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ABSTRACT 

Mode I crack initiation and growth under plane strain conditions in tough metals is computed using an 
elastic-plastic continuum model which accounts for void growth and coalescence ahead of the crack tip. 
The material parameters are the Young’s modulus, yield stress and strain hardening exponent of the metal, 
along with the parameters characterizing the spacing and volume fraction of voids in material elements 
lying in the plane of the crack. For a given set of these parameters and a specific specimen, or component, 
subject to a specific loading, relationships among load, load-line displacement and crack advance can be 
computed with no restrictions on the extent of plastic deformation. Similarly, there is no limit on crack 
advance, except that it must take place on the symmetry plane ahead of the initial crack. Suitably defined 
measures of crack tip loading intensity, such as those based on the J-integral, can also be computed, 
thereby directly generating crack growth resistance curves. In this paper, the model is applied to five 
specimen geometries which are known to give rise to significantly different crack tip constraints and crack 
growth resistance behaviors. Computed results are compared with sets of experimental data for two tough 
steels for four of the specimen types. Details of the load, displacement and crack growth histories are 
accurately reproduced, even when extensive crack growth takes place under conditions of fully plastic 
yielding. 

1. INTRODUCTION 

Two main obstacles to the development of nonlinear fracture mechanics for appli- 
cation to tough, ductile metals have come sharply into focus since the 1970s when the 
subject first began to receive appreciable attention. A strong geometry dependence of 

crack growth resistance emerged which is associated with different levels of crack 
tip constraint under large scale yielding conditions. The early theoretical work of 

McClintock (197 1) clearly suggested that such a dependence should be expected, and 

the recent systematic experimental studies of Hancock et al. (1993) provide the most 
definitive data available to date on crack tip constraint effects. The other aspect of 
nonlinear fracture mechanics which has proved difficult for all predictive approaches 
is extensive crack growth. At a fixed level of crack tip constraint, there are sound 
arguments which can be used to justify an approach to analyzing crack growth and 
stability using crack resistance data based on the J-integral, as long as the amount of 
crack growth is sufficiently small. As a practical matter, this approach has been called 
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Fig. I. Crack geometries : (a) three point bend (TPB) ; (b) compact tension specimen (CT) ; (c) double edge- 
notched tension strip (DENT) ; (d) single edge-notched tension strip (SENT) ; and (e) center-cracked panel 

(CCP). 

into question for several important applications involving crack extensions which 

appear to exceed justifiable limits. 

In this paper a computational model for mode I plane strain crack growth in tough, 
ductile metal alloys is applied to predict crack growth and loadclisplacement behavior 
for the five specimen geometries shown in Fig. 1. Extensive comparisons with exper- 
imental data will be made for four of the five specimen types for two steels tested by 
Joyce and Hackett (1991) and Joyce and Link (1994). Each application involves both 
large scale yielding and reasonably large amounts of crack growth. The model employs 
cell elements on the plane ahead of the crack, each of which contains a void. The 
void-containing elements are embedded within a conventional elastic-plastic con- 
tinuum whose properties coincide with those of the metal. Under increasing load, the 
voids grow and coalesce to form new crack surface thereby advancing the crack. In 
principle, there is no limit to the extent of crack growth that can be considered, as 
long as it occurs on the original crack plane. The present paper is the third in a 
sequence which started with the introduction of the model and its first application to 
small scale yielding behavior by Shih and Xia (1995) and was followed by a discussion 
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of computational details by Xia and Shih (1995). The primary aim of the present 

paper is to demonstrate convincingly by way of examples that this computational 

model, and others of its type, can accurately predict the full details of loadclis- 
placement and crack growth behavior in both test specimens and cracked structural 
components under large scale yielding conditions. 

The history of the development of computational models for crack growth in 

ductile solids has not been one of continuous progress. Early progress in developing 
computational models for predicting crack growth in ductile materials was achieved 

in work representative of that of Kanninen et al. (1979) and Shih et al. (1979). These 
workers used a local criterion, or combination of criteria, for crack advance, such as 

attainment of a critical crack tip opening angle, which, in turn, was chosen such that 

the computational model gave as good a fit as possible to one set of crack growth 
data for the material. Once the criterion was established, the model could be applied 

to other applications involving the same material. Rice and coworkers (e.g. Drugdn 
et al., 1982) carried out a fundamental investigation of near-tip fields for mode I 

propagation of plane strain cracks. They demonstrated that a criterion based on 
maintenance of an invariant crack tip opening profile was capable of reproducing 

behavior once crack propagation was underway in compact tension specimens of a 

particular class of steels under moderate to large scale yielding conditions (Hermann 
and Rice, 1980). In spite of the promise evident in this early work, there followed a 

hiatus in which rather little further effort was expended on computational aspects of 

mode I plane strain crack growth in ductile metals. In retrospect, one limitation of 
the early approaches was the inability of the local fracture criteria to capture the 
strong dependence on crack tip constraint. Nevertheless, it seems fair to say that the 

main elements of a computational model were in place some years ago, and substantial 
progress would have been likely had the subject been actively pursued. 

