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Abstract It has not been a simple matter to obtain a sound
extension of the classical J2 flow theory of plasticity that in-
corporates a dependence on plastic strain gradients and that
is capable of capturing size-dependent behaviour of metals
at the micron scale. Two classes of basic extensions of clas-
sical J2 theory have been proposed: one with increments in
higher order stresses related to increments of strain gradi-
ents and the other characterized by the higher order stresses
themselves expressed in terms of increments of strain gra-
dients. The theories proposed by Muhlhaus and Aifantis
in 1991 and Fleck and Hutchinson in 2001 are in the first
class, and, as formulated, these do not always satisfy ther-
modynamic requirements on plastic dissipation. On the other
hand, theories of the second class proposed by Gudmundson
in 2004 and Gurtin and Anand in 2009 have the physical
deficiency that the higher order stress quantities can change
discontinuously for bodies subject to arbitrarily small load
changes. The present paper lays out this background to the
quest for a sound phenomenological extension of the rate-
independent J2 flow theory of plasticity to include a de-
pendence on gradients of plastic strain. A modification of
the Fleck–Hutchinson formulation that ensures its thermo-
dynamic integrity is presented and contrasted with a compa-
rable formulation of the second class where in the higher or-
der stresses are expressed in terms of the plastic strain rate.
Both versions are constructed to reduce to the classical J2

flow theory of plasticity when the gradients can be neglected
and to coincide with the simpler and more readily formulated
J2 deformation theory of gradient plasticity for deformation
histories characterized by proportional straining.
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1 Introduction

A wide array of micron scale experiments have revealed
strong size-dependent strengthening associated with plastic
deformations involving gradients of strain. In parallel, a
large theoretical literature has appeared seeking to encapsu-
late strain gradient effects into a theory of micron scale plas-
ticity. Some of theory has been conducted within the context
of a single crystal framework, but, equally, there has been in-
terest in developing simple phenomenological extensions of
the classical J2 flow theory of plasticity. Indeed, many of the
relevant experiments have been conducted on small grained
polycrystalline materials, and most of the attempts to cor-
relate theory with these experiments have been made using
phenomenological isotropic theories. It is now generally ac-
cepted that these theories must be higher order, not only by
incorporation strain gradients but also in having higher order
stresses that are work conjugate to the strain gradients. Such
theories open up the possibility of modelling extra boundary
conditions outside the scope of conventional theory. An in-
sightful critical overview of the status of these theories as of
2004 was given by Gudmundson [1].

One of the most widely used phenomenological ex-
tensions of rate-independent J2 theory is that of Fleck and
Hutchinson [2] which has features in common with an earlier
version proposed by Muhlhaus and Aifantis [3]. The sim-
plest version introduces only a single new material length pa-
rameter. Moreover, the form of the theory lends itself nicely
to numerical implementation. However, Gudmundson [1]
and Gurtin and Anand [4] noted that there exist strain his-
tories for which this theory, as formulated, does meet ther-
modynamic restrictions related to the requirement of non-
negative plastic dissipation—clearly unacceptable for a ba-
sic theory. A second class of basic phenomenological the-
ories free of this thermodynamic deficiency was proposed
by Gudmundson [1] and Gurtin and Anand [5]. These au-
thors circumvented the dissipation problem by expressing
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the higher order stresses in terms of the increments of plastic
strain and its gradient. An unintended consequence of this
new formulation has been highlighted by the work of Fleck
and Willis [6], who formulated variational principles for in-
cremental boundary value problems based on this class of
theories. The expression of higher order stresses in terms of
increments of strain and strain gradients leads to the possi-
bility of discontinuous temporal changes in the higher order
stresses. Specifically, a change in the direction of loading on
a body will generally give rise to finite changes in the higher
order stresses within the body, i.e., finite stress changes due
to infinitesimal loading changes. While the current under-
standing of the connection between higher order stresses
and dislocation distributions is incomplete, finite changes in
stress due to infinitesimal changes in strains are not likely to
be acceptable from a physical point of view. Thus, as will be
argued later in this paper, it is likely that this second class of
theories will need to be modified in some manner to rectify
this physical deficiency.

