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ABSTRACT

Theoretical models are developed for heat conduction and thermal expansion in a fiber-reinforced ceramic
cross-ply laminate containing an array of parallel transverse matrix cracks. Two stages of the transverse
matrix cracks are considered : Stage-1 with tunnel cracks in the 90° plies aligned parallel to the fibers, and
Stage-I1 with cracks extended across both the 90 and 0” plies with intact fibers bridging the matrix in the
0 plies. The effect of debonded fiber—matrix interfaces in the 0° plies is also considered in Stage-II.
Approximate closed form solutions for the overall in-plane thermal conductivities and coefficients of
thermal expansion (CTEs) as functions of matrix crack spacing and constituent properties are obtained
using an approach which combines an analysis akin to a shear-lag analysis with finite element results.
Empbhasis is placed on the important class of composites whose fiber expansivity is smaller than that of the
matrix. For this class, matrix cracking and interfacial debonding results in reduced thermal expansivity.
Interfacial debonding has a significant effect on both longitudinal conductivity and thermal expansivity,
especially the latter. Comparisons between the present model predictions and numerical and experimental
results are provided where these are available.

1. INTRODUCTION

Explicit approximate expressions are presented in this paper for the overall thermal
conductivities and effective coefficients of thermal expansion of a laminated, fiber-
reinforced cross-ply ceramic-matrix composite (CMC) as influenced by the two trans-
verse matrix crack systems previewed in Fig. 1. The overall properties are linked to
the fundamental properties of the fiber, matrix and interface. In Fig. 1(a) the cross-
ply laminate is weakened by a multitude of transverse matrix cracks of uniform
spacing d which span the entire cross-section of the 90" plies. These are termed Stage-
I matrix cracks. They form as cracks which tunnel in the z-direction perpendicular to
an applied tension acting in the y-direction. The composite is fully cracked when the
matrix cracks of Fig. 1(a) spread into and across the adjacent 0° plies, as shown in
Fig. 1(b). For a cross-ply composite to be effective, these Stage-II cracks must form
without breaking the fibers, leaving the fibers to bridge the matrix cracks in the 0°
plies. For CMCs with relatively low debond energies, matrix cracking in the 0° plies
is usually accompanied by debonding and sliding along the fiber-matrix interfaces.
An important class of CMCs has fibers whose cocfficient of thermal expansion is
less than that of the matrix. The individual plies and the laminated cross-ply are
processed at temperatures in excess of the temperature at which the material will be
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(b)

Fig. 1. A fiber-reinforced cross-ply laminate with (a) Stage-1 matrix cracks ; and (b) Stage-11 matrix cracks.

used. The CTE mismatch between the fiber and matrix affects the behavior of the
composite at two scales. Within each ply, the fiber experiences a residual compression
along its axis, the matrix is in tension parallel to the fibers, while the fiber—matrix
interface is subject to a residual compression. At the scale of the individual plies, the
mismatch results in an average residual tensile stress acting across the 90° plies in the
y-direction in Fig. 1, and an average residual compressive stress in that same direction
in the 0" plies. At the scale of the fiber within the 0° plies, the residual stresses promote
matrix cracking without fiber breakage, and. when debonding occurs, the residual
stresses tend to keep the interfaces closed, At the larger scale of the plies, the residual
tension in the 90" plies in the y-direction adds to an applied tension in that direction
to produce conditions which favor the spread of the Stage-I tunnel cracks. At higher
applied tension, Stage-1I cracks spread across the 07 plies. This sequence of events
has been observed in SiC—CAS cross-plies loaded in tension parallel to one of the
fiber directions by Beyerle et al. (1992). It has been analyzed by Xia and Hutchinson
(1994).

Inspired by the first systematic study of Stage-I matrix cracks by Garrett and Bailey
(1977), there has been considerable research effort devoted to the description of their
effects on stiffness reduction of laminated composite materials. A collection of some
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important papers on the subject, both theoretical and experimental, can be found in
Laws and Dvorak (1988) and McCartney (1992). More recent works in this area have
been directed towards understanding the overall stress—strain behavior of cracked
composite laminates as influenced by the constituent properties (Xia et al., 1993 ; Xia
and Hutchinson, 1994 ; Evans et a/., 1994). The effective CTEs of a cross-ply laminate
in the presence of Stage-1 cracks have been calculated by Bowles (1984) and Adams
and Hcrakovich (1984), using a finite element procedure, and by Hashin (1988) on
the basis of variational methods. Herakovich et al. (1988), Nairn (1989), McCartney
(1992) and Gudmundson and Zang (1993) also discuss some aspects of effects of
Stage-I cracks on thermal expansion, especially where they follow from a direct analog
to effects on stiffness reduction.

The study in this paper has been motivated by the effort to develop CMCs for
structural applications involving high temperatures and high temperature gradients
where at least a limited amount of matrix cracking in the vicinity of notches, holes or
other sources of stress concentrations must be contemplated for designs to be efficient.
The work reported here should be regarded as a continuation of two earlier papers
(Lu and Hutchinson, 1995a,b), which focused on some of the same phenomena for
unidirectional fiber-reinforced composites. For simplicity, the laminated cross-plies
studied here are taken to have an equal number of 0 and 90" plies, each with thickness
2t. The results presented can be easily adapted to cover laminates with unequal
number, and unequal thicknesses, of 0 and 90 plies. For materials whose fibers have
a smaller CTE than their matrix, the longitudinal (parallel to the fibers) and transverse
CTEs of an undamaged single ply, #; and 2, respectively, are ordered according to
oy < %y, causing the Stage-1 matrix cracks to remain open in the absence of applied
stress. As is customary now in the analysis of fiber-reinforced composite materials,
the fibers are taken to be transversely isotropic (elastic moduli, CTEs and thermal
conductivities), while the matrix is assumed to be isotropic.

In the sections to follow, the problems for the cross-ply containing either Stage-1
or Stage-11 cracks will be solved by an approach combining modified shear-lag and
finite element analyses. (For brevity of terminology, the method for solving for the
overall thermal conductivity will also be referred as a “‘shear-lag analysis™, owing
to the mathematical analogy between elasticity and heat conduction.) The explicit
expressions thus obtained for the overall thermal conductivities and effective CTEs
contain complete information needed for connecting to the constituent material
properties, even though the expressions are relatively simple. The accuracy of the
solutions will be checked against theoretical predictions and experimental data avail-
able in the literature, as well as with some known limiting values when the erack
spacing  diminishes to zero.