More recent efforts in this area have focused on the development of models which, 
like the present model, incorporate void growth as a fracture process in the com- 

putational scheme. Tvergaard and Needleman (1984) demonstrated the power of such 
models when applied to predict the development of the cup-cone mode of fracture in 

necking of a round tensile bar. Their continuum model employed the Gurson (1977) 
constitutive relation for an elastic-plastic solid containing voids. Subsequently, 

Needleman and Tvergaard (1987) extended McMeeking’s (1977) study of the initiation 
of crack growth. They focused on the interaction between the void nearest the crack 

tip and the tip itself by treating large voids as discrete entities and by modeling a 

second population of much smaller voids using the Gurson relation. In work which 

is closest in spirit to that developed here, Sun and Schmitt (1990) and Brocks et al. 
(1995) have adopted a version of the computational model proposed by Needleman 
and Tvergaard and have applied the model to analyze fully plastic cracking behavior 

of tough steels for various specimen geometries. Work based on a local failure criterion 
was originated and pursued independently by Rousselier (1987) and coworkers, who 
developed their own mechanics model for void damage as an alternative to the Gurson 
model. Parameters specifying the initial void population are chosen such that the 
model reproduces the experimental behavior of a given metal tested using notched 
tensile specimens. In this way, the model is calibrated so that it is capable of repro- 
ducing behavior under high constraint conditions. The dependence of crack growth 
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resistance on constraint, as tied to specimen geometry, has been demonstrated (Rous- 
selier et al., 1989b). A number of important applications of this approach have been 
made to predict fracture of specimens and components of ductile metals, including 
those reported by Mudry et al. (1989) Rousselier et al. (1989a), Bethmont et al. 
(1990) Bilby et al. (1993) and Li et al. (1993). 

Independently of the plane strain studies, work along parallel lines has been pursued 
using local crack tip criteria for mode I in plane stress for application to crack growth 
in thin sheet materials by various workers, including Hellmann and Schwalbe (1984) 
Budiansky and Sumner (1985) and Newman et al. (1993). In some respects, plasticity 
effects are less complicated in thin sheets because constraint effects appear to be less 
important. Under some circumstances, plastic deformation can be modeled effectively 
using a plastic zone concentrated on the line ahead of the crack. The recent work of 
Newman et al. (1993) has carried the computational approach the furthest with 
application to the burst capacity of an aircraft fuselage having a major crack in 
combination with small crack damage at rivets in the lap joint. This application 
illustrates the potential of a computational approach to crack growth and stability to 
deal with complicated structural problems. 

The present computational model is introduced and discussed in the following 
section. In Section 3, a brief study of the dependence of the predictions of the model 
on the main parameters is presented. The main applications of the model are made 
in Section 4 where theoretical and experimental results are given for four specimen 
types made of the pressure vessel steel, A533B. Other comparisons are made for an 
even tougher class of steels, A710. Once the material parameters of the model have 
been specified, the approach permits computation of relationships among loads, 
displacements and crack growth, including states where stability is lost. A crack 
growth resistance curve no longer plays the central role in this approach. Nevertheless, 
because there is such a long experience using resistance curves, we have calculated 
resistance curves for each of the specimens and materials in the form of J versus crack 
advance, Au. These are compared with the corresponding experimentally measured 
resistance curves. One advantage of the computational model is that it permits one 
to compute various contending crack tip parameters. We have used this advantage to 
compare computed values of the J-integral on contours remote from the crack tip 
with formulas that are used to estimate J from experimental load-displacement 
records, such as the ASTM (1993) procedure and the modified J-measure suggested 
by Ernst (1989). It is important to keep in mind, however, that issues surrounding 
material crack growth resistance and its measurement can be relegated to a secondary 
role in the present approach. 

The present study, when taken together with the prior work based on the local 
fracture approach of Rousselier and coworkers and the work of Sun and coworkers 
based on Needleman and Tvergaard’s Gurson theory model, provides a fairly exten- 
sive body of results against which the predictive power of this type of computational 
approach can be weighed. There are some differences between the approaches in terms 
of the number and choice of damage parameters and in the way in which these 
parameters are to be chosen. Nevertheless, we believe that a convincing case for the 
predictive power for this type of approach now exists and that its potential as a tool 
for analyzing ductile fracture is evident. 
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Fig. 2. Geometry and finite element mesh for the compact tension specimen. (a) Upper half of the specimen; 
and (b) blow-up of the refined mesh ahead of the initial crack tip. 

2. THE COMPUTATIONAL MODEL 

Geometric details of the model are illustrated for the compact tension specimen in 
Figs 2 and 3. The deformation is taken to be plane strain and, apart from the void- 

containing elements on the line directly ahead of the crack, the material is represented 

by the standard J2 flow theory of plasticity. With E as the Young’s modulus, v as 
Poisson’s ratio and go as the initial tensile yield stress, the true stress-logarithmic 

strain curve is taken to be 

where N is the strain hardening exponent. A finite strain formulation of the elastic- 
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Voided Cells 

Fig. 3. (a) Schematic of void-containing elements in slab along the projected crack line; (b) sub-element 
Scheme A used in computing most of the results in the paper; and (c) sub-element Scheme B. 

plastic continuum is employed, although finite strain effects are not dominant in 
determining the response of any of the geometries analyzed. A finite element rep- 
resentation of the elastic-plastic continuum is employed based on quadrilateral 
elements comprised of four constant strain triangular elements. The mesh used in the 
analysis of the compact tension geometry is shown in Fig. 2 where it can be seen that 
a highly refined rectilinear mesh stretches out on the ligament ahead of the tip where 
the crack growth will occur. Various refinements of the mesh have been used. Most 
calculations reported in this paper used on the order of 1000 elements, with roughly 
100 elements distributed on the ligament ahead of the crack where crack advance 
takes place. 

