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Abstract—A micromechanics study is presented of the matrix cracking behavior of laminated, fiber-re-
inforced ceramic cross-ply composites when subject to tensile stressing parallel to fibers in the 0° plies.
Cracks extending across the 90° plies are assumed to exist, having developed at relatively low tensile
stresses by the tunnel cracking mechanism. The problem addressed in this study is the subsequent
extension of these intital cracks into and across the 0° plies. Of special interest is the relation between
the stress level at which the matirx cracks are able to extend all the way through the 0° plies and the well
known matrix cracking stress for steady-state crack extension through a uni-directional fiber-reinforced
composite. Depending on the initial crack distribution in the 90° plies, this stress levet can be as large
as the uni-directional matrix cracking stress or it can be as low as about one half that value. The cracking
process involves a competition between crack bridging by the fibers in the 0° plies and interaction among
multiple cracks. Crack bridging is modeled by a line-spring formulation where the nonlinear springs
characterize the sliding resistance between fibers and matrix. Crack interaction is modeled by two

representative doubly periodic crack patterns, one with collinear arrays and the other with staggered
arrays. Material heterogeneity and anisotropy are addressed, and it is shown that a homogeneous,
isotropic average approximation can be employed. In addition to conditions for mairix cracking, the study
provides results which enable the tensile stress—strain behavior of the cross-ply to be predicted, and. it
provides estimates of the maximum stress concentration in the bridging fibers. Residual stress effects are

included.

1. INTRODUCTION

The process by which a fiber-reinforced cross-ply
ceramic composite is damaged and eventually fails
under tension is very complex. When the tensile stress
is applied along one of the fiber directions, one often
observes an overall stress—strain response as schemat-
ically illustrated in Fig. 1. After an initial eclastic
response, the damage starts with matrix cracking in
the 90° plies. These cracks spread as 3D tunneling
cracks from small flaws located in the matrix of the
90° plies, and generally arrest at the interfaces be-
tween 0°/90° plies before spreading into the adjacent
0° plies [1]. With further increase of the applied stress,
more tunneling cracks develop in the 90° plies until
they saturate. At about this stage, the fully tunneled
cracks begin to extend into the adjacent 0° plies
without fiber failure and extend until they overlap.
The matrix cracks eventually coalesece at even higher
stress with the matrix of the laminate being fully
cracked. The intact fibers in the 0° plies, which are
now carrying all the load, fail at the fiber bundle
fracture stress ¢;5/2.

The matrix cracking in the 90° plies has been a
subject of research efforts for the past two decades.
While most-of the work in this area deals with the
effect of matrix cracking on the degradation of the
stiffness of the laminate (for example, as reviewed in

[2]), relatively less has been done to relate the full
details of the overall stress—strain response to the
constituent properties of the laminate. An attempt
along this direction was recently made in [3] where the
concept of steady-state tunneling cracks was em-
ployed to model matrix cracking as a three-dimen-
sional process. The minimum tensile stress required
for the onset of tunneling cracks (the start of nonlin-
earity in Fig. 1) was predicted. The evolution of the
crack density in the 90° plies was related to the
applied stress, and the overall stress—strain behavior
(from onset to saturation of the tunneling cracks in
the 90° plies) was obtained as a function of the basic
geometry of the composite, the toughness of the
matrix, and the residual stress between plies,

The next logical step is to investigate subsequent
damage where matrix cracks spread into the neigh-
boring 0° plies. This is an unavoidable step if progress
is to be made in the effort to understand the complete
tensile behavior of a laminated cross-ply composite.
Several new considerations come into play. Firstly,
the matrix cracks are partially bridged by intact fibers
in the 0° plies. The fiber-bridged length of the crack
is comparable to the unbridged length (the 90° ply
thickness), and small scale bridging (SSB) does not
apply. To fully solve this problem, a rigorous large
scale bridging (LSB) analysis is required. Recent
research efforts on this general topic can be found in
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[4, 5], where the main concern centered on the tensile
strength of unidirectional fiber-reinforced ceramic
composites containing a single crack-like flaw. Sec-
ondly, interaction among multiple cracks plays an
important, and, sometimes even critical, role in the
crack growth process. The modeling of the process
under large scale bridging conditions has not been
addressed. Lastly, the laminated composites are an-
isotropic and heterogeneous in nature. The import-
ance of material anisotropy and heterogeneity on the
fracture performance of such laminates must also be
addressed.

To provide some quantitative feel for the damage
sequence of a cross-ply laminate under tensile load-
ing, we take as an example the CAS/SiC laminate
system used in the experiments in [1]. It consists of
Nicalon fibers in a calcium—alumino—silicate matrix
in a cross-ply configuration. The constituent proper-
ties are

E,=97GPa, E=200GPa, ¢=0.37,
R=175um, [,=25Jm? ©=20MPa

and the half ply thickness ¢ is 90 yum. Two types of
residual stresses exist in the laminate, introduced
during manufacturing process because of mismatch
of the thermal properties of fibers and matrix. One is
the overall residual stress between different plies
which was measured to be approximately 30 MPa in
tension perpendicular to the fibers in the 90° plies,
and about same amount of compression in the {°
plies acting parallel to the fibers. At a smaller scale
within each layer is the residual stress between fibers
and matrix which has both an axial and radial
component. The measured residual stress in matrix in
the axial direction is ¢ = 100 ~ 120 MPa. Based on
the above information, we can evaluate several im-
portant stress quantities, which are also indicated on
the ordinate of Fig, 1: :