In Sect. 3, a relatively simple modification of the theory
of Fleck and Hutchinson [2] is proposed to correct the ther-
modynamic deficiency noted above. Section 4 presents and
discusses the corresponding generalization of J2 flow theory
for the second class of theories. This paper limits attention
to the simplest extensions of J2 plasticity, in part, because
of the ubiquitous role that classical J2 theory plays in de-
scribing bulk plasticity of solids and, in part, to expose in the
clearest possible manner the issues that arise in creating the
extensions. The issues are not confined to the phenomeno-
logical theories. They arise as well in the continuum formu-
lations of single crystal plasticity that depend on gradients of
plastic slip.

The objectives in generalizing the J2 theory are as fol-
lows:

(1) To construct a phenomenological isotropic theory
of plasticity that incorporates a dependence on the gradients
of plastic strain in a simple meaningful manner and that re-
duces to the classical J2 flow theory in the limit the gradients
are sufficiently small.

(2) To have as inputs the isotropic moduli, Young’s
modulus E and Poisson’s ratio ν, the uniaxial tensile rela-
tion between stress and plastic strain σ0(εp), and one or more
material length parameters �, characterizing the gradient de-
pendence. The tensile relation σ0(εp), is arbitrary but mono-
tonically increasing representing a hardening solid.

(3) To coincide with the J2 deformation theory with the
same inputs for proportional straining based on the reasoning
given in Sect. 2.

Similar objectives have been pursued in formulating
lower order strain gradient plasticity theories that employ
only the Cauchy stress by Acharya and Bassani [7], Chen
and Wang [8], and Huang et al. [9].

2 Strain gradient version of J2 deformation theory

Deformation, or total, theories of plasticity are a special

class of path-independent nonlinear elasticity theories, while
flow theories are incremental and inherently path-dependent.
Classical J2 deformation theory and J2 flow theory are linked
by the fact that they coincide when the deformation involves
proportional straining, given that both theories have been fit
to the same tensile stress–strain data. Here, following Fleck
and Hutchinson [2, 10], a strain gradient version of deforma-
tion theory will be introduced at the start. It will be used as
a template for the flow theory in the sense that the flow the-
ory will be constructed to coincide with the deformation the-
ory for proportional straining histories. Deformation theory
can be used to play this fundamental role, as it does in con-
ventional plasticity theory, because for proportional strain-
ing histories the material can be modelled as being nonlin-
ear elastic. The clarity provided by that framework can be
brought to bear on the incorporation of strain gradient ef-
fects.

The theories in this paper will be restricted to small
strain, rate-independent behaviour. As noted above, the ma-
terial inputs are the isotropic elastic properties, the uniaxial
relation σ0(εp), and, in this paper, a single material length
parameter �. The length parameter is the only parameter not
present in the classical theory. For all these theories, ui is the
displacement vector, εi j = (ui, j + uj,i)/2 is the strain, ε′i j is
its deviator, σi j is the symmetric Cauchy stress, si j is its de-
viator, and the effective stress is σe =

√
3si j si j/2. Through-

out, mi j = 3si j/(2σe) is a dimensionless deviator tensor co-
directional with the deviator stress.

For the deformation theory, the “plastic strain” is given

by εp
i j = εpmi j where εp is the magnitude, εp =

√
2εp

i jε
p
i j/3.

The Cauchy stress is given by

σi j = 2μεe
i j
′ + λεe

kkδi j, εe
i j = εi j − εp

i j, (1)

with εe
i j
′ as the deviator of the “elastic strain” εe

i j and with
μ = E/[2(1+ ν)], λ = E/[3(1− 2ν)] and δi j as the Kronecker
delta. In the simplest strain gradient deformation theory of
plasticity of the various versions considered in Ref. [2], the
spatial gradient, εp,i, is used as the measure of the plastic
strain gradients. A gradient enhanced effective plastic strain,

Ep =

√
ε2

p + �2εp,iεp,i (2)

is introduced to capture the combined effect of the plastic
strain and strain gradients with � ensuring dimensional con-
sistency. The strain energy density of the solid is taken to
be

U(εe
i j
′, εp, εp,i) = μεe

i j
′εe

i j
′ +

1
2
λεe2

kk + Up(Ep), (3)

where Up(Ep) is defined in terms of the tensile stress-plastic
strain curve of the material by

Up(Ep) =
∫ Ep

0
σ0(εp)dεp. (4)

The replacement of εp by Ep in Up(εp) above reveals the
essence of the role of the plastic strain gradient in this phe-
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nomenological theory. In words, the plastic work needed to
deform the material element in the presence of strain gradi-
ents under proportional straining as measured by Ep is taken
equal to that at the same strain, εp = Ep, in the absence of
gradients, consistent with the notion that the gradient contri-
bution to Ep accounts for the additional stored geometrically
necessary dislocations.