Directly ahead of the initial crack tip in the plane of fracture is placed a single slab 
of fracture process elements containing voids, as depicted in Fig. 3. Viewed as three- 
dimensional entities, the elements are initially cubes with dimension D on a side. With 
the symmetry associated with mode I, only the upper half of the elements will be 
considered. In plane strain, the cube-elements are subdivided into constant strain 
triangular sub-elements according to several schemes. The bulk of the results presented 
here have been computed using Scheme A shown in Fig. 3(b), but some results 
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obtained using Scheme B in Fig. 3(c) will also be presented to illustrate the sensitivity 
of the predictions to the choice of scheme. Each triangular sub-element shaded in Fig. 
3 contains a single spherical void with initial volume fractionf,, such thatf, represents 
the initial volume fraction of the voids in the slab. Thus, in addition to the material 
parameters already identified (i.e. E, v, o. and N), the material slab introduced on the 
fracture plane is characterized by the initial void volume fractionf, and the initial 
slab height D, with an implicit dependence on the choice of sub-element scheme. The 
elements in the slab, like those in the remainder of the body, are forced to undergo 
plane strain deformations. While a 2D plane strain formulation is used in the present 
study, the constitutive behavior of the void-containing elements derives from a 3D 
model withf, as the initial volume fraction of spherical voids. 

The multi-axial stress-strain response of the slab elements is represented by Gur- 
son’s (1977) stress-strain relation for an elastic-plastic solid containing voids. Gur- 
son’s relation was proposed for situations where the characteristic length of the 
deformation field is long compared to the void spacing, and, consequently, the void 
volume fraction was to be regarded as being averaged over many voids. But, in fact, 
the derivation of Gurson’s constitutive relation is based on an analysis of a single cell 
containing a centered spherical void whose initial volume fraction of the cell is ,fb. 
Although it was not originally intended for this purpose, the Gurson relation can be 
used to characterize the stress-strain behavior of a single void-containing cell element. 
At the heart of Gurson’s relation is the yield condition 

(D(ce,g,,,) = (;~+2y,j”cosh(+$)-,l+(~,/)2] = 0. 

Here (T, is the effective Mises stress formed using the Cauchy stress, (T, is the mean of 
the Cauchy stress, d is the current flow stress,fis the current void volume in the 3D 
sense mentioned above, and q1 and q2 are the Tvergaard (1990) factors introduced to 
improve the accuracy of the model (q, = 1.25 and q2 = 1 .O in the calculations reported 
below). For a cell element at yield, the plastic strain increment is related to the 
Jaumann rate of the Cauchy stress 6,, by 

where h depends on the current hardness level through the stress-strain relation (1) 
and the void volume fraction as specified in full detail by Gurson (1977) or in the 
review article by Tvergaard (1990). The void-free limit withf, = 0, is precisely the JZ 
flow theory solid characterizing the material off the fracture plane. Given an initial 
void volume fraction f0 and the stress-strain relation of the base material (l), the 
history off as a function of the stress or strain is computed using the constitutive 
model. Under increasing strain, the void volume fraction in a given cell reaches some 
level where the cell no longer supports any traction across the plane of the crack and 
the crack advances across that cell. The Gurson model does not adequately supply 
the traction relation during the final phase prior to material separation. In the present 
work, the Gurson relation is used until the value f = fE = 0.2 is reached, at which 
point the cell is assumed to cease to support traction. When a cell attains f = fE, it is 



396 L. XIA et al. 

rendered extinct by the element vanish technique of Tvergaard (1982) which reduces 
the traction carried by the element to zero in a 20-increment release step. 

In summary, the material properties off the fracture plane are E, v, q, and N. These 
same parameters characterize the slab of material along the fracture plane along with 
the two additional damage parameters, the initial slab height D and the initial volume 
fraction&. Given a choice of sub-element scheme, as further discussed below, the 
model becomes complete. For a given geometry with an initial crack subject to either 
a monotonically increased load or load-line displacement, the history of crack advance 
can be computed along with the history of any other load or displacement quantities 
of interest. A number of examples will be given in the paper. In applying the model 
to a specific material the two parameters, D andf,, will be chosen such that the model 
gives a best fit to one set of experimental crack growth data for that material. These 
parameters are not chosen to replicate microscopic observations of void spacing and 
initial void volume fraction. Their values will depend somewhat on the choice of sub- 
element scheme. In this sense, the model should be regarded as phenomenological, 
but with a microstructural basis. Additional microstructural features could be incor- 
porated, including parameters characterizing stress or strain levels at which voids are 
nucleated, as has also been considered by Gurson [see Tvergaard’s (1990) review]. At 
some later date it may prove worthwhile to embellish the model with additional 
parameters, as Brocks et al. (1995) have done, but the present study suggests that this 
may not be necessary. 

2.1. Sub-element Scheme A 

This scheme uses the arrangement of triangular void-elements shown in Fig. 3(b). 
The top half of the square of dimension D/2 by D is subdivided into eight constant 
strain triangular sub-elements, each of which contains a void with initial volume 
fractionf,. Various conventions for identifying the effective location of the crack tip 
are possible. For each of the two schemes here, we follow Becker et al. (1989) and 
advance the crack tip when the void volume fraction averaged over a set of sub- 
elements reaches 0.1. For Scheme A, the average? is taken over the four sub-elements 
comprising one small square of dimension D/2 by D/2. Thus, the crack tip is advanced 
by D/2 across this four-element square whenfreaches 0.1. This is a somewhat arbitrary 
choice which is decoupled from the point of complete loss of load carrying capacity 
of the sub-elements. As already mentioned, a sub-element continues to carry load 
untilf=fr = 0.2, and then the traction it carries is reduced to zero in 20 steps. 