2. PRELIMINARY CONSIDERATIONS

2.1. Heat conduction laws

2.1.1. Single ply. Let k. and yk; be the longitudinal and transverse thermal con-
ductivities of the fiber, and 4, be the thermal conductivity of the isotropic matrix.
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The longitudinal and transverse conductivities k; and k- of a crack-free single ply are
given by

ky = pki+ (1 —p)ky
pke(14 )+ k(1 —p) | 1. @.1)

kr=—"7""-7—— "k,

k(1= p) + k(14 p)

where p is the fiber volume fraction. The rule of mixtures shown above for &, is exact.

The approximate expression for kr is obtained via an effective-medium approach

analogous to the well-known self-consistent method (Christensen, 1979). It is valid

for values of p up to about 0.6 (Markworth, 1993). Written in rectangular Cartesian

coordinates (x, y, z) with the y-axis parallel to the fibers in the 0° plies [Fig. 1(a)], the

heat fluxes (energy per unit area per unit time) in an undamaged 0° ply are related to

the temperature gradients by Fourier’s law as

—4x = kTTX’ -4, = kLT,y’ —q. = kTrza (22)

where (¢.. ¢,,q,) are the components of the flux vector, T, = 67/édx, etc. The same
relations apply to an undamaged 90° ply with due regard for the change in fiber
orientation.

2.1.2. Cross-ply laminate. Fourier’s law of heat conduction in a crack-free cross-ply
laminate reads

~q.,=kT,, —q,=k)T,. —q,=klT,, (2.3)

where a quantity with superscript “0” will be used to denote a result where matrix
cracking is absent. Throughout the paper, we shall, for convenience, use “thickness”
(or “out-of-plane™), “longitudinal” and “transverse” to label laminate properties
along x, y and z directions, respectively. In terms of ply conductivities, the overall
thermal conductivities of the uncracked laminate are given by

kO =ky, kS =k =13(k.+kp). (2.4)

In the presence of matrix cracking, the overall thermal conductivities of the cross-ply
laminate, (k,, k,, k), are defined by

‘q.\' = erxs iQy = kT a 7qz = sz;: (25)
where g, and T, (i = x, y,z) tepresent separately the heat flux intensities and tem-

perature gradients averaged over the cross-ply.

2.2. Stress—strain laws

2.2.1. Single ply.In the Cartesian coordinates previously defined, the stress—strain
law for a transversely isotropic, defect-free 0° ply takes the form
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1 v
&, = E—Ta‘_‘ “E — 0, — E/TG +ourAT A
v 1
£, = — -E—L Gyt E; G, — EL —0,.+u AT
N N ] : (2.6)
€ = — Er-l- [ FL o’y\' + FTU:: + t‘x'l'AT‘
] 1 I
by = 271 Oxps &2 = ma]:’ € = ma,rz

where, again, the longitudinal and transverse properties of the ply are distinguished
by subscripts “L”" and “T", and AT is a temperature change measured from some
conveniently chosen reference temperature. Here, ur = F1/2(1 + vp), but, in general,
uy # EJ2(1+v). With due regard for the two orientations, these relations also hold
for an uncracked 90” ply. Throughout the paper identical Poisson ratios for the fiber
and matrix are adopted such that v, = vy = v (= v; = v,,). The accuracy of our end
results is quite insensitive to this assumption, but the algebraic simplification achieved
makes it worthwhile.

The analysis of the effective CTEs requires knowledge of the in-plane moduli of
the ply in terms of fiber and matrix properties. The expressions employed here are
(Whitney, 1967):

AE/En+2n) 4 2p(E/Ey—1)
T (E/En+2n)—p(E/Ey—1)
EL=pE+(1-p)E, , 2.7
(14 p) + pim (1 —p)

T (=) (T+p) ™

4

where 7 is the ratio of axial fiber modulus relative to that in the radial direction. The
CTEs of an uncracked single ply, o, and a4, have been given by Hashin and Rosen
(1965) and later by Lu and Hutchinson (1995a) in a more explicit form for fibers with
arbitrary cylindrical anisotropy. For isotropic fibers, they are (Lu and Hutchinson,
1995a)

ol —pWE—E)VEA+GBv—2)E ] [’ (2.8)

= po;+ (1 — —Ax-
xAp P +( p)am A E[[E!—f—(l —2V)EL]

where E; and o, denote separately the Young’s modulus and thermal expansivity of
the fiber, and Ax = o;— o, represents the thermal expansion mismatch. From relations
(2.7) and (2.8) one can easily verify that £, is always larger than Eifn = 1. Moreover,
the condition oy > «;, which ensures that the transverse matrix cracks remain open
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even at zero applied stress, is always satisfied if the fiber CTEs do not exceed that of
the matrix in magnitude.

2.2.2. Cross-ply laminate. Refer to the coordinates defined in Fig. 1, the stress—
strain law for an orthotropic, damage-free cross-ply composite reads as

1 vy v
y xz 0
Cye = 0 Txx — ury Oy — 0 Oz + (xxA T
ES E, E;
0 4]
Viy 1 Vyz 0
&y = _%J.Yv_i_—o-vv_ Gzz+dVAT
> E)[,] E;) ”E? ‘
. [ L 2.9)
ve Vi 1 o
Erx 7= — 70.&‘( - ‘_00—1'1' + To—z: + o AT
1 1
8,\’)‘ =5 0 O—xy, Syz =5 0 O—yz’ Eyz = .y Gy
245, 2. 24y,

A conventional analysis based on the assumption that the in-plane strains are identical
in every ply of a crack-free cross-ply laminate yields (with equal numbers of plies of
each orientation and equal thicknesses assumed)

EV = E EY - E0 = (1 +EL/ET)2-4vﬁ
' ) T 2014 ELJEc B Er—)
vi(l—E,/Er)*

L

2ve

W ——= ) =0 =y o+ — — (2.10a)
I+ EE C O 2(1+ ELEn) (B Er— i)
2p iy
0 _ 0o _ 0 _
:u_v: Hi, ,uAy Hy: #L+#T

and

#) = o — -L[(IHLET)(@SaT)+<1+vL><a§?—aL)}

FVﬁET/EI. Ee
(I—v) Er ol
O =gt = , ap | T+ve— |[+or(I+v)—
T = E By (i EyEy | TR T