1. o, the stress for onset of tunmeling cracking
(the formula is given in [3]). This stress sets the

Fiber Fracture

™ Matrix fully cracked

—Tunneling cracks in the 90°plies saturate

- £

Fig. 1. A schematic illustration of stress-strain curve for a
. cross-ply laminate under tensile loading.

condition under which matrix cracking first can
occur in the 90° plies. Accurate prediction of
Gonee TEQUIres knowledge of the toughness of the 90°
plies in the tunneling mode. An estimated value of
Gonsu fOT the above CAS/SIC system is around
80 MPa. Since there exists a residual tension of
30 MPa in the 90° plies, the net applied stress o
needed for the onset of tunneling cracking will be
around 50 MPa [3].

2, 6y, a stress quantity measuring the condition
at which plane strain cracks in the 90° plies begin
to spread into the neighboring 0° plies. It is one of
the basic parameters in this study, and it will
be introduced in more detail later in the develop-
ment. The calculated o, from equation (6) (see be-
low) is 88 MPa, The residual tension in the 90°
plies will lower the net applied stress to about
58 MPa.

3. Ome, the steady-state matrix cracking stress for
a uni-directional composite [6, 7). Tt is the other basic
stress parameter used in this study. It depends on the
matrix toughness and the bridging capabilities of the
fibers. It is given by equation (5) in next section and
is calculated to be 323 MPa. Since there exists a
residual tension in matrix in thé amount of
o} = 100 ~ 120 MPa, the critical applied stress
needed to advance the steady-state matrix crack will
be in the range 156-184 MPa. This range of the value
is consisient with the experimentally measured range
of 140160 MPa in [1]. One of the main objectives of
this paper is to determine the relation between o, for
the uni-directional composite and the stress at which
matrix cracks first cross the 0° plies in the cross-ply
composite.

The above three stress values support the iflus-
tration in Fig. 1 of the damage process in a cross-ply
laminate. Similar behavior was reported in [1] based
on their experimental observations. _

Thus, the aim of the present work is a microme-
chanics investigation of the tensile behavior of a
laminated ' fiber-reinforced cross-ply ceramic com-
posite with matrix cracks in the 90° plies penetrating
into the adjacent 0° plies. As emphasized, it should be
regarded as a continuation of the work of [3] on
tunnel cracking in the 90° plies. Here, the main focus
will be on the constraining effect of bridging fibers
and the interaction among multiple cracks during the
crack growth process. The overall tensile behavior of
such laminates will be determined. We first examine
the problem of material anisotropy and heterogen-
eity, and demonstrate that anisotropy can be ac-
counted for in a simple manner such that accurate
approximate solutions can then be generated from
results for 2 homogeneous, isotropic material. The
effect of bridging fibers is modeled as distribution of
nonlinear springs obeying a traction-separation law
characterizing fibers slipping relative to the matrix
under a constant friction stress 7. Two doubly
periodic crack patterns are analyzed in order to
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Fig. 2. Two representative doubly periodic crack patterns.
(a) Collinear arrays. (b) Staggered arrays.

understand interactions among cracks, one, a
collinear pattern [Fig. 2(a)] and the other, a staggered
pattern [Fig. 2(b)]. The collinear pattern models
the extreme situation where stres intensity enhance-
ment due to interactions is maximal. The stagpered
pattern represents perhaps a more realistic situation
in which overlapping of matrix cracks in the 0° plies
will occur. This type of patiern, opposed to the
collinear pattern, models the more or less random
development expected for the tunnel cracks in the 90°
plies. Also investigated in this work is the stress
concentration in the bridging fibers. This is an im-
portant issue because failure of bridging fibers consti-
tutes the ultimate failure mechanism for these
composites.

The paper is organized as follows. We begm with
a general description of the problem including the
fiber bridging model, and go on to demonstrate the
validity of the scheme for accounting for the laminate
anisotropy using results from plane strain isotropy.
The body of paper is devoted to the presentation and
discussion of the crack growth process and overall
tensile behavior for each of the two crack patterns.
The applied tensile stress and extra strain due to the
crack growth process are presented for various crack
denstties, together with the stress concentration in
bridging fibers. The role of residual stresses intro-
duced during the manufacturing process is also illus-
trated and discussed. The mathematical formulation
and numerical solution procedure are detailed in the
Appendices. A numerical example for the above
mentioned CAS/SiC laminate is given in the last
section as an illustration. The predicted secant modu-
lus as a function of the applied stress is compared
with experiment data reported in [1].

2, CHARACTERIZATION OF THE PROBLEM

2.1. An approximation accounting for the anisofropy
of .the laminate

Previous studies usually take a uni-directional
fiber-reinforced composite to be transversely
isotropic about the fiber directions. With fibers

aligned with the l-axis, the constitutive relation for
an undamaged ply is

| vp
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where the subscript L stands for longitudinal proper-
ties and the subscript T stands for transverse proper-
ties. All the elastic properties can be calculated cither
on the basis of the Hill [6] self-consistent model or
from other models.

The anisotropic effect for a unidirectional fiber-re-
inforced composite can be characterized by an or-
thotropy factor {5]. However, it is less clear how one
should account for the heterogeneous nature of a
cross-ply associated with the two orientations of
layers. For most ceramic composites, the ratio E/E,,
of the fiber modulus to the ceramic matrix modulus
ranges generally from 1 to 5. To obtain some insight
into the role of material anisotropy and heterogen-
eity, finite element analysis of single and multiple
cracking have been performed for several typical
values of E;/E, and fiber volume fractions gofa
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Fig.-3. Demonstrations of the validity of isotropic average
approximation. (a) An isolated crack. (b) Doubly periodic
cracks,




1936 XIA and HUTCHINSON: MATRIX CRACKING OF CROSS-PLY CERAMIC COMPOSITES

laminated composite. Two plane strain crack
configurations have been analyzed as shown in the
inserts of Fig. 3(a, b), with crack tips located in the
07 plies. No bridging tractions are applied. For each
geometrical configuration and loading, two sets of
material properties are adopted for the calculations.
For the first set, the stress—strain behavior of each of
the plies is taken to be elastically orthotropic obeying
(1), with due regard for the two orientations. For the
second set, the composite is approximated to be
homogeneous and isotropic, with an overall Young’s
modulus E and Poisson’s ratio v given by

1 EN
)

SR
2 ENE E

3 2

As introduced in {3}, E is the uniaxial modulus of the
composite in a direction parallel to either set of fibers,
while v is the Poisson’s ratio associated with the
out-of-plane strain component. Thus, E defined
above, is the modulus governing plane strain tension
parallel to the fibers in the 0° plies {(with the out-of-
plane strain imposed to be zero). Since the results of
interest here are quite insensitive to the value chosen
for the in-plane Poisson’s ratio, we have also used the
value v given above as the in-plane ratio.

The calculated ratios of mode I stress intensity
factors from the two caleulations, K¥°/K;, for the
single crack problem are plotted in Fig. 3(z), where
the geometrical configuration is shown. The Poisson’s
ratios of both fibers and matrix are taken to be 0.2
and the fiber volume concentration is 0.5. The devi-
ation from unity reflects the error of the isotropic
average approximation for Kj to that obtained from
the anisotropic, heterogeneous model. Similar results
for a doubly periodic crack pattern are shown in
Fig. 3(b), where ratios of both stress intensity factors
and compliances are shown. As indicated in
Fig. 3(a,b), the errors introduced by the isotropic
average approximation to the stress intensity factor
and compliance for all practical ranges of E/E,, are
within 8%, As cracks become longer in the (° plies,
it is seen that the errors are further reduced. This
indicates that the isotropic average approximation
with elasic properties defined in (2) involves little
error for the study of fracture performance with
cracks spanning both the 90° and the 0° plies. The
major advantage of the isotropic average approxi-
mation is that it permits one to use analytical tech-
niques and results to set up the computational
problems, In this work we have used integral

equation methods which employ kernels derived
using complex variable methods of elasticity.

The generally adopted criterion for the growth of
matrix cracks in the 0° plies is that the average energy
release rate along the crack front remain equal to the
critical value ¢, I',,, where I, is the matrix toughness
(for example, [5, 7, 8]). The mode I intensity tough-
ness, K., for the crack tip located in the 0° plies is [3]

K[c =

AE,
%5 (3)

1 —vi
where A is the orthoiropy factor characterizing the
effect of orthotropy of the 0° plies. This result follows
from the formula given in [9] for the energy release
rate of an orthotropic material in terms of stress
intensity factor. The value of A for a wide range of
EJE, and ¢ of fiber-reinforced ceramic composite
has been calculated and presented in [5] based on
Hill’s self consistent model. For all practical ceramic
composites, it falls between 0.84 and 1.0,

2.2, Characterization of bridging fibers

As in most previous studies, the debonding energy
between the fibers and the matrix is ignored and
sliding between the fibers and the matrix takes place
when the interfacial shear stress exceeds the friction
stress 7. When slip lengths are relatively large, as is
often the case for many ceramic fibrous composites,
the bridging fiber stress p(x) is related to the crack
opening displacement J(x) by [10]

oo -0l e

If residual stresses between fibers and matrix are
present, the above fiber bridging law can be easily
modified by an extra term [11] such that

_ [2EEfct 2B
P(x)_{mé(X)} MFmUR (4b)
where ¢ is the average residual stress parallel to the
fibers in the uncracked matrix.

The matrix cracking stress o, defined as the
tensile stress required for the steady-state propa-
gation of a single, long matrix crack in unidirectional
fibrous composites is given by [7, 8]

6E Eicit | 1
e

In the presence of residual stress, the critical applied
stress needed to advance the steady-state matrix crack
Is given by a modification similar to that in (4b) as
Fine ™ (EL/Em)dE [8]

The remaining important stress quantity to be
introduced is

KIc

i

where ¢ is the half thickness of each ply. Under the
isotropic average approximation for the composiie,

Gp =

(6

AEY




XTA and HUTCHINSON: MATRIX CRACKING OF CROSS-PLY CERAMIC COMPOSITES

gy is the remote tensile stress required for the in-
itiation of propagation into the adjacent 0° plies of an
isolated pre-existing matrix crack in a 90° ply. For
multiple cracks such as those in Fig. 2, the stress at
which the cracks will begin advancing into the 0° plies
will usually be lower than o, due to crack interaction.
It is worth noting that this initiation stress depends
only on g, and the crack configuration for the reason
that the cracks are not yet bridged at this stage.

2.3. Deseription of the crack growth process

Now suppose the matrix cracks in the 90° plies are
fully tunneled and saturated as has been analyzed in
[3]. Under further increase of applied tensile stress o,
these cracks will spread into the neighboring 0° plies
under plane strain conditions, The 0°/90° interfaces
are assumed to be perfectly bonded. Neither delami-
nation nor splitting along interfaces of the plies or the
fiber/matrix occurs. The bridging fibers in the 0° plies
are assumed to remain intact throughout the crack
growth process.

Consider a cross-ply laminate subject to in-plane
tensile loading only. We shall analyze the two repre-
sentative crack patterns, where plane strain matrix
cracks have already formed in the 90° plies, which are
shown in Fig. 2 and which were introduced earlier.
Suppose all cracks are growing quasi-statically in the
same manner, with current crack length 2q. The
average tensile stress ¢ applied remotely is determined
by imposing the condition that the mode I stress
intensity factor K; maintain the critical value K, as
defined in (3). This large scale bridging problem is
intrinsically nonlinear. It has been solved rigorously
by formulation of a nonlinear singular integral
equation which is solved by iteration. The logarith-
mic singularity of the crack opening displacement
gradient at the bridging/unbridging point (i.e. at the
90°/0° interface) is explicitly accounted for in the
formulation. Mathematical details can be found in
the Appendices.

The solution to this problem, in the absence of
pre-existing residual stresses, is found to be com-
pletely determined by the crack geometry and a
non-dimensional quantity o, /(fa,,,), which encom-
passes information about both materials and the fiber
bridging constraint. The material parameter g is
given by (see Appendix A)

AE, '®
{5t 0

which arises in the isotropic average approximation.
For all practical fibrous composites, f is very close to
1, and reduces to 1 if the fibers and matrix have
identical elastic properties. For the CAS/SiC system
discussed before, § =0.998. For a given laminated
ceramic composite, ¢,/(fo,.) measures the relative
compliance of the fiber bridging law. A larger value
of ay/(Boy,) represents softer bridging, while smaller
values give stronger bridging. The CAS/SiC system
that Beyerle er al. [1] used in their experimenis has

1937

¢o/(fo,.) =0.27. Results will be presented for
oo/(fo.) in the range from 0.1 to 1.0 to cover all
practical cases.

In non-dimensional form, the average tensile stress
o applied remotely during the qrack growth process
can be expressed as

g%t
ﬁTm_Fl(f’ﬂﬂm’L) ®

where a4/t is the non-dimensional current crack
length, and /L is the crack density as defined .in
either Fig. 2(a) or (b). The extra overall tensile strain
Ac (i.e. the inelastic strain}, caused by the presence of
the matrix cracks, takes the non-dimensional form

EAc a o, t
E—Fz(;,m,z). ©

Because of the nonlinearity of the fiber bridging law,
the extra strain is no longer proportional to the
applied stress o. The total tensile strain € at any time
during the crack growth process is given by the sum
ad

€=z +Ae. (10)
If there exists residual stress in the composite, ad-
ditional strain will be introduced due to release of
such residual stress by the growth of matrix cracks,
as will be included later. ;

‘For the convenience of presenting results it is
useful to define the plane strain secant modulus £,
which is also a function of a/t, ¢, /(fo,,.) and ¢/L, as
the ratio

Ep= an
Due to stress concentration arising from presence of
the crack, the tensile stress in the bridging fibers is not
simply o/c;, as it is well behind the crack tip in
steady-state matrix cracking of uvnidirectional fiber-
reinforeed ceramics. In all cases studied, it is found
that the maximum stress in the fibers always occurs
in the bridging fibers located at the 99°/0° interfaces
(the bndgmg/unbndgmg point). Denote this stress by
op; it 18 given by

cfaf_F a o, 1
Bom '\’ Poy L)

Extensive results will be presented in next section
for the non-dimensional functions defined in (8), (9),
(11), and (12) for each of the two doubly periodic
crack patterns. In addition, numerical examples will
be presented to illustrate the influence of some of the
parameters on the tensile behavior of laminated
fibrous ceramic composites.

(12)

3. CRACK GROWTH PROCESS AND OVERALL
TENSILE RESPONSE

A complete analysis of the crack growth problem
with bridging fibers in the 0° plies is performed, as
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Fig. 4. Peak stress o, for several crack configurations.

described in the previous section. The crack growth
process initiated from a single through-the-fibers
crack in a uni-directional fiber-reinforced ceramic
composite was discussed in [5], where emphasis was
- placed on the tensile strength of the composite. It was
found in their analysis that a typical curve of applied

stress ¢ vs matrix crack growth a/¢ always has

following features, assuming no fibers break. Follow-
ing initiation of the matrix crack growth at a,, the
applied stress ¢ increases due to the constraining
effects of crack-bridging fibers, until a peak value o,
is reached. The applied stress ¢ then decreases as
further growth continues with ¢ approaching the
steady-state matrix cracking stress g,,. asymptotically
for a— 0. Thus o, is the largest stress the composite
can sustain before the matrix crack is fully extended.

For the cross-ply laminate studied in the present
work, matrix cracks in the 0° plies are bridged by
intact fibers, but not those in the 90° plies. The largest
stress a laminate can sustain before the matrix crack
is fully extended, o, is thus not necessarily same as
that for a unidirectional fibrous composite. There are
two possibilities. One is that the applied stress reaches
the peak value before the matrix crack grows into the

mnext 90° ply, and this peak value is the desired .
Another possibility is that the applied stress ¢-is still -

increasing when the matrix crack reaches the next
90°/0° interface. Since no fiber-bridging constraint
can occur in the 90° plies, the matrix crack will run
dynamically across the next 90° under constant stress
loading. Therefore in this situation the stress when
crack reaches the 90°/0° interfaces is the peak stress,
o, the largest stress the laminate can sustain before
the matrix is fully cracked. The peak value g, for one
single crack in a 90° ply is plotted in Fig. 4 as solid
line. It turns out that for most range of ay/(fonm.)
studied, ¢, is associated with the second case men-
tioned above. Also plotted in Fig. 4 are peak values
for other crack configurations. They will be explained
Iater.

For the crack patterns shown in Fig. 2(a) and (b),
a somewhat different crack growth process is found
resulting from crack interaction. Results will be first
presented for the collinear crack pattern [Fig. 2(a)],
followed by those for the staggered crack pattern
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[Fig. 2(b)]. The influences of fiber bridging constraint
and crack density on the tensile behavior of the
laminates are also demonstrated. The last subsection
will be devoted to the effect of the residual stress on
the crack growth process and the overall tensile
response.

3.1. Collinear crack pattern

The numerical results for the collinear crack arrays
are given in Fig. 5, for the case that the crack density
t/L is equal to 1. For other values of #/L, including
the case of a single line of cracks with ¢/L =0, the
trends are similar. Figure 5(a) shows curves of the
applied stress ¢ vs the matrix crack half length for a
wide range of 6y /(fo,,. ). These results are obtained by
imposing the condition K;= K|, on the solution, as
discussed. Crack growth into the adjacent 0° plies
starts when the applied stress o reaches a critical
value which is somewhat below o, due to crack
interaction. This initiation stress is independent of
o3/(fo.). The actual initiation process of crack
growth through an interface is very complicated. It
depends on the elastic mismatches of the two ma-
terials as well as other features such as flaw size in a
way which is not yet established. No attempt is made
to address this issue since it is not critical in the
present study. In this study, the interface is ignored
as a potential barrier to the advancing matrix cracks.

As matrix cracks grow, the constraint of the crack-
bridging fibers requires an increasing applied stress o.
However, interaction among cracks also becomes
stronger, especially the stress intensity enhancement
from the neighboring collinear cracks. The compe-
tition between fiber bridging constraint and crack
interaction vields a peak value of ¢ occurring after an
initial increase. This peak value, o,, is plotted in
Fig. 4. Also plotted for comparison is the peak value
for the case t/1. =0 (i.e. a simple array of collinear
cracks). It is clear that the main effect of interaction
arises from the collinear neighbors. After o, is
reached, the matrix cracks grow under decreasing
applied stress o until the collinear cracks coalesce at
middle of the 0° plies and the matrix becomes fully
cracked.

The competition between fiber bridging constraint
and crack interaction is evident in Fig. 5(a). The
crack length at which o, is reached is longer for
tougher bridging [smaller 6, /(B0 }]. The correspond-
ing extra tensile strains during the crack growth
process are shown in Fig. 5(b). Unlike the applied
stress o, extra strains are monotonically increasing
except near the coalescence of the cracks, where the
applied stress o drops sharply. To gain some feel of
what a tensile stress—strain curve will look like during
this crack growth process, we have also presented
the results for the secant modulus E,. as defined
by (11), which is shown in Fig. 5(c). It is seen that
the nonlinearity of tensile stress—strain behavior will
be greater for softer bridging fibers [i.e. larger

Cr(.’!ll(lﬁ\’o-mc)]'
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The tensile stresses o; in the fibers at the interface
between the 0°/90° plies (where the fiber stress is
maximum) is plotted in Fig, 5{d) as a function of a/t.
for 6y/{fo,.) < 0.4, the bridging stress c;o; is above
matrix cracking stress o,,.. Comparison of values in
Fig. 5(d) with the fiber bundle strength will determine
the likelihood of fiber fracture during the crack
growth process for this type of crack pattern. Work
currently in progress by the authors indicates that the
stress concentration in the fibers at the 0°/90° inter-
face is generally exaggerated by the line-spring model
of bridging. Improved estimates of the stress concen-
tration in the bridging fibers will be reported in a
subsequent paper.