2.2. Sub-element Scheme B 

The arrangement in this scheme, which is shown in Fig. 3(c), employs only three 
sub-elements in the half-square of dimension D/2 by D. As in Scheme A, the crack is 
advanced whenJ‘= 0.1. Now, however, the average is taken over the three elements 
making up the half-square, and the crack advances a distance D. Two versions of the 
element vanish procedure were used. The first was identical to that in Scheme A with 
the traction on each sub-element reduced to zero in 20 steps whenf = fE in that sub- 
element. In the second version, an average value of the void volume fraction7 was 
taken over the same three sub-elements used for advancing the location of the crack 
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tip. When this average reachedf, = 0.2 the tractions carried by all three sub-elements 
were simultaneously reduced to zero in 20 steps. 

Most of the computations reported in this paper were carried out using Scheme A. 
A limited number of results were computed using the two variations of Scheme B as 
well, with the purpose of establishing the sensitivity of the choice of sub-element 
scheme on the model predictions. These are reported in the next section. There is also 
a sensitivity of both schemes to the way in which the crack tip location is defined and 
to the value assigned to_&. The dependence of the predictions on these two aspects is 
relatively weak and will not be illustrated here. 

3. PARAMETRIC DEPENDENCIES 

The present approach makes contact with a model of mode I plane strain crack 
growth developed by Tvergaard and Hutchinson (1992, 1994) which represents the 
fracture process zone by a traction-separation relation embedded within the elastic- 
plastic continuum. Consider imposition of a uniform separation 6 of the upper and 
lower faces of the void-containing slab, subject to zero average strain in the two 
directions parallel to the slab. For such uniaxial straining, the traction-separation 
relations computed for Schemes A and B are identical, given the same tensile stress- 
strain data (1) and the same values of D andf,. Moreover, they are identical to those 
presented in some detail by Tvergaard and Hutchinson (1992, Section 4) who used 
the Gurson model to generate traction-separation relations for a slab containing 
voids. The condition of zero straining parallel to the slab (i.e. uniaxial straining 
perpendicular to the slab) models the highest constraint to be expected. The work of 
separation per unit area under these conditions is I0 = j CJ d6, which was shown by 
Tvergaard and Hutchinson to be approximately a,D/2, with only a weak dependence 
on N and&. The significance of I,, will emerge below. 

It is useful to contemplate application of the present model to crack growth under 
small scale yielding conditions such that the crack length and other length parameters 
characterizing the specimen geometry enter only collectively through J. With K as the 
applied stress intensity factor characterizing the remote field and with J = (1 - v2)K2/E, 
dimensional considerations dictate that the computed history of J versus Au must 
have the general form 

where F is a dimensionless function of the variables shown. There is also an implicit 
dependence on the choice of sub-element scheme and on other variables such as v and 
fE. In small scale yielding, both the ordinate and abscissa of the resistance curve 
necessarily scale with D. 

This relation can be cast in a slightly different form which further elucidates 
the parametric dependencies. Following Tvergaard and Hutchinson (1992), define a 
reference plastic zone size by 
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Fig. 4. Sensitivity of the resistance curves in small scale yielding to sub-element schemes used to represent 
the void-containing slab ahead of the crack. The results off0 = 0.005 are representative of the steel A533B 
and those forfo = 0.001 are representative of A710. The designation 3 “ele” refers to the version of Scheme 
B where the void volume fraction is averaged over 3 sub-elements in determining when the traction is to 

be reduced to zero ; 1 “ele” refers to the other version based on an element by element release. 
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This is the standard estimate of the plane strain zone size for small scale yielding with 
Jidentified with the work of the fracture process, I0 z o,D/2. It serves as a meaningful 
length quantity with which to normalize the crack advance in small scale yielding. 
Thus, an equivalent alternative to (4) is 

which emphasizes the special role of IO. Although less apparent, it still follows that 
the J-resistance curve scales with D, because both IO and R. are proportional to D. 

Resistance curves in the form of J/(Do,,) as a function of Au/D computed for the 
present model in small scale yielding have been given in the earlier paper by Shih and 
Xia (1995) displaying the effect of different choices of N and fo. Two examples are 
shown here in Fig. 4 for N = 0.1, co/E = 0.002, and f. = 0.001 and 0.005. As will be 
seen later, the set of parameters withf, = 0.005 is representative of the steel A533B, 
while that withf, = 0.001 approximately characterizes A710. Three curves are shown 
for each case, one for sub-element Scheme A and one for each of the two versions of 
Scheme B. The abscissa is shown with two scales, da/D and AaIR,, connected by (5). 