(2.10b)

For the most common CMC systems with > 1 and «; < «,,, one can see from these
relations that

E > E)>FE=E) o zop>al (2.11)

For CMCs whose fiber properties do not differ significantly from those of the matrix,
the above expressions for undamaged laminate properties can be well approximated
by
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Fig. 2. A comparison between (2.10) and its simplified form (2.12) for the thermoelastic properties of a
uncracked cross-ply.

o By +or By
ES=E'=J(E +E). al=o0, o =0 =———F—
p : =5(EL+Er), og=or, o = E.+ E;

(2.12)
The error involved with the use of relation (2.12) in lieu of (2.10) is negligible (Fig.
2). At certain places in the sequel, it will be convenient to use these simpler expressions.,

With the field variables (¢, o) replaced by their volume averages (&, 6;;), and the
crack-independent laminate properties (vy, E7, 4y, o) replaced by the corresponding
effective quantities (v;;, E,, u;;, ), the constitutive relation (2.9) continues to apply in
cases where the cross-ply is damaged by matrix cracks aligned perpendicular to the y-
axis. Our objective is to explore the extent to which the effective CTEs, o;s (i = x, y, z),
deviate from their undamaged values, «’s, as a result of matrix cracking and fiber
debonding.

3. OVERALL THERMAL CONDUCTIVITIES

3.1. Stage-1 matrix cracks

Transverse matrix cracks in the 907 plies do not affect the thermal conductivity of
a cross-ply in directions parallel to the cracks. Therefore attention is directed to the
effect of the cracks in the 90° plies on the overall thermal conductivity of the cross-
ply in the longitudinal direction, i.e. on k,. Figure 3 displays the doubly periodic
geometry of Stage-I in the (x, y)-plane, along with the field equations and boundary
and symmetry conditions governing steady-state longitudinal heat flow in the
composite. (Extensions of the cracks into the (° plies are also shown in Fig. 3, but
these are present only in Stage-11.) Let ¢, be the heat flow in the y-direction averaged
across the cross-ply. The geometric symmetry and linearity of the temperature field
dictates that the temperature distribution on each of the transverse planes half way
between the matrix cracks, such as y = d/2 and y = —d/2, is independent of the
coordinate x. Thus, the overall longitudinal thermal conductivity k, is defined by




1182 T.J. LU and J. W. HUTCHINSON

2 2
In 0° plies: kTa—2+kLa—; =0
ax dy
2
2T a%_o

In 90° plies : kLa—7 +ky
X

e

ox -q, =h(T" -T")
(only for Stage ~11)

Fig. 3. Field equations, symmetries and boundary conditions for a cracked cross-ply composite.

0
4,
k, = — : - . (3.1
: [T(y =d2)=T(y = —d/D)]/d

The heat transfer condition across the matrix cracks in the 90" plies is indicated in
Fig. 3. At each point along the crack surface, the local heat flow across the crack,
g, = —kr dT/0y, 1s taken to be proportional to the temperature jump across the crack
according to

0T
—qy = kg = HAT = T"), (3.2)

where H, is the coefficient of heat transfer and 77— T~ = T(x,07) —T(x,07). When
the crack does not impede the flow of heat, H, = oo, while H, = 0 if no heat is
transferred, 1.e. perfect thermal insulation. Several mechanisms of heat transfer can
operate and contribute to H,, including crack surface contact, gaseous conduction
and radiation. In general H, may be a strong function of temperature. In the analysis,
H_ is taken to be a constant independent of T, but in assigning values to H, a
representative average temperature should be used. Discussion of the relative import-
ance of these mechanisms is given in the companion paper by Lu and Hutchinson
(1995b).

An approximate analysis of the problem posed in Fig. 3 is given in the Appendix
A. The approach closely parallels the analogous shear-lag analysis used in the stress
analysis of cracked laminated composites. A similar approach was adopted in the
earlier paper dealing with unidirectional fiber-reinforced composites. For the limit in
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Fig. 4. Model predictions and finite element results for normalized longitudinal thermal conductivity,
k,/k?, of a cross-ply with Stage-1 cracks as functions of normalized crack density, 1/d, for four selections
of conductivity mismatch.

which the Stage-l cracks are perfectly insulating (/. = 0), the longitudinal con-
ductivity is found to be

(3.3)

= k"{l N kr t.':mh(mld/IZt)}‘1
¥ T 5

kL mdj2t

where m, =(6k!/k,)'”*. In the limit d — 0, the conductivity approaches k, /2, cor-
responding to heat flow only in the 0° plies. From (3.3), curves of k,/k} vs normalized
crack density, t/d, are displayed in Fig. 4 for four values of k, /kt. Also included in
the same figure are some numerical results from our finite element analysis of a cell
model with the heat transfer boundary conditions posed in Fig. 3. Excellent agreement
between the two sets of solutions over the entire range of the crack density parameter
is evident.
When H. is not zero, the analysis in the Appendix A gives

ke tanh(m,d20)/(m,d2ey )~
ky 1+ (4k°B./m, k=) tanh(m, d/zz)}

k, = k? {1 + (3.4)
Here, B. = H.t/k, is the dimensionless Biot number governing the heat transfer across
the cracks. Equation (3.4) reduces to (3.3) when B, = 0. The cffect of the Biot number
on the normalized longitudinal thermal conductivity k,/k} is illustrated in Fig. 5 for
ki /kv = 2. (The combination k}/m,k; in (3.4) can be expressed in terms of k, /k).
The cracks are nearly perfectly insulating if B, is less than 0.1 ; they provide a relatively
small barrier to the heat flow when B, is larger than about 5. Representative values
for gaseous conduction of heat across cracks in ceramic materials given in Lu and
Hutchinson (1995b) indicate that H, is inversely proportional to crack opening,
whereas B, is proportional to z. While values of B, less than 0.1 are possible, one
cannot exclude the possibility that they might fall in the range from 0.1 to 3.