The stress quantities that are work conjugate to the
strain quantities follow as [2]

U̇(εe
i j, εp, εp,i) =

∂U
∂εe

i j

ε̇e
i j +

∂U
∂εp

ε̇p +
∂U
∂εp,i

ε̇p,i

= σi jε̇
e
i j + Qε̇p + τiε̇p,i, (5)

with σi j given by Eq. (1) and

Q = σ0(Ep)
εp

Ep
, τi = �

2σ0(Ep)
εp,i

Ep
. (6)

The incremental form of Eq. (6) will be important in the
sequel

Q̇ = Cε̇p +C jε̇p, j, τ̇i = Ciε̇p + Ci jε̇p, j, (7)

with

C =
∂2Up

∂ε2
p
=
σ0(Ep)

Ep
+

d
dEp

(
σ0(Ep)

Ep

)
ε2

p

Ep
,

C j =
∂2Up

∂εp∂εp, j
= �2 d

dEp

(
σ0(Ep)

Ep

)
εp, jεp

Ep
,

Ci j = C ji =
∂2Up

∂εp,i∂εp, j

= �2

[
σ0(Ep)

Ep
δi j + �

2 d
dEp

(
σ0(Ep)

Ep

)
εp,iεp, j

Ep

]
.

(8)

In the limit � → 0, corresponding to no gradient dependence,
this constitutive model reduces to classical J2 deformation
theory with Q = σe.

Within regions with non-zero εp, the principle of virtual
work for a body with volume V and surface S is
∫

V

(
σi jδε

e
i j + Qδεp + τiδεp,i

)
dV =

∫

S

(
Tiδui + tδεp

)
dS , (9)

with Ti as the surface traction and t is the higher order trac-
tion that works through εp at the surface. Body forces are
omitted. The equations of equilibrium are

σi j, j = 0, σe = Q − τi,i, (10)

and on the boundary with ni as the outward unit normal,

Ti = σi jn j, t = τ jn j. (11)

If plastic deformation begins at zero stress, i.e., σ0(0) = 0,
then Eqs. (9)–(11) apply throughout the body. However, if
σ0(0) > 0, Q, τi and t all vanish within any elastic region
for which εp = 0. At an internal boundary between an elas-
tic region and a plastic region, εp → 0 as the boundary is
approached from the plastic side with εp,i � 0. As a result,
by Eq. (6), Q → 0 at the boundary but t will generally not

vanish at the plastic side of the boundary. It is assumed that
the elastic region can support the non-zero t acting across the
boundary, analogous to what one would assume for a bound-
ary between a plastically deforming region and a rigid mate-
rial or an elastic material with higher yield strength.

The potential energy functional for a deformation the-
ory solid with volume V and surface S is

PE(ui, εp) =
∫

V
U(εe

i j, εp, εp,i)dV −
∫

S T

(Tiui + tεp)dS , (12)

where Ti and t are prescribed on the portion of the surface
S T . Among all admissible fields, (ui, εp), with εp ≥ 0, the
potential energy is minimized by the solution, assuming the
tensile input, σ0(εp), is monotonically increasing. If εp is un-
constrained on the portion of the boundary, then t = 0 on that
boundary, while, if εp is constrained to be zero, t will gener-
ally be non-zero at the boundary. An internal elastic-plastic
boundary in a homogeneous material must be located as part
of the minimization process, and the condition that εp van-
ish as the boundary is approached on the plastic side must be
imposed. This principle reduces to the corresponding mini-
mum principle for the classical theory J2 deformation theory
in the limit �

√
εp,iεp,i � εp.

2.1 Proportional straining

Consider the highly restricted set of fields, referred to as pro-
portional straining, which increase according to

εi j = ζε̄i j, εp = ζε̄p, εp,i = ζε̄p,i, (13)

with ζ as a load parameter which increases monotonically
from zero. The barred quantities may vary in space but they
are independent of ζ. For proportional straining, Q and τi are
given by Eq. (6) and it is readily shown that the increments
in Eq. (7) satisfy

Q̇ =
dσ0(Ep)

dEp
ε̇p, τ̇i = �

2 dσ0(Ep)

dEp
ε̇p,i, (14)

with Ep = ζĒp = ζ
√
ε̄2

p + �2ε̄p,iε̄p,i.