The difference between the two procedures in Scheme B for reducing the tractions 
to zero is small. For both choices off0 there is significant sensitivity evident in Fig. 4 
to the choice of sub-element scheme within the first several crack advance steps for 
Au less than about 20. For the Casey0 = 0.005, there is little discrepancy among three 
predictions for crack advances beyond 20. For the material with the higher tearing 
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resistance (f, = 0.001) there is a substantial intermediate range of growth where the 
differences among the three computed resistance curves are relatively small. At values 
of Au greater than 15D a clear difference between the predictions of Schemes A and 
B emerges, with A indicating the attainment of steady-state conditions, while the 
resistance continues to increase according to B. An argument for why the material 
with very high tearing resistance shows more sensitivity to the choice of sub-element 
scheme than that with f0 = 0.005 is as follows. Tvergaard and Hutchinson (1992) 
showed that the ratio of the extent of the fracture process zone ahead of the tip to the 
void spacing diminishes as,fo becomes smaller. Whenf, is relatively large the ratio is 
large compared to unity and the fracture process zone extends over multiple voids. 
However, for values off0 as small as 0.001, this ratio is on the order of unity implying 
that the fracture process is dominated by the interaction of the tip and the nearest 
void to it. Thus, it is not surprising that there is some sensitivity for this case to details 
of the arrangement of the sub-elements in the slab containing the voids. 

The differences between schemes seen in Fig. 4 arise when the same values of D 
and.fb are used in each scheme. In applications of the model to a specific material, 
such as those made later in Section 4, it is recommended that one first choose the sub- 
element scheme and then, secondly, pick D and f0 to best reproduce one set of 
experimental data for the material. In the same way, one could attempt to adjust the 
values of D andf, for one of the schemes in Fig. 4 relative to those of the other such 
that the curves for the two schemes are brought into even better correspondence. We 
leave for subsequent work such issues related to the choice of sub-element scheme 
and as to whether other damage parameters, such as a void nucleation stress or strain, 
are needed to reproduce crack growth resistance better for certain materials. In all 
the applications reported below, Scheme A has been used. It is also worth remarking 
at this point that the initiation of crack growth is not a primary event for the two 
tough steels considered in this paper. Thus, the sensitivity of the very early crack 
growth resistance to the scheme seen in Fig. 4 is not particularly significant. 

Now consider the three point bend geometry (TPB) of Fig. l(a). Specifically, 
consider a specimen with W = 50 mm and initial crack length CI = 0.6 W. Fix the 
following material properties : c,, = 400 MPa, E/a0 = 500, v = 0.3 and D = 200 pm. 
The effects of varying the strain hardening exponent, N, and the initial void volume 
fraction,& computed using sub-element Scheme A are displayed in Figs 5 and 6. The 
choice of parameters results in crack growth behavior which occurs under fully plastic 
conditions for all but the two larger values of fO, for which crack growth initiates 
under large scale yielding. 

Figure 5(a) shows predictions of the model computed with Jb = 0.005 and three 
values of N in terms of load per unit thickness, P, plotted against the load-line 
displacement A. The companion curves of J as a function of crack advance Aa are 
shown in Fig. 5(b). It is evident that the behavior of the specimen depends strongly 
on the strain hardening parameter N. The crack grows more than a quarter of the 
way across the initial ligament in these examples. The J-values in Fig. 5(b) [and in 
Fig. 6(b)] were computed using the J-integral on a contour remote from the tip of the 
crack. Values of the J-integral on remote contours are found to be nearly path- 
independent and within 5% of the values computed from the numerical results for 
load and crack advance versus load-line displacement using the so-called q-factor 
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Fig. 5. Effect of variations in Non the IoadAisplacement relation in (a) and on the relation between Jand 
crack advance in (b). Three point bend geometry with a/W = 0.6 and W = 50 mm. 

method recommended by ASTM (1993). Some issues surrounding the choice of an 
extended definition of J under large scale yielding with extensive crack growth will be 
taken up in the last section. 

The corresponding role of the initial void volume fractionf, is seen in Fig. 6 for 
N = 0.1. A factor of 10 reduction in initial void volume fraction, from 0.01 to 0.001, 
has a significant effect on both the J-resistance curve and the overall ductility of the 
specimen, but relatively little effect on the maximum load. In contrast, variations due 
to strain hardening shown in Fig. 5 have a large effect on the maximum load but 
much less influence on the overall ductility. The J-resistance curve depends strongly 
on both N and-f,. 
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Fig. 6. Effect of variations info on the load-itisplacement relation in (a) and on the relation between J and 
crack advance in (b). Three point bend geometry with a/w = 0.6 and w = 50 mm, 

4. THEORETICAL PREDICTIONS AND EXPERIMENTAL 
MEASUREMENTS FOR TWO STEELS AND FOUR SPECIMEN 

GEOMETRIES 

4.1. A533B Steel 

Joyce and Link (1994) have obtained load&placement and J-resistance curve 
data for A533B pressure vessel steel using all of the specimen geometries shown in 
Fig. 1 except the center cracked panel geometry. The inplane geometric parameters 
characterizing the specimens are shown in Fig. 1 ; the thickness of the specimens is 
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denoted by B. All specimens tested had side grooves cut to a depth of 10% of the 
thickness on each lateral face, such that the ligament on the plane ahead of the crack 
had thickness 0.88. The true stress-logarithmic strain curve (1) was fit to the tensile 
data for the steel using 

E = 200 GPa, crO = 400 MPa, N = 0.1, v = 0.3. . (7) 

The fit was made over the strain range starting at the 0.2% offset yield stress at 397 
MPa to the true strain at maximum load, E = 0.125, corresponding to a true stress of 
628 MPa. The true stress at E = 0.125 given by (1) with use of (7) is 605 MPa. 