3.2. Stage-II matrix cracks

The conduction of heat in a CMC cross-ply weakened by Stage-IT matrix cracks is
impeded by the presence of matrix cracks at two length scales: one characterized by




1184 T.J. LU and J. W. HUTCHINSON

1 N e UL AL B L
K \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =
- \\\ \\\\\ B0=.5-~‘-v---7_7_1_‘_:
o \x T E
C T ]
. : . - -‘t
< 8l E
P [~ N ]
o - G E
: T ]
Na - — -
. » [N EEN I BRI RTEN S N A O N A AR AN A i
L A ) 15 ?

t/d

Fig. 5. The effect on the overall longitudinal thermal conductivity of varying the Biot number for Stage-1
matrix cracks for k, /k = 2.

the Stage-I cracks of length 27 in the 90 plies and the other by cracks of length on
the order of R; between the fibers in the 0° plies, where R; is typically at least one
order of magnitude smaller than 7. For the composite whose cross-section is depicted
in Fig. 3, the bridged matrix cracks in the 0” plies along lines such as y = 0 give rise
to additional obstruction to the longitudinal flow of heat. In this paper we address
two limiting cases for Stage-II cracks: (1) the case in which there is no debonding,
and (2) the case in which full debonding in the 0" plies has occurred such that the
debond length satisfies / = d/2.

3.2.1. No debonding. When there is no debonding, the effect of the matrix cracks
between the fibers can be represented by an effective thermal impedance, 1/h, gov-
erning the local heat transfer ¢, across any point on the line y = 0 within the 0 plies.
This effective local impedance is defined such that

—q, =WT"—=T7), (3.5

where T*, asin (3.2), denotes the temperature just above the line of the matrix cracks,
with T~ defined similarly for the lower-side. This jump condition will be applied along

all crack lines such as y = 0 in the 0 plies, asindicated in Fig. 3, where g, = —k,0T/0y.
The approximate solution given in the Appendix A gives
kl -1
k,=k[1+2 3.6
=Y 5

where now &} denotes the value of &, given by (3.4) for Stage-1 cracks. Note that the
result for Stage-1 cracks is retrieved as iid/k). becomes large, corresponding to the limit
in which the bridged cracks in the 0" plies do not impede the heat flow. Further insight
into the parameter /id/k. will emerge below.

The results of Lu and Hutchinson (1995b) for the heat conduction in a unidi-
rectional fiber-reinforced material with widely spaced matrix cracks provide the inter-
face impedance 1/h. A brief outline of the steps involved in obtaining / is given in the
Appendix A. The end result expressed as the nondimensional parameter in (3.6) is
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Fig. 6. Effect of fiber radius to half ply thickness ratio R/t on the longitudinal thermal conductivity of a
perfectly bonded cross-ply in the presence of stage-11 matrix cracks, The constitutive parameters used are
B. =01, ki/k,=2and p =04,
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K (1= pkgk! 4Re | pmskgket
where m, is another nondimensional parameter given by m, = {8yk /(1 —p)k,,}'"? and
B. = H.i/k, is the Biot number for the cracks in the 0" plies. [The Biot number in Lu
and Hutchinson (1995b) is H R/k;, while the definition of B, in (3.7) has been taken
to be the same as that used in (3.4).] The coeflicient of heat transfer H, for the cracks
in the 0" plies need not be the same as for the cracks in the 907 plies. The essential
observation which follows from (3.7) is that as long as the matrix crack spacing, d, is
large compared to the fiber radius, R;, the parameter 4d/k, will be large. Thus, by
(3.6), the cracks in the 0" plies will have a small effect on k,. The effect 1s shown in
Fig. 6 for B, = 0.1 for both sets of cracks, ki/k,, = 2 and p = 0.4. Intuitively, it is easy
to understand that the small cracks in the 0" plies are much less effective in impeding
the flow of heat than the larger cracks in the 90° plies. The same conclusion applies
to the effect of debonding as long as ¢ » /. The validity of the formula (3.6) breaks
down when d becomes comparable to R; since the derivation of /# and its use to
prescribe a condition along a crack line in (3.5) tacitly assumes that the two scales
involved in the problem are distinct, i.e. d and r are large compared to R,.

3.2.2. Fully debonded interfaces in the 0° plies, I = d/2. Extensive debonding of the
fiber—matrix interface in the 0° plies can further impede the heat flow by lowering the
local conductivity in the x-direction, thereby making it more difficult for the heat to
flow around the cracks in the 90” plies. The extreme limit wherein the cracks in both
sets of plies have B, = 0 and the fibers in the 0° plies are fully debonded with thermally
insulating interfaces (8, = 0) necessarily implies that heat flows only in the fibers such
that k£, = pk/2. More generally, the heat conduction problem posed in Fig. 3 for
either Stage-1 or II cracks applies to the fully debonded case, if one replaces the
transverse conductivity k¢ in the 0" plies by a value, k%, reflecting the reduced con-
ductivity associated with the interfacial debonding. When this replacement is effected
in the analysis given in the Appendix A, the resulting formulas for k. are identical to
those in (3.4) and (3.6), but m, must be replaced by
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Fig. 7. Effect of fiber—matrix debonding with varying Biot number B, on the longitudinal CTE of a cross-
ply laminate with stage-11 matrix cracks for Ry/t = 0.05, B, = 0, ki/k,, = 2 and p = 0.4.

Ok k12
mt = [k"k T] : (3.8)
LT
and m, must be replaced by
1/2
. 1 . (3.9)
L (I=p)kn 1+4y/B,

Here, B; = H.R/k; is the Biot number for the debonded fiber—matrix interface with
H, as the coefficient of heat transfer across the debonded interface. Obviously,
m¥ = 0 if the debonded interfaces are thermally insulated (i.e. B, = 0) and m¥ = m,
if the debonded interfaces are perfectly conducting with B, = «0. An effective media
estimate of k¥ has been derived by Hasselman and Johnson (1987). In the present
notation this result is

(1 +79/B;+kefkw) — (1 +7/ B — kefkw)p
" (14+/B + kefky) +(149/B;, = kifkn)p

k¥ =k (3.10)

The results obtained above are displayed in Fig. 7 to illustrate the role of full fiber—
matrix debonding in reducing the longitudinal thermal conductivity. The parameters
used to produce the curves are B, = 0 for the cracks in both sets of plies, R/t = 0.05,
kilk, = 2 and p = 0.4. Perfectly insulated Stage-I1 matrix cracks (i.c. B, = 0) together
with fully debonded fiber—matrix interfaces having B; smaller than about 0.01 serve
as major thermal barriers to the longitudinal flow of heat. The approximations
invoked in arriving at the modified equations (3.4) and (3.6) do not permit the limit
k, = pky/2 to be retrieved in the limit in which B, = B; = 0. Judging from the results
in Fig. 7, we expect this limit to be highly singular. Intriguing as this limit appears to
be, we have not pursued it further. The results shown in Fig. 7 most likely under-
estimate the reduction in &k, when B, is very small.
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4. EFFECTIVE CTES