The flow theories constructed below will be required to
coincide with this deformation theory for proportional strain-
ing. The rationale for this requirement is similar to that for
the coincidence of the conventional versions of J2 flow and
deformation theory. Using the invariants chosen to formulate
the theories (in this paper, εe

i j
′εe

i j
′, εp and εp,iεp,i), one can

model the solid as a small strain, nonlinear elastic solid if
the straining histories are proportional. The straightforward
and unambiguous derivation above which uncovers the new
stress quantities, Q and τi, provides a valuable constraint and
template for the flow theory version for proportional strain-
ing. As noted in the introduction the versions of the theories
discussed in this paper are based on the simplest choice of
invariant of the gradient of plastic strain. The process given
below for constructing the flow theories can be extended to
other choices of invariants, such as those detailed in Ref. [2].
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3 Strain gradient version of J2 flow theory 1: incre-
ments of higher order stresses dependent on increments
of strain gradients

In this section a constitutive relation is proposed relating in-
crements of the Cauchy stress and increments of the new
stresses, Q̇ and τ̇i, to increments of strain, plastic strain and
strain gradient. The relation will be constructed such that it
coincides with the deformation version in the previous sec-
tion under situations in which the straining is proportional.
An alternative version will be presented in the next section
in which the stresses themselves, Q and τi, are specified in
terms of the increments of the plastic strain gradient, fol-
lowing the construction suggested by Gudmundson [1] and
Gurtin and Anand [5]. Both of these versions employ εp and
εp,i as the measures of plastic strain and strain gradient, along
with the additional stress quantities, Q and τi.

In both flow theories, the plastic strain rate (not the
plastic strain) is constrained to be co-directional to si j

ε̇
p
i j = ε̇pmi j, (15)

where mi j = 3si j/(2σe), as before, with ε̇p =

√
2ε̇p

i jε̇
p
i j

/
3.

The effective plastic strain is updated as an integral over

the history of deformation, εp =

∫
ε̇pdt, with εp,i =

(∫
ε̇pdt

)

,i

=

∫
ε̇p,idt.

The principle of virtual work Eq. (9) applied to the in-
cremental problem is
∫

V
σ̇i jδε̇

e
i jdV =

∫

S
Ṫiδu̇idS , elastic regions,

∫

V

(
σ̇i jδε̇

e
i j + Q̇δε̇p + τ̇iδε̇P,i

)
dV

=

∫

S

(
Ṫiδu̇i + ṫδε̇p

)
dS , plastic regions.

(16)

The associated incremental equilibrium conditions re-
quire σ̇i j, j = 0 throughout the body and σ̇e = Q̇ − τ̇i,i within
the plastic regions. Boundary conditions involve specifica-
tion of Ṫi = σ̇i jn j or u̇i on all boundaries and ṫ = τ̇ini or ε̇p

on boundaries bordering plastically deforming regions.
The relation between the Cauchy stress and the elastic

strains in Eq. (1) also continues to apply with incremental
form

σ̇i j = 2με̇e
i j
′ + λε̇e

kkδi j, (17)

where ε̇e
i j = ε̇i j − ε̇p

i j and ε̇i j = (u̇i, j + u̇ j,i)/2.

The version of the incremental higher order stress the-
ory proposed by Fleck and Hutchinson [2] employs Eq. (14)
together with Eq. (17) as the incremental constitutive rela-
tion for plastic loading. The resulting theory coincides with
the version of the J2 deformation prescribed in the previ-
ous section for proportional straining, but, as noted by Gud-
mundson [1] and Gurtin and Anand [4], it can violate ther-

modynamic restrictions on non-negative plastic dissipation.
Specifically, in the formulation in Ref. [2], Qε̇p + τiε̇p,i is re-
garded as the plastic dissipation, but the requirement

Qε̇p + τiε̇p,i ≥ 0, (18)

will be violated for certain non-proportional strain histories.
For the special case for which the input tensile curve has
a constant tangent modulus (as considered, for example, by
Muhlhaus and Aifantis [3]), the requirement of positive plas-
tic dissipation can be met by interpreting the gradient con-
tributions as recoverable, or energetic in the terminology of
Gurtin and Anand [4], and not dissipative. However, a con-
stant tangent modulus is not a realistic restriction for a gen-
eral plasticity model.