Once a sub-element scheme is fixed, several options could be adopted for choosing 
the two parameters D andf,. Here, Scheme A has been selected, and the two par- 
ameters have been chosen to accurately reproduce the experimentally measured resist- 
ance curves of J vs Au shown on the left in the second plot from the top in Fig. 7(b). 
These data were obtained by Joyce and Link using deeply cracked, three point bend 
specimens (TPB) with a/W = 0.6, W = 5.08 cm (2 in) and B = 2.54 cm (1 in). The 
TPB specimen generated the greatest amount of crack advance (5 mm), and this was 
the primary reason for selecting these data for the calibration. J-values were generated 
from the experimental records of load vs load-line displacement, A, crack mouth 
opening displacement, AM, and crack advance, Aa, using the ASTM procedure cited 
above. Experimental data from three nominally identical TPB specimens were 
obtained and are displayed in Fig. 7. The load per unit thickness, P, in the plots of 
experimental data is evaluated by dividing the total load by the reduced ligament 
thickness, 0.8B. The predicted curve of J vs Aa from the model for the TPB specimen 
is shown next to the experimental data on the right in Fig. 7(b) for the choice 

,f;, = 0.005 and D = 200pm. (8) 

(There is essentially no difference between the value of J computed from the integral 
definition using a remote contour and that computed using the ASTM definition for 
the TPB geometry, as will be seen in Section 5.) All other model predictions displayed 
in Figs 7-10 for the A533B steel were computed using the material parameter values 
specified in (7) and (8). An alternative procedure for identifying D andf, might make 
use of experimental data for load vs load-line displacement or, perhaps, for load vs 
crack mouth opening displacement, rather than J vs Aa. However, the above choice 
reproduces these other two experimental records almost equally well, as is evident in 
Fig. 7(a). The largest discrepancy (as much as 10%) between the computed curve for 
P and the experimental one occurs in the initial stages of crack growth. It is likely 
that a more accurate representation than (1) of the actual tensile stress-strain data 
might improve agreement, but no further effort in this direction was undertaken in 
the present study. Also, as already indicated, it may be worthwhile to investigate 
sensitivity to the method of choosing D andf, in subsequent work and to explore the 
effect of including a parameter to characterize delayed void nucleation. 

The experimental records for the other three specimen geometries and loadings 
(CT, SENT and DENT) are shown on the left in each of the two parts of Fig. 7. The 
corresponding predictions computed using the model are shown to the right of the 
experimental data. The theoretical J-values were all computed using the line integral 
definition on a contour remote from the crack tip. It is evident from the plots of load 
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Fig. 7. Comparisons of experimental data for A533B steel (Joyce and Link, 1994) with predictions from 
the model for four types of specimens. The tensile stress-strain properties are given by (7) and the 
parameters D and.fO in the model (8) have been chosen to reproduce the experimental curve of J vs crack 
advance Aa for the TPB specimen, as discussed in the text. (a) Load per unit thickness, P, vs load-line 
displacement, A: (b) J vs Aa. In each plot, the experimental data are on the left and the theoretical 

predictions are on the right. 
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bend specimens (TPB) of A533B steel. Experimental data (Joyce and Link, 1994) for three nominally 
identical specimens at for each value of a/W are shown in the top plots with the model predictions in the 

lower plots. W = 5.08 cm (2 in). 

vs load-line displacement A that crack growth occurs in these specimens under large 
scale yielding conditions. There is considerable variation in behavior over the four 
types of specimens, and, for the most part, the model predictions quantitatively 
reproduce these differences. In particular, the significant differences among the J- 
resistance curves are fairly accurately captured by the model. These differences have 
been attributed to the differing conditions of triaxial constraint from one type of 
specimen to the other, as discussed most recently by Hancock et al. (1993). The voids 
in the elements ahead of the tip in the computational model grow at a rate which 
depends on the level of triaxial stress, thereby incorporating this important effect on 
the fracture process. 

The effect of a small change in the ratio u/W, from 0.38 to 0.41, can be seen for the 
SENT specimen in Fig. 7. The effect of a large change in a/W, from a deep crack to 
a relatively shallow crack, is displayed for the three point bend geometry in Fig. 8. 
The experimental data and the model predictions for the deep crack, a/W = 0.6, are 
the same as those shown in Fig. 7 for the TPB geometry. Recall that it was this set of 
data which was used to fix D andf,,. The significantly higher load carrying capacity 
of the specimen with the shallow crack is accurately predicted by the model. The 
relatively smaller, but significant, geometry dependence of the J-resistance curve is 
also reproduced. The resistance curve of the shallow-cracked specimen departs from 
that of the deeply-cracked specimen after less than a millimeter of crack growth. 
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Fig. 9. Curves of J vs Aa as predicted by the model for A533B for the five geometry and loading 
combinations of Fig. 1. In each case here, the material parameters of the model are specified by (7) and 

(8), with a/W = 0.6 and W = 5.08 cm (2 in). 

A summary plot which emphasizes the geometry dependence of the J-resistance 
behavior for the A533B steel is shown in Fig. 9. The model predictions for each of 
the five geometries shown in Fig. 1 are plotted together, all for the case a/W = 0.6 

corresponding to a relatively deep crack. The J-values in these plots were computed 
using the line integral on a contour remote from the tip. The trends follow those 
brought out in earlier modeling work by Sun and Schmitt (1990) and in the systematic 
experimental studies of the effect of constraint by Hancock et al. (1993) and Joyce 
and Link (1994). The deeply-cracked CT and TPB specimens have the highest con- 
straint and lowest resistance curves, while the center-cracked panel (CCP) has the 
lowest constraint and the highest resistance curve. 