4.1. Stage-1 matrix cracks

For fiber-matrix thermal mismatches such as those discussed in the Introduction,
the Stage-1 cracks shown in Fig. 1(a) are open as long as the temperature 7' is below
the temperature at which the composite was processed. With AT as the temperature
change relative to some conveniently chosen reference, the effective coefficients of
thermal expansion of the cross-ply are denoted by a,, o,, o., such that «,AT denotes
the longitudinal strain change due to the temperature change from the reference, and
similarly for the other components. The expressions for the CTEs of an uncracked
cross-ply are denoted by a superscript “0” and are given in (2.10b) and in a simplified
form in (2.12). The overall strain changes in the cracked cross-ply are readily defined.
For example, with reference to Fig. 1(a), the displacement component 4, along planes
such as y = +4/2 is independent of x, by symmetry, and therefore &,, = (1,(d/2) —u,
(—d/2))/d.

It is well-known that one can relate the effect of cracks on the CTEs directly to the
increase in compliance due to the cracks. This connection will be exploited here. We
also note the close mathematical analogy between the problem for the CTEs and the
heat conduction problem considered in Section 3. The expressions for the effect of
the cracks on the CTEs turn out to be more complicated than those for the heat
conduction coeflicients because of Poisson ratio effects. Nevertheless, this close math-
ematical analogy, together with the parallel analysis for the CTEs of a cracked
unidirectional composite (Lu and Hutchinson, 1995a), permits us to omit the some-
what more lengthy details of the shear-lag analysis leading to the expressions given
below. Following the presentation of the results, a comparison with results of other
authors on the effect of Stage-I cracks will be made.

A necessary starting point in the presentation is the connection between the effect
of cracks on compliance change and on change in longitudinal CTE. The change in
overall stiffness of the composite with cross-sectional geometry shown in Fig. 1(a)

can be written in the form
! = L 1+C ! 4.3
EEN d) 3

where C, is a dimensionless function of t/d and the dimensionless moduli combi-
nations. Because of the connection between the thermal expansion problem and the
compliance problem, one can also express a, in terms of C, as

(1 =v)E\ (4, —ar)
d 2E) '

o = a4 C, (4.4)

The simplified expression for £V in (2.12) was used in arriving at (4.4), otherwise the
connection between (4.3) and (4.4) is exact. Numerical values for C, can be obtained
from the extensive results in Xia ef al. (1993) who used a finite element method to

compute the compliance change due to Stage-I cracks. The results of the present
shear-lag analysis suggest the following approximation for C, :




1188 T.J. LU and J. W. HUTCHINSON

1‘2 E | S A i ) N I = | I I | { ) I T -
1 — : 3
8 - \\ \ =

T efF S =
- —— p=03 =

4 e p=04 ]

P p=0.5 -

0 - | I N I | 11 1 1 I | I {111 ]

0 5 10 15 20

1 2 E!/Em
. _ T 1T I ' T T T T 1T 7 T 1T T1T7]
tE —— =03

I VN R S p=0.4 .

8 g N R R e— p=0.5 7

v e =
4 "

2 F 7]

C : —

0 C 11t 1 | I I | L1 [ 1 | I
0 5 1 15 20

E/b

Fig. 8. Numerical results for C9 as function of (a) E/E,, ; and (b) £,/Er.

C, =Y tanh{ Ev é}, (4.5)

CVE 1
where CY must be obtained numerically. From (4.3), C? can be seen to represent the
compliance change when the matrix cracks are widely spaced (i.e. d > 3t). The
coeflicient C? has been extracted from the numerical results of Xia et al. (1993). 1t
depends very weakly on p but fairly strongly on Ey/E,, as can be seen in Fig. 8(a).
Here, both the fiber and matrix were taken to be isotropic with v = 0.2, although the
influence of Poisson’s ratio on C{ was found to be very small. The results of Fig. 8(a)
are replotted as a function of E/E} in Fig. 8(b). For fibers with arbitrary cylindrical
anisotropy, one can use (2.7) to calculate £ /E; and extract the corresponding C§
from Fig. 8(b).

Approximate expressions for the transverse CTEs, a, and «., can also be derived
using an approach such as that given by McCartney (1992). However, becausc the
effect of the cracks on the transverse CTEs is quite small as long as £/E,, < 10, which
is almost always the case for CMCs, we will not present results for the transverse
CTEs.

In Fig. 9(a), the effective longitudinal CTE, «,, for a [0,/90,], T300/5208 graphite—
epoxy cross-ply as a function of the crack density parameter, t/d, is plotted using
relation (4.4), where it is compared with the finite element results of Bowles (1984).
The effect is large because the longitudinal CTE of the fiber is small compared to the
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Fig. 9. (1) Model predictions and finite element results for the normalized longitudinal CTE oc,‘/oc‘? (Bowles,

1984) and modulus E,/E? (Gudmundson and Zang, 1993) for cross-ply laminates with Stage-1 matrix

cracks ; and (b) Model predictions and experimental data of E,/E (Groves et al., 1987) for cross-ply
laminates weakened by Stage-I cracks,

matrix CTE. This is a system in which the anisotropy of the fiber is large so that,
instead of (2.8), the equation of Lu and Hutchinson (1995a) for anisotropic fibers
was used. Also shown in the same figure is the comparison between relation (4.3)
and the finite element analysis of Gudmundson and Zang (1993) for the effective
longitudinal Young’s modulus of a [0/90], glass—epoxy laminate. The constituent
properties for each laminate are tabulated in the references cited above. In both cases,
close agreement between the present analytical predictions and those from the finite
element calculations is demonstrated. Figure 9(b) further illustrates the predictive
capability of (4.3) in the light of the experimental measurements of Groves et al.
(1987) on [0/90], and [0,/90,], Hercules AS4/3502 graphite—epoxy laminates. Again,
the analytical results from (4.3) correlate fairly well with the test data. Finally, trends
in the variation of o, are readily generated from (4.4). The ratio o, /o, is quite sensitive
to variations in either o/o; or E /E;, when all other pertinent parameters are kept
unchanged.