3.2, Staggered crack pattern

For the staggered crack pattern [shown in
Fig. 2(b)], the collinear cracks are spaced every two
plies as opposed to every other ply for the other
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doubly periodic cracks. Consequently matrix cracks
will grow all the way through the adjacent 0° plies,
and possibly extend into the next 90° plies, If they
do extend into the next 90° plies, cracks will
coalesce dynamically because of lack of fiber
bridging constraint as well as stress intensity enhance-
ment from neighboring collinear cracks. It is
therefore only necessary to consider crack growth in
the 0° plies.

For small crack density ¢/L, the crack growth
behavior is determined by the competition between
fiber bridging constraint and stress intensity enhance-
ment from the neighboring collinear cracks. Figure 6
shows such a crack growth process for ¢/L = 0.5. The
arrangement of the plots in Fig. 6 is the same as
Fig. 5, except that the range of all the abscissae a/t
are now from 1 to 3, reflecting crack extension
through the entire 0° plies. This process is qualitat-
ively similar to what was discussed in connection with
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the collinear crack arrays, except that no crack
coalescence occurs in this range.

A more interesting behavior is found if the crack
density ¢/L becomes larger, as represented in Fig. 7
with #/L =1, As matrix cracks pass the center of the
0° plies, the shielding effect from neighboring parallel
cracks becomes strong, and the crack growth process
is now governed by the competition among fiber
bridging constraint, stress intensity enhancement
from neighboring collinear cracks, and the shielding
effect from parallel cracks. For a large crack den-
sity, the parallel cracks are sufficiently close that
shielding . becomes dominant. This is reflected in
Fig. 7/(a) by curves of applied stress ¢ vs crack
length a. Beyerle et .al [1] reported from their
experimental observations. that.some of ‘the longer
matrix cracks in the .0° plies seem ‘to arrest
under increasing load. The shielding effect on matrix
crack growth displayed by the staggered crack pat-
tern may explain this ‘observation. The change of
secant modulus E_, for this crack pattern is much
bigger than ,that for the regular crack pattern [com-

pare Fig. 7(c) and Fig. 5(c), both for ¢/L = 1]. This is

due to the fact that staggered cracks advanced all the
way through the 0° plies, producing more inelastic
strain, _

The peak value stress o, for two typical staggered
crack patterns are shown in Fig. 4, namely, the cases
for t/L = 0.0 and ¢/L = 1.0. The difference between
them is seen to be relatively small. It is clear from
Fig.- 4 that the most deleterious pattern is the
collinear arrays. Even with ¢/L = 0, this pattern can
result in a reduction of peak stress for matrix cracks
to spread across the plies of almost 50% of o,,.. This
is not surprising since the collinear patterns shed all
the load carried by the 90° plies into the 0° plies in
the collinear plane, increasing the ligament loads by
a factor of two. Collinear arrays are unlikely from a
statistical point; and, as mentioned earlier, the stag-
gered artays are probably more realistic. The con-
clusion to be drawn from the peak stress plots in
Fig. 4 is that the single layer, uni-directional matrix
cracking stress o, provides a reasonable estimate of
the matrix cracking stress of the 0° plies in the
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cross-ply composite, assuming the initiating cracks in
the 90° plies do not line up in a collinear fashion.
Considering the significantly lower peak stress associ-
ated with the collinear arrays, it may be worthwhile
to investigate other related crack configurations
which have a high likelihood of occurrence, e.g. two
collinear cracks in the neighboring 90° plies.

This model has been used to generate overall
tensile stress—strain behavior as dependent on sevetal
of the key parameters. In Fig. 8(a) plots are displayed
of the normalized applied stress against the normal-
ized strain for cases ¢/L = 1. The solid lines represent
the behavior subsequent to initiation of crack growth
into the 0° plies, which is the range considerad in this
paper. The initial elastic response, ‘which is also
shown as solid line, is terminated at the omset of
tunnel cracks in the 90° plies. The transition response
cannecting the onset of tunnel cracking and the 0° ply
cracking has not been computed here, but a typical
tesponse is shown as a dashed line curve. The effect
of crack density on the overall stress—strain relation
is illustrated in Fig, 8(b), where o,/{Bo,,) =0.3. The
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nonlinear behavior shown in these two figures is in
general agreement with experimental data reported in
the literature.

3.3. Residual stress effect

Residual stresses and strains are generally intro-
duced during manufacturing process of a fiber-
reinforced cross-ply laminate. As we discussed earlier,
two types of residual stresses exist within different
scales. When fibers and matrix are bonded together
to form a uni-directional fibrous ply, residual stresses
in axial and radial directions are introduced between
fibers and matrix due to mismatch of their thermal
properties. Another type of residual stresses exists at
the ply level. When the plies are bonded together to
form the cross-ply laninates, misfit stréin.result:s in
residual stresses between plies. Both types of residual
stresses can be rigorously modeled in the present
analysis by a simple stress superposition and possible
modification of fiber bridging law according to (4b),
as discussed in Appendix A. For the sake of simplic-
ity, only the results for residual stress between plies
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will be presented in this paper. Consistent with our
material approximation, we may assume that an
initial, uniform residual tension oy exists in the 90°
plies acting parallel to the applied stress, with same
level of compression in the 0° plies.