One feature evident in Fig. 9, and in Figs 7 and 8 as well, is the fact that there 
appears to be little geometry dependence at initiation. While the value of Jat initiation 
is somewhat sensitive to its practical definition, recent experimental studies such as 
those of Hancock et at. (1993) and Joyce and Link (1994) on several tough steels have 
detailed the weak geometric dependence of J-resistance behavior at initiation. This 
feature emerges most clearly from the embedded fracture process model of Tvergaard 
and Hutchinson (1994). According to that model, crack growth begins when J attains 
the work of the fracture process, To, independent of the geometry. As discussed in 
Section 2, for the ductile process under consideration here, To g a,D/2, which from (7) 
and (8) is approximately 40 kJme2 for A533B. This value is generally in accord with 
the levels of J in the earliest stage of growth for all the results shown in Figs 7-9. 

There is a striking difference between the J-resistance curves under large scale 
yielding conditions such as those in Fig. 9 and the small scale yielding resistance curve 
in Fig. 4 for the same set of material parameters (fO = 0.005 and D = 200 pm). The 
curve in Fig. 4 is presented using dimensionless variables, but it is nevertheless evident 
thdt the resistance has nearly reached steady-state conditions (i.e. dJ/da = 0) for 
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Fig. IO. The effect of specimen size on crack growth resistance curves as predicted for the three point bend 
specimen with a/W = 0.6 for material parameters chosen to reproduce the behavior of A533B. The specimen 

with W = 300 mm corresponds to small scale yielding conditions. 

Au = 1 OD corresponding to 2 mm of crack growth. The large scale yielding resistance 
curves in Fig. 9 all have an appreciable slope at Aa = 2 mm and are not yet close to 
an asymptotic limit at 5 mm of crack advance. The trend from large scale yielding 
behavior to small scale yielding behavior is shown in Fig. 10 for the three point bend 
specimen with a/W = 0.6. Numerically calculated curves of .I vs Aa are presented for 
four sizes of specimens, W = 5, lo,20 and 30 cm. The curve for W = 5 cm is the same 
as that for the TPB specimen in Fig. 9, while that for the largest specimen, W = 30 
cm, essentially coincides with the small scale yielding resistance curve in Fig. 4. 
Calculations were carried out for even larger sizes, but these coincided with those 
shown for W = 30 cm. For less than about 1.5 mm of crack growth, there is little 
dependence on specimen size. However, for larger amounts of growth, the larger 
specimens display significantly less crack growth resistance than the smaller specimens. 
A dramatic drop in the slope of the crack growth resistance curve occurs for Au 
greater than about 2 mm for specimens large enough such that small scale yielding 
conditions are approached. This trend has serious implications for efforts to use J- 
resistance curve data obtained from small specimens under large scale yielding con- 
ditions in applications to cracks in thick sections where the behavior will be closer to 
small scale yielding. 

4.2. A710 Steel 

Joyce and Hackett (1991) carried out a limited experimental program on the steel 
A710, which is both stronger and tougher than A533B. Here attention is directed to 
the two sizes of compact tension specimen (CT) which were tested, each with 
a/W = 0.6 and each with a total reduced ligament of 0.8B due to side grooves. Two 
specimens, designated by 1 T, had B = 2.54 cm (1 in) and W = 5.08 cm (2 in), and 
two, designated by 2T, had B = 5.08 cm (2 in) and W = 10.16 cm (4 in). The exper- 
imental data obtained from these four specimens are shown in the top plots in Fig. 
11. The load per unit thickness, P, is again taken as the total load divided by the 
reduced thickness 0.8B. For both experimental data and the model predictions, there 
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Fig. 11. The effect of specimen size on the behavior of compact tension (CT) specimens of A710 steel with 
a/W = 0.6. Experimental data of Joyce and Hackett (1991) are shown in the upper plots, with the model 
predictions shown below. The specimens designated by 1 T have B = 2.54 cm (1 in) and W = 5.08 cm 
(2 in). The specimens designated by 2T are twice as large in all dimensions. Data for 1T were used to 
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is essentially no difference between the load-line displacement, A, and the crack mouth 
opening displacement at the load line. 

Computations based on the model were again carried out using sub-element Scheme 
A. Tensile stress-strain data for the A710 were fit using E = 210 GPa, q, = 510.6 
MPa, N = 0.1 and v = 0.3. Values of& and D were chosen to reproduce the curve of 
J vs Aa for the 1 T specimens in Fig. 11, giving f0 = 0.002 and D = 400 pm. The 
J-values were computed on a remote contour from the tip using the line integral 
definition. The full set of computed results for both sizes of specimen is shown in the 
lower plots in Fig. 11. The size effect itself is fairly small in this instance, as noted 
from the near-invariance of the data for J vs Aa and from the approximate scaling of 
the curve of P vs A with size. Specimen thickness, B, is not a variable in the model 
results since the calculations are carried out in plane strain. A thickness dependence 
does not seem to be present in the normalized experimental data. The model is 
remarkably successful in reproducing both J-resistance behavior and load-displace- 
ment behavior. For the 2T specimen, the model faithfully replicates the experimental 
data for crack advances of almost 15 mm, corresponding to J-values which increase 
to more than 2.5 times the initiation value (Z 100 kJmW2). 
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The procedure laid out for applying the model involves selection of the parameters 
D andf, such that the model reproduces one set of experimental crack growth data 
for that material. The data could be in the form of a J-resistance curve or, in 
principle, it could be data for load vs load-line displacement. Since there may be some 
dependence on the sub-element scheme chosen to represent the slab of void-containing 
elements, the scheme should be chosen prior to selection of D and f0 and fixed 
thereafter. In this paper, it has been demonstrated that the model can be used in 
this way to predict accurately the most important aspects of behavior for specimen 
geometries and loadings chosen to span the widest possible range of crack tip tri- 
axiality for two tough steels under conditions of fully plastic yielding. Nevertheless, 
it is likely that further work will be needed to validate the model. Further effort may 
be needed to establish the best way to select the two damage parameters, D and,f,, 
and to gauge the sensitivity of model predictions to these parameters. In particular, 
it will be of interest to assess the performance of the model against some alloys of 
intermediate toughness and tearing resistance. The fracture behavior of specimens 
or components of the steels considered here is relatively insensitive to conditions 
surrounding the initiation of crack growth because of the high tearing resistance of 
these steels. Since there is some sensitivity in the early stages of crack growth to the 
choice of sub-element scheme, it will be important to understand how this affects 
predictions for material alloys with less tearing resistance than those considered here. 
If greater accuracy than that demonstrated here is required of the method, especially 
in the early stages of crack growth, then it is likely that effort will be needed to study 
the influence of a more accurate representation of the actual tensile stress-strain 
behavior and, possibly, on the inclusion of additional damage parameters such as one 
to characterize void nucleation. 

Although the parameters D andf, are micro-structurally based, they are used here 
in a phenomenological manner in that they are chosen to reproduce test data from a 
cracked specimen and not the actual void spacing and initial volume fraction. To the 
extent that these parameters represent the actual microstructure, the model should be 
useful for gaining a better understanding of the connection between microstructure 
and crack growth resistance. 

The model can be employed to check the utility of other measures of crack tip 
behavior for growing cracks than those discussed above. One such measure is JM 
suggested by Ernst (1989). Ernst’s measure, which is limited to deeply-cracked speci- 
mens, is defined in terms of data for load vs load-line displacement and crack advance. 
Figure 12 gives plots of three measures, denoted by Jpath, J,I and JM, as a function of 
Aa for both the three point bend specimen and the compact tension specimen, in each 
case for a/W = 0.6 and with the other parameters specified in the figure. Here, Jpath is 
the notation for the value of J computed from the line integral definition using a 
contour remote from the tip, J, is the ASTM definition referred to in Section 2, and 
JM is computed using the recipe of Ernst. These curves have been calculated using the 
respective definitions of the J-quantities from the predictions of the model with sub- 
element Scheme A. Figure 12 displays the tendency of JM to drift above the other two 
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Fig. 12. Curves of J vs Aa for (a) a deeply-cracked three point bend (TPB) specimen and (b) for a deeply- 
cracked compact tension (CT) specimen. Here, Jparh denotes the value computed by line integral on contours 
remote from the tip, J,, denotes the measure proposed by ASTM, and J,., denotes the measure proposed by 
Ernst. The latter two measures are generated from the computed records of load and crack advance vs 

load-line displacement. 

measures as the crack advances. The compact tension specimen also shows some 
divergence between Jpath and J, for crack advance exceeding several millimeters, 
although not more than 10%. 

The tendency for JM to lie above the other two measures has been noted in earlier 
efforts to analyze experimental crack growth data in tough steels, leading in some 
instances to significant divergence with curves of JM versus Aa having slopes which 
increase as Aa increases (Joyce et al., 1990). In other calculations, not displayed 
here, we have also found numerical examples based on the present model where the 
resistance curve based on JM has a slope that increases with crack advance after 
an initial growth phase, while the curves based on the other two measures have 
monotonically decreasing slopes. Although such trends would seem to be unrealistic, 
a divergence between JM and the other two measures is not necessarily grounds for 
concluding that JM has less validity than the other measures. Any real test of that 
question would require an assessment of whether JM could be used reliably to predict 
loadddisplacement behavior and crack stability, given resistance curve data expressed 
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in terms of &. Such a test would necessarily require that the level of stress triaxiality 
be more or less constant, since it is evident that no approach can be based on a single 
parameter resistance curve. The present computational model could be used to explore 
such issues. It does seem clear, however, that one would invite error if one were to 
“mix” J-measures. For example, unconservative predictions would almost certainly 
ensue if one used JM to generate resistance curve data and then used those data 

expressed in terms of one of the other measures to predict load-displacement response 
of a structural component. In this connection, it is worth mentioning that JM has only 

been defined for deeply-cracked geometries, and it is not clear how to apply this 
measure to most structural applications. As emphasized in the Introduction, one of 

the main advantages of the present computational model, or of any of the other 
models of its type, is the fact that the resistance curve is relegated to a secondary role. 
Indeed, one can use the model to predict structural response under conditions of 
crack advance without recourse to any resistance curve. 

Extensions of the model to cope with important situations where the crack advances 
out of its plane are possible but will require considerable additional work. The effect 
of shear localization, which becomes important in some of the very high strength 
steels, will be particularly challenging. One important application which does seem 
feasible for investigation without major innovation is the three-dimensional problem 
of an elliptical surface crack in a thick plate undergoing either bending or stretching. 
This problem would be a good test for the model because stress triaxiality varies along 
the crack front, with the highest triaxiality at the interior and the lowest where the 
crack front intersects the surface. 
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