The solutions shown in Fig. 9 are typical in that they reveal that o, (and £) has a
nearly linear dependence on the normalized crack density, t/d, in the range d > 31,
where interactions between neighboring cracks are small. For larger crack densities,
interaction increases, the linear dependence of «, breaks down, and «, approaches an
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asymptotic limit when d — 0. From (4.4) this limiting value of «, is not o but rather
o+ v(oer — o) /(1 + EL/E7) (to a good approximation), due to a Poisson constraint in
the z-direction exerted by the 90° layers on the 0° layers. The 0° plies are not free to
undergo unconstrained expansion in the z-direction (governed by ay) because the 90°
plies have a different CTE (i.e. a;) in the same direction. Since the crack planes in the
90° plies lie parallel to the z-direction, the constraint persists even when the crack
density becomes large. The analyses of Hashin (1985, 1988) and Nairn (1989) do not
capture this effect. The analyses of these authors predict that «, should approach o
as d vanishes. Nairn attributes ad arbitrium the discrepancy between this limit and
the finite element predictions of Bowles (1984) and Adams and Herakovich (1984)
for large crack densities (which, indeed, indicate a limit larger than o, for the case
studied with ar > o) to the inability of the finite element analysis to treat highly
cracked 90" layers.

4.2. Stage-1I matrix cracks

4.2.1. Perfect bonding. For the Stage-II problem, the matrix cracks in the 0° plies
are bridged by the fibers. With a,, as the local normal stress in the 0° plies just above
(and below) the crack plane, the additional displacement in the y-direction arising
from the presence of the matrix crack can be represented as a linear “*spring’ according
to

0

AmEMLW%%“ﬁj:p@%T (4.6)

| R R E]_

The dimensionless coefficient DY, which was computed on the basis of a cylindrical
cell model by He er al. (1994), is a function of E/E,, and p, as plotted in Fig. 10.
Thus, the model for the Stage-I1 cracks has the cross-sectional geometry shown in
Fig. 1(b). The planes such as y = 0, which coincide with the matrix cracks in the 0~
plies, are bridged by a continuous distribution of linear springs specified by (4.6). For
this model, a connection generalizing that in (4.3) and (4.4) between the compliance
and the coefficient of thermal expansion can be obtained. The connection must now
reflect the effect of both the cracks in the 90~ plies and those in the (7 plies modeled

by (4.6).
The shear-lag analysis for the compliance of this model gives
1 1 t E) R;
= | 14+C, - +2Dy 4.
. E?[ +Ci 2Dy d} @7

with C, still given by (4.5). As in the case of the corresponding thermal conductivity
problem, the modeling leading to this result is only meaningful when d is large
compared to R;. The connection between the thermal expansion problem and the
compliance problem is through the local stresses in the matrix in the 0° plies before
cracking occurs. The stress due to an average applied stress 6, in the 07 ply is

Om :(I*alp)ﬁ(]/(lip)ﬂ (48)
while the residual stress due to temperature change AT is

O-Ir'ﬂ = paZEm(al‘fam)AT/(l _P)» (49)
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Fig. 10. Numerical results for the nondimensional coefficient D).

where a, and a, are two dimensionless functions of p and E/E,, that are given by
Hutchinson and Jensen (1990). For isotropic fibers,

E; (I —=p)E(E+E)

=, g, = . 4.10
“TE T ERE+(-WE] 10
The correspondence between the two problems then gives
t (1—v)E (g —ay) R E pa,(a;—ay,)
=oal+C +D)— 4.11
&, o 1 d QE?. 1 d E(l —a1p) ( )

where C, and D? are the same coeflicients which appear in (4.7).

An example displaying the effective longitudinal CTE «, from (4.11) as a function
of the normalized crack density t/d is shown in Fig. 11 for R/t = 0.1, 0.05 and 0.01.
In these plots o, is normalized by o, and both the fiber and matrix are taken to be
isotropic with p = 0.4, v= 0.2, E/E_ = 2 and a/a, = 0.5, typical for some CMCs.
When the fibers are perfectly bonded to the matrix in the 0° plies, matrix cracking is
seen to have only a very small effect on «,, even when the density of matrix cracks is
as large as d/t = 1. In other words, assuming debonding does not accompany matrix
cracking in the 0" plies, CMCs will experience rather little change in their CTEs. This
can be contrasted with the much larger effect on polymer matrix composites seen in
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Fig. 11. Effect of fiber radius to half ply thickness ratio R/t on the longitudinal CTE of a perfectly bonded
cross-ply in the presence of stage-11 matrix cracks. The constitutive parameters used are p = 0.4, v = 0.2,
EJE,, =2 and a0, = 0.5.

Fig. 9(a) for a particular carbon fiber composite. The small effect of matrix cracking
in the absence of debonding on the CTEs of CMCs can also be contrasted with the
appreciable effects on the thermal conductivity of these materials.

4.2.2. Partially or fully debonded fiber—matrix interface with frictionless sliding.
Debonding and sliding can alter the situation just described. Specifically, it will now
be shown that when debonding in the 0° plies occurs, allowing frictionless sliding to
take place, the change in «, can be appreciable. Let / be the length of interface debond
extending on either side of each matrix crack surface in the 0° layers [Fig. 1(b)],
with / = 0 and / = d/2 representing, respectively, the cases of no debonding and full
debonding. The debonded region of the interface is assumed to have formed previously
during the process of matrix cracking and is assumed to remain closed under the
conditions that the fiber has a smaller CTE than the matrix.

Relations (4.7) and (4.11) continue to apply for the cross-ply with crack spacing d
and debond length /, provided that [ « (¢, d) and that the coeflicient D¢ is replaced
by
(1—p)FE, 2/

VE. R (4.12)
The additional term in this expression is the contribution to the effective “spring
constant” in (4.6) (with D, replacing DY) arising from the frictionless sliding and
stretching of the debonded segments of the fibers. (The expression has been taken
from He et al. (1994), and further simplified by taking a factor x in that paper to be
unity. In this form it agrees with the most widely used expression for the extra
displacement across a bridged crack due to frictionless sliding.) It must be emphasized
that the replacement of DY by D, in (4.7) and (4.11) can only be justified when it is

D, =D+
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legitimate to model the effect of the debonded fibers as a line-spring, that is when
[« (t,d).