In what follows, an incremental constitutive relation is
proposed which meets thermodynamic restrictions and re-
tains the property that it coincides with the deformation the-
ory for proportional straining. For plastic loading, the con-
struction includes two types of contributions to the higher
order stress quantities: recoverable and dissipative accord-
ing to

(Q̇, τ̇i) = (Q̇rec + Q̇dis, τ̇rec
i + τ̇

dis
i ). (19)

The recoverable contributions, together with the Cauchy
stress, are derived from a free energy taken as

ψ(εe
i j, εp, εp,i) = ψe(εe

i j) + ψ
p(εp, εp,i), (20)

with

ψe(εe
i j) = με

e
i j
′εe

i j
′ +

1
2
λεe2

kk,

ψp(εp, εp,i) = Up(Ep) − Up(εp),
(21)

where Ep is again defined by Eq. (2) and Up is given by
Eq. (4). For this definition, the plasticity contribution to the
free energy vanishes in the absence of a gradient of the plas-
tic strain as measured by εp,i. Thus, ψp models the energy as-
sociated with the plastic strain gradients as recoverable. The
model is consistent with the notion that εp,i is employed as
the measure of stored geometrically necessary dislocations
whose energy, in principle, can be released by eliminating
the gradients. For formulations which include the strain gra-
dients as a quadratic contribution to the energy, such as those
of Muhlhaus and Aifantis [3] and Bittencourt et al. [11]
for single crystal slip, ψp is simply that contribution, i.e.,
ψp ≈ εp

,iε
p
,i in the present variables.

By Eq. (21), σi j = ∂ψ
e/∂εe

i j, giving Eq. (1), and

Qrec =
∂ψp

∂εp
=
σ0(Ep)εp

Ep
− σ0(εp),

τrec
i =

∂ψp

∂εp,i
= �2σ0(Ep)εp,i

Ep
.

(22)

The incremental form of these relations have Eq. (17)
for the Cauchy stress rate and
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Q̇rec =
∂2ψp

∂ε2
p
ε̇p +

∂2ψp

∂εp∂εp,i
ε̇p,i

=

(
C − dσ0(εp)

dεp

)
ε̇p + Ciε̇p,i, (23)

τ̇rec
i =

∂2ψp

∂εp∂εp,i
ε̇p +

∂2ψp

∂εp,i∂εp, j
ε̇p, j

= Ciε̇p + Ci jε̇p, j, (24)

where C, Ci, and Ci j are given in Eq. (8).
The dissipative contribution is taken as

Q̇dis =
dσ0(εp)

dεp
ε̇p, τ̇dis

i = 0. (25)

The higher order stresses are updated according to Qrec =∫
Q̇recdt, τrec

i =

∫
τ̇rec

i dt, or, equivalently, in integrated form

by Eq. (22) in terms of εp and εp,i, and by Qdis =

∫
Q̇disdt =

σ0(εp) and τdis = 0. Prior to any plastic deformation, Qrec =

0, Qdis = σ0(0), the initial yield stress, and τrec
i = 0. The

Cauchy stress is given by Eq. (1) with the plastic strains in-

tegrated according to εp
i j =

∫
ε̇

p
i jdt =

∫
ε̇pmi jdt. In general,

εp �
√

2εp
i jε

p
i j/3 except for proportional straining. It is easily

verified that the incremental relation coincides with Eq. (14)
for the J2 deformation theory for proportional straining. In
addition, it is straightforward to see that the theory reduces to
the classical J2 flow theory in the limit when gradients effects
are unimportant. In that limit, the above constitutive relation
produces the classical relation: Q̇ = σ̇e = ε̇pdσ0(εp)/dεp and
τ̇i = 0.

Conditions for plastic loading and elastic unloading
will be introduced in the next sub-section. Anticipating that
plastic loading requires ε̇p > 0, it follows that Qdis is posi-
tive and monotonically increasing because dσ0(εp)/dεp > 0,
by assumption. Thus, the plastic dissipation rate, Qdisε̇p, is
never negative. Although not a thermodynamic requirement,
Qε̇p = (Qrec + Qdis)ε̇p ≥ 0 is also always met because Q is
also positive. The contribution, τrec

i ε̇p,i, is positive for pro-
portional straining but it can be negative for strongly non-
proportional histories when the stored energy associated with
the plastic gradients is being released.

3.1 Conditions for plastic loading and elastic unloading

Insufficient attention has been given to conditions for plas-
tic yielding and elastic unloading for the strain gradