v // , / 
/‘// / n=5 

= 

____ +a = 3 

I 
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Let Au be the increment in growth of the void from its centre to its pole, and Ah 
be the corresponding increment in the radius of the equator. The change in void shape 
as described by Au/Ah is plotted against gX /o,l: = 3(S- T)/(S+2T) = l/.x in Fig. IO. 

for n in the range I-5. The results for a range of values of l/l1 confirm the previous 
finding of BUDIANSKY et ul. (I 982) for vanishing l/u : for n > 2 there exists a limited 
range of 0’ /cJ,~ > 0 over which the void grows towards an oblate shape. Similarly. 
for II > 2. there exists a limited range of aLjo, < 0 over which the void adopts a 

prolate shape. The phenomenon is moderated by the presence of strain gradient 
hardening : the reversal in slope of the AL//A/J versus (T’ lo,,< curve becomes less severe 
with increasing //N. 
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The kcrncl problem for the m:icroscopic strcngthenin! due to II dilute concentration 01‘ rigid 

particles consists of an isolated rigid spherical particle ol r;idius U. hondcd to an intinitc matrix 

under rcmotc axisymmctric loading S = ;I. r = - \C. as shown in Fig, 3. The matrix ohcys 

the strain gradient version of .J2 deformation theory outlined in Section 2. and the power I;IU 

relation ( 13) is adopted. 

The boundary value problem is solved by a RaylcighRitz minimization of the potential 

energy fLmctional (74) in ;I similar manner to thut outlined by BCJDIANSKY P! trl. (1982). 
Application of the principle of virtual work to (74). tog.cthcr with (63) and the houndarq 

condition u = 0 on the pnrticlc surllcc cnahlcs (74) to hc slmplificd to 

J’,(u) = 1 [11.(&,X)-W(E'.X =(I)-.\,; Z,,ldl’+I’,~/)(~‘.m’ =(I). (i\l) 
’ 8, 

In order to minimize P, the displacement field II is written ;IS ;I scrics expansion in the spherical 

polar co-ordinates (,‘_(I)) shown in Fig. 3. By incompressibility the displaccmcnt field (L/, . r,,,) 
satisfies 

II, 4, 
If,., +7 + co1 (!I + 

11, , I>/ 

= 0 (A21 
I’ I’ I’ 

and so the displacement components (rr,. I,,,) may bc cr;prcsscd in terms of the stream function 

lj(r. f’)) as 

/I, = - r2 ,I,, (I, (i sin (I)).,,. (A?) 

In the absence of the rigid particle the stream function is 

I// = Ii/ ’ (1.. w) = 
i: 1 1 

(, 1.‘P, ,,,(cos 01). (A4) 

in terms of the Lcgcndrc function P,(cos (r)). The presence of the hondcd rigid particle modilics 

ll/ to 

Ii/ = l/J ’ + l/T ’ + ,+F. (AR 

whcrc ti’ is chosen to ensure that both II and 0 associated with the primary ficld (I) ’ + I$’ ) 
vanish ;~t the surface of the particle. giving 

The secondary field I$ contains fret amplitude I:,ictors in order to minimi/c P,(u) in (Al). A 

scrics expansion of the stream function, with due rcgnrd to the symmetries of the problem. 
leads to 

l&r. (!I) = i f (I,,,, IF{,,, (1.. C’)). (A7) 
/m 2 -1 (7 8)/m 0 I 2 



where 
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lJ,>,, = P,,,,,(cos (II)[Y “’ + Ar “r’+ ‘1 + Br O’g+” + C’Y ‘1’1 + “I. (AQ 

The parameters A. B and C arc chosen to ensure that the contribution to u and 0 associated 
with each term $,,3Z vanishes on the surface of the particlc, r = (1. This implies that 

A = -30. R = 3~‘. C = -o’. (Ag) 

For convenience. the amplitude factors u,,,, are dcnotcd collectively by (A,), and these are the 
variables with respect to which P, is minimized. Explicit expressions for both P, and the 
gradient jiP,/iA,) arc used in the New*tonPRaphson minimization procedure. By the change 
of variable j( = O/I’. the r-integration in the volume integral of (A I) is converted to an integration 
over the range 0 < 1~ d I. A IO point Gaussian quadrature formula is used for integration with 
rcspcct to ~l and with respect to (o ; due to the symmetry of the problem the integration interval 
for UJ is from 0 to n:‘2. The number of terms in the series expansion (A7) is varied in order to 
obtain adequate accuracy : by setting J = 6 and M = 4 in (A7) results are accurate to within 
0.5 %, 

APPENDIX B: NUMERICAL ANALYSIS OF ISOLATED VOID 

The numerical analysis for an isolated void in 3 power law matrix (I 3) follows closely that 
given in Appendix A for the rigid particle. With remote axisymmctric stressing S and T. as 

shown in Fig. 3. the potential cncrgy functional (74) is rewritten as 

P,(u) = 
s 

[w(E,+w(E’.x’ =0)-s,; cl,]dl’- 
j_ 

,,[cr,; rz,ii,]dA-V,w(.z’,y_’ = 0). (BI) 
’ 111 

Since the matrix in incomprcssiblc (AZ) holds and the displacements II, and II, arc again 
cxprcssed in terms of a stream function $(f, (11) by (A3), whcrc now we take $(r, (1)) to bc 

$(I.. (0) = ‘;;’ 
.I 

r’P,,.,(cos (0) + A,, cot to+ 1 Ii fl,,,,’ “‘P,,,.,(cos (0). (W 
,- 2.J.h II, 0 I. 2. 

The lead term in (B2) is the remote ticld; the second term is the spherically symmetric 
contribution and scales with the free amplitude f~ictor A,,. The remaining terms scale with the 
amplitude factors u,,,,. In contrast to the case of the bonded rigid particle no additional 
constraints ;lrc nccdcd to cnforcc the appropriate boundary condition on the sutfdce of the 
void : minimization of P, ensures satisfaction of the natural boundary condition that the void 
is traction free. 

The reduction of the minimization problem to a standard algebraic problem for the unknown 
amplitude factors (A,,, (I ,,!?) follows the minimization proccdurc given in Appendix A. and 
explained in more detail by BUDIANXY PI ol. (1982). A totnl of 16 lree amplitude factors were 
taken for (A,,. ~,,,,j with J = 6 and M = 4 in (B2) ; this gives a solution which is accurate to 
within about 0. I’%. 