When the fiber matrix interfaces are fully debonded (/= d/2), the longitudinal
CTE of the cross-ply is dominated by the CTE of the fibers in the 0” ply and is weakly
dependent on the crack spacing d. Neglecting the Poisson constraint effect exerted by
the 90" ply on the expansion of the 0° ply in the z-direction but accounting for the
Poisson interaction in the radial direction between the fiber and matrix in the 07 plies,
we arrive at (Lu and Hutchinson, 1995a)

Ax

%, = @y +4ap°¢; @.13)

l—ap’

where the dimensionless coefficient ¢, as @, and a,, was introduced in Hutchinson

and Jensen (1990). For isotropic fibers, the laminate CTE a, becomes
(] —p)E111(Ef+EL)

x“ =0 —+ (a( - txm) E[‘m‘}) EL) )

(4.14)

[t can be readily verified from (2.8) and (4.14) that o, = o if the Poisson ratio v = 0.
In general, o, is slightly smaller than o due to Poisson interaction between the fiber
and the matrix. (Recall, again, that the residual stresses arc such that the fiber—-matrix
interface remains closed.) This approximate result does not depend on the matrix
crack spacing. Guidance as to how frictional sliding resistance alters these results can
be obtained from the study of unidirectional reinforcement in Lu and Hutchinson
(1995a).

On the basis of relations (4.11-4.13), curves of a. /) vs t/d are computed and
presented in Fig. 12 with R/t = 0.05 for four values of normalized debond length //z.

_Jj—llﬁ—[j_rllllllll'
R,/t=0.05

Stage-1 cracks

6 Stage-II cracks 3
' (Full| debonding),

lJlItllIIlilIll'll

0 2 '4t/d'6 8 1

Fig. 12. Effect of frictionless debonding on the longitudinal CTE of 4 cross-ply laminate with stage-11
matrix cracks for R/t = 0.05, The constitutive parameters used are identical to those listed in Fig. 11.
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The same choice of parameters is employed as in Fig. 11, namely p = 0.4, v = 0.2,
E/E, =2 and oy« = 0.5. Note that the scale of the ordinate is much larger in Fig.
12 than in Fig. 11. Debonding clearly has a major effect on «,. Also included in
Fig. 12 is the prediction from (4.14) for fully debonded stage-11 matrix cracking. The
value for «, from (4.14) in this example is 0.88 a;, which falls below «; for reasons
discussed above.

Finally, we note that the procedures used to estimate the increase of compliance
due to matrix cracking in a cross-ply can be applied to calculate the average longi-
tudinal stress acting on the 0° plies when the cracked cross-ply is loaded in the y-
direction. An analysis leading to closed form formulas for this average stress quantity
is given in Appendix B for both Stage-1 and Stage-II matrix cracks. The results
obtained can be applied to simulate the stress—strain curves of cross-ply composites
in a way described by Evans et a/. (1994).

5. CONCLUSIONS

The changes in thermal conductivities and coefficients of thermal expansion due to
matrix cracking and interfacial debonding in cross-ply CMCs have been analyzed,
with emphasis placed on composite systems where the CTE of the matrix is larger
than that of the fiber. Realistic densities of Stage-I cracks result in significant reduction
in the overall longitudinal thermal conductivity but have a rather small effect on the
CTEs of ceramic cross-plies. This is in contrast to the appreciable changes Stage-I
cracks produce in the longitudinal CTE of certain polymer—matrix composite systems
where the fiber expansivity is much smaller than that of the matrix. When fiber—
matrix debonding does not accompany matrix cracking in the 0° plies, Stage-II
cracking produces only small incremental changes from Stage-I cracking, as far as
the overall conductivities and expansivities are concerned. Debonding and sliding of
the fiber—matrix interfaces in the 0° plies produces substantial changes from the Stage-
I values. The combination of matrix cracking and interfacial debonding can reduce
the longitudinal thermal conductivity k£, and CTE o, of the cracked cross-ply to levels
close to pky/2 and o respectively. The properties of the cross-ply in the other two
directions are much less affected by the presence of matrix cracks under the conditions
that perfect bonding exists between the fiber and the matrix. Debonding does change
the transverse thermal conductivity, but in a manner which is not influenced by the
existence of the matrix cracks.
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APPENDIX A: “SHEAR-LAG” ANALYSIS OF HEAT CONDUCTION IN CROSS-
PLY LAMINATES WITH STAGE-I AND STAGE-Il MATRIX CRACKS

The analysis presented below for the thermal conductivity of the composite with cross-
section shown in Fig. | serves to illustrate the approach for the somewhat more complicated
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problem for thermal expansion. A “shear-lag” type formulation for the Stage-I problem is
presented first. This is extended later to cover the case where Stage-II cracks are present.
The steady-state temperature distribution in the 0° layers, T,(x, ), must satisfy

2 2
kT%JrkL%%:O. (A.1)
By symmetry, along the central axes of the representative 0° ply,
Ty.=0, forx=0, (A.2a)
with a similar condition at the center of the 90° plies
Too, =0, for|x| =2z (A.2b)

where Ty,(x, ) denotes the distribution of temperature in the 90° layers. For intimate thermal
contact at the 0°/90° interfaces,

7;0 _ Tw)"’ } for |x| = . (A3

Introduce the average temperature gradients defined by

t

. 1 . 1 [
7-‘()y(y) = 7J TO‘y(xs y) dxs Z)().y(y) = 7J T‘)().y(xs ,V) dx' (A4)
T J0 i

The global heat balance condition satisfied on every cross-section transverse to the plies then
reads

%[kTT‘)U.y(y)+kLTO‘y(y)] = —qﬁ, (A.5)

where 4" is the longitudinal heat flux intensity averaged across the laminate.

Let T79(y) be the temperature at the center of the 0° ply and let 7% (y) be the temperature at
the 0°/90° interface. The distribution of temperature in the 0° ply is taken to be a quadratic
interpolation of the values at the center and edges according to

2
To(x,y) = TH(O) + ’:—Z(Ta(}’) —T9(y). forx<t. (A.6)

Integration of the governing differential equation (A.1), with the aid of (A.4), leads exactly te
af(@- _ kl To.(»)
Jy ke, t 7

where T} () = To.(£ 1) is the transverse temperature gradient at the 0°/90° interface. This
gradient can, in turn, be obtained from (A.6) in terms of Ty(x,y) and T§(y). Next, differ-

entiation of (A.7) with respect to y gives
Ty, 2kelky) (dm g)

(A7)

(A.8)

d y2 B 2 y %

where the condition T% = T%, has been used. Note also that, with the substitution T} = Th,,
a direct averaging of (A.6) yields

df, 1 /dT§ dTy,
L _z(dy + 47 A9)

To further simplify the problem, the transverse variation of the temperature gradient across
the 907 ply, 0T,,/0x, is ignored. Under these conditions, the quantities d7§/dy and dT%,/dy
are readily expressed in terms of d Ty/dy on the basis of (A.5) and (A.9). Finally, the governing
differential equation (A.8) is reduced to
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Fig. Al. Effect of fiber matrix debonding with frictionless sliding on the average longitudinal stress 6,
acting on the 0 ply when a cross-ply laminate with stage-11 matrix cracks is loaded by stress @ in the same
direction. The constitutive parameters used are Ry/t = 0.05, p = 0.4, v = 0.2 and E/FE, = 2.

APPENDIX B: “STRESS CONCENTRATION” IN 0" PLY DUE TO STAGE-1 AND
STAGE-II MATRIX CRACKS

The solution given in the text for the increase in compliance of a cross-ply due to transverse
matrix cracking is employed here to determine the average longitudinal stress 4, sustained by
a 0" ply when the cracked cross-ply is loaded by stress ¢ in a direction parallel to the fibers of
the 0 ply. Given 6, as a function of crack spacing and moduli variables, one can simulate the
tensile stress—strain behaviors of laminated cross-ply composites using the behavior of the
unidirectional material in the 0” plies under the assumption that it is the behavior of these plies
which dominates (Evans et a/., 1994).

If the cross-ply is uncracked. &, = E 6/E}. For the most common CMCs, 4, is only slightly
larger than & when no matrix cracks are present. As an illustrative example, one has 6,/ = 1.05
if E/F,, =2, p=04and n=1. The “stress concentration factor” &,/¢ increases markedly,
however, once matrix cracking (and interfacial debonding) occurs in the cross-ply and
approaches 2 in extreme conditions. For a cross-ply weakened by Stage-1 cracks, &, is rigorously
given by

_ B L
O'[):O'B<l+(,]:), (B])

where C, has been defined in (4.5). Tf Stage-II cracks accompanied by debonding and frictionless
sliding take place in the cross-ply and if the debond length satisfies the condition / « (¢, ), &,
is well-approximated by

I { E? R\ | R,
60:GE(I+C13+2D1EL2/ 1+D|7, (B.2)

i)

where D, is given by (4.12). When full debonding with frictionless sliding occurs at the fiber-
matrix interface (/ = d/2), the dependence of &, on the crack spacing d is weak. With the
Poisson constraining effect exerted by the 90° ply on the deformation of the 0" ply ignored (but
not the Poisson interaction between the fiber and matrix in the 0 ply), the load carrying
capacity of the cracked cross-ply is due to the 0 plies alone such that &, = 2¢. Based on
relation (B.2), the ratio &,/¢ is depicted in Fig. Al against the crack density parameter ¢/d as a
function of normalized debond length //R; for R/t =0.05, E/E, =2, =1, p =04 and
v = 0.2. It is bounded by &,/¢ = 2 for fully debonding and (B.1) for Stage-I cracks, for which
the curve is also displayed in Fig. Al. Observe that although the matrix cracks in the 07 plies
have negligible effect on &,/¢ when there is perfect bonding between the fiber and matrix,
extensive debonding with frictionless sliding have the potential to raise ¢,/¢ close to the
limit 2.
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Fig. Al. Effect of fiber—matrix debonding with frictionless sliding on the average longitudinal stress &,

acting on the 0 ply when a cross-ply laminate with stage-1I matrix cracks is loaded by stress & in the same
direction. The constitutive parameters used are Ry/r = 0.05, p =04, v = 0.2 and E/E,, = 2.

APPENDIX B: “STRESS CONCENTRATION” IN 0° PLY DUE TO STAGE-I AND
STAGE-II MATRIX CRACKS

The solution given in the text for the increase in compliance of a cross-ply due to transverse
matrix cracking is employed here to determine the average longitudinal stress &, sustained by
a 0” ply when the cracked cross-ply is loaded by stress & in a direction parallel to the fibers of
the 0" ply. Given &, as a function of crack spacing and moduli variables, one can simulate the
tensile stress—strain behaviors of laminated cross-ply composites using the behavior of the
unidirectional material in the 0° plies under the assumption that it is the behavior of these plies
which dominates (Evans et al., 1994).

If the cross-ply is uncracked, 6, = E; 6/E". For the most common CMCs, &, is only slightly
larger than & when no matrix cracks are present. As an illustrative example, one has ¢,/6 = 1.05
if E/E, =2, p=04and # = 1. The “stress concentration factor’” &,/¢ increases markedly,
however, once matrix cracking (and interfacial debonding) occurs in the cross-ply and
approaches 2 in extreme conditions. For a cross-ply weakened by Stage-I cracks, 4, is rigorously
given by

K i
= (I+C1 E), (B.I)

where C, has been defined in (4.5). If Stage-11 cracks accompanied by debonding and frictionless

sliding take place in the cross-ply and if the debond length satisfies the condition !/ « (1, d), &,
is well-approximated by

E ¢ E°R R
Fo 5E—'(;(I+C1E+2D]——‘>//(I+D,4), (B.2)

i

o E d d
where D, is given by (4.12). When full debonding with frictionless sliding occurs at the fiber—
matrix interface (/ = d/2), the dependence of &, on the crack spacing d is weak. With the
Poisson constraining effect exerted by the 90° ply on the deformation of the 0° ply ignored (but
not the Poisson interaction between the fiber and matrix in the 0° ply), the load carrying
capacity of the cracked cross-ply is due to the 0° plies alone such that &, = 2¢. Based on
relation (B.2), the ratio 5,/ is depicted in Fig. A1 against the crack density parameter r/d as a
function of normalized debond length //R; for R/t =0.05, E/E, =2, n=1, p=04 and
v = 0.2. It is bounded by 6,/& = 2 for fully debonding and (B.1) for Stage-I cracks, for which
the curve is also displayed in Fig. Al. Observe that although the matrix cracks in the 0 plies
have negligible effect on &,/6 when there is perfect bonding between the fiber and matrix,
extensive debonding with frictionless sliding have the potential to raise &,/¢ close to the
limit 2.