Figure 9 shows the effect of a residual stress oy in
the laminate, where op is scaled with the reference
stress ¢,. Since a residual tension is assumed in the 90°
plies, the initiation value of ¢ is smaller than that if
no residual stress were present. As matrix cracks
grow, larger applied stress o is required to overcome
the residual compression in the 0° plies. The process
is clearly indicated in Fig. 9(a). In any case, the
secant modulus E [shown in Fig. 9(b)] is smaller
than that if no residual stresses are present. As matrix
cracks become long, the differences in £, for various
or become small. The overall stress—strain response
for different residual stresses are plotted in Fig. 9(c).

4. A NUMERICAL EXAMFLE

To obtain some real feel of our approach, a
numerical calculation is performed for the CAS/SiC
laminate discussed earlier. Based on its constituent
properties, the values of relevant parameters are
obtained to be

A =097, E=140GPa, o,=88 MPa,

§=0998, o,,=323MPa.
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The measured residual stress in the matrix ¢ is in
the range 100-120 MPa. We shall use % = 110 MPa
in our calculation. The residual stress between plies
or = 30 MPa is also accounted for in the calculation.

Based on the above information, we are able to
perform our calculation using the staggered crack
pattern. The crack density is taken to be t/L = (.88,
which is the average saturation crack density
measured in the experiment. The results for secant
modulus £, vs applied stress ¢ are presented in
Fig. 10 as solid lines. The experimental data from [1]
are also plotted as solid dots. Also presented in
Fig. 10 is the predicted secant modulus E,,, for crack
density ¢/L-=0.5. The comparison with the exper-
imental data suggests that in the stress range from 70
to 100 MPa the density of matrix cracks in the 90°
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plies may be still increasing at the same time that
matrix cracks are growing into the 0° plies.
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APPENDIX A

Integral Equation Formulation for the Partially
Bridged Matrix Cracking Problem
An integral equation for the partially bridged matrix crack-

ing problem is formulated based on the dislocation distri-
bution method (cf. [12]). In this method, cracks are

1943

represented as a superposition of continuously distributed
dislocations. For the two doubly periodic crack patterns
studied in this work, we only need to model half of a
representative crack by distribution of edge dislocation
b(n) =b,(y) (Fig. Al). The stress o,(x) along crack face
induced by edge dislocations b(n) at x = and —b() at
X = —# is given by

E[ 1
o, (x) = o l;‘_“*’T + A(x, ﬂ)]b(ﬂ)-

The kernel function A(x, n) for the two crack patterns is
given in Appendix B.

An integral equation is obtained by choosing the dislo-
cation distribution to meet the traction conditions along the
line of the crack and within crack bridging zone

E =01

4—f { + A(x,n)}b(n)dr? = —a®(x) + p(x),

T Jo (X — 1
for 0<x <a (A2)

where o%x) is the stress normal to the crack surface prior
to cracking, including remotely applied stress ¢ and the
residual stress among plies, and p(x) is the fiber bridging
stress. Thus the right hand side of (A2) should be — (¢ + ay)
for 0 <x <t (in the 90° plies), and —{o — &g} +pix) for
t <x < a (in the 0° plies).

The crack opening displacement d(x) is given by

5(x)mrb(n)dn.‘

x

(Al)

(A3)

Since only crack surfaces in the 0° plies (ie. t <x <a,
where ¢ is half ply thickness) are bridged by fibers, the
solution b(n) to the integral equation exhibits a logarithm
singularity at # = ¢ (cf [13, 14]; [9] for crack opening dis-
placement solutions of Dugdale-Barenblati model). Ac-
cordingly we can approximate b(x) with the correct singu-
larities built-in as ‘

4o, t-ny M1 21
b)) =—=<¢ln— + T ——1
(1} E {Cn ] P j;l Gy p
for 0y </
br) 4no, 4t n—t+ a—t
=— n ——
g E a—1 2a—1n)

ML (2 =)
<% agn (=0

i-

fort<n<a (Ad)

(a}

-b(n) | b(n)

Fig. Al. (a) Dislocations used for each crack to obtain the
kernel function in the integral equation. (b) A representative
half crack modeled to formulate the integral equation.
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where ’!}(i,’) is the Chebyshev polynomial of first kind of
degree j. ¢’s and 4’s are (N, + N,) unknown coeflicients
which are to be determmcd

“The asymptotic behavior of b(n} near crack tip # =a
gives the mode I stress intensity factor KX; in terms of the
unknown coefficients as

M-

= nog/nla — ) Z

The crack opening displacement 8 (x) for ¢ < x < acan be
expressed as, by substituting (A4) into (A3)

(A3)

n (a ), M2

3(x)= E d,f(x) (A6)
where .
fixy= .[m &, = IT’ &) o
and
=2(:_":)_1. @

The fiber bndgmg stress p(x) is glven by, from (3) to (6)
in the main text and (A6) above

R, .
P [Aa—1) (o) et E, *
o T T 7

Jy Oy o
where
. AE, )8
NTa —on A8
B {E(l—vi)} (A8)
Substitution of (Ad), (A8) into-(A2) yields
M-l N1
: Z Iu(x)f-}-i- z Izj(x)dj=—6+an for O<x <t
=0 =0 0
MNi—1 N1
Z Lix)e+ ¥ 1(x)d,
J=i
0 — Oy 2a =) (o, N\ !
Py +\/ o (a) Zd}f(x)
-2, forr<x<a (A9)
Ty

The I(x)s in the above equation are given by following
mtegrals after scaling the integration limits into

. t !
T (x), Dy () =EJ

[L +A(x,q)]1nl—_—’:dc
| x—n 2
L

Ilj(x)» I3j('x) = éJ.

L# +A(x,n)} LQd (A10)
1

where § = t(1 +{)/2, and

a—t [} 1 14¢
) ll:;—;—n+A(x,n):|ln 2 df

Ly (x), Iy(x) =

T,_,() dr
V1=
(A1)

— 1 i
Ly(x), Ly(x) = aT{’[ I:x__;; + A(x, q)]
: B -
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where § = ¢ + (a — t)(1 +{)/2. In the desighated: ranges of
X, Cauchy Principle values are understood for [ (x)’s and
L(xys in (A10) and (A1I).

The choice of allocation points for solving (A9) is some-
what arbitrary. Chebyshev points are used in our calculation

¢ @i -
i=3 {l + cos[z_m—}},

i=1,2,...,N, forOgx<¢
(2i — Dn
=t — |
X; + 3 {-i— [ 2N2
i=1,2,...,N, fort<x<a (Al2)

An additional equation is obtained by imposing the crack
growth condition K; = K;,. The combination of (6) in the
main text with (A35) gives

o (A13)

Introduction of (¥, + M) allocation points in (Al12) to
(A9), together with (A13), provides (N, + N, + 1) equations
for solving (N, +N;+1) unknowns cg,¢p,...,ch_,;
dy,dy, ..., dy,_,, and remotely applies stress o. Th1s set of
nonlmear equations ‘are solved numerically by Newton’s
method.

Tt is not difficult to show that the inelastic strain Ac
introduced by matrix cracking can be obtained from

1 a
Ac :EL 8(x) dx (Ald)

where §(x) can be calculated from (A3).

APPENDIX B

Kernel Function A(x,n)

The kernel function A(x, ) used in Appendix A to formu-
late the integral equation is obtained by superposition of the
stress o, (x ) induced by arrays of periodic edge dislocations.
The complete stress field for an array of periodic edge
dislocations can be found in [I5].

For collinear arrays

T 7!

4z 1 41
AQx, 1) = - -

s
1 —_— —
an P {(x —n}

T
t —
an yy (x +1)

. E
. sma(x—n)
oy

! y=2LAL,..

2[cosh 2y — cos% (x — n):|

¥ sin—% (x —#)sinh 2y

- 3
h2y —cos— (x —
[cos v — cos % {x n):l

4
smz(xﬂ)

2|:cosh 2y — cos% (x + n):|

y sin % (x + n)sinh 25
— . _ b (BI)
[cosh 2y —cos % (x+ :q)]




XJA and HUTCHINSON: MATRIX CRACKING OF CROSS-PLY CERAMIC COMPOSITES 1945

. For staggered arrays

n n

8t 1 8t
A = L

b4
tan — —_
an s:(x 1}

n
t: —_
an & (x+1)

o
31n4—t(x—'1) .

y=2AL ... 2[cosh 2y —cos‘% {x — q)]

y sin 74755 (x — y)sinh 2y
+

o 7
[cosh 2y —cos P (x — n)]

. ®m
sm;ﬁ(x + 1)

T
2[cosh 2y —cos o (x + q)i|

sin ?1:‘: (x + )sinh 2y

- H
[cosh 2y wcos% (x4 11):|

-]

LAY ,
2, :
y=bab 2[cosh2y +cos% x -—q)]

. 7 .
¥ sin o (x — n)sinh 2y

. ®
n sm-4—!(x—r1)

4
T

. 2
: [cosh 2y + cos% (x —r,l)]

. W
: 51n»4-;(x+n)

Z[c:osh 2y + cos% (x+ n):l

1: .
ysin y {x + n)sinh 2y

— - (B2)
I:cosh 2y +cos y x+ 11):|

APPENDIX C

Nomenclature (Partial Listing)

a = half crack length
¢, 6y =fiber  and matrix volume concentration
(ct' +ey = 1)
¢ = half ply thickness
A = orthotropy factor
E;, E, = Young's moduli of fibers and matrix
E, E, = average Young’s modulus of plane strain, se-
cant modulus of the cracked composite
L = half crack spacing
R =fiber radius
p =a material parameter [deﬁned in equatlon Q)
€ =total tensile strain
Ag =extra tensile strain (melastlc strain due to
cracking)
o; = tensile stress in bridging fibers
6, = largest stress a composite can sustain before
the matrix crack is fully extended
og = residual stress
t = fiber/matrix sliding shear resistance
I, =critical energy release rate of the matrix
E, , v, ¢ =longitudinal Young's modulus, Poisson’s ratio
and shear modulus of a single ply
ET, vr, gy = transverse Young's modulus, . Poisson’s ratio
and. shear modulus of a single ply -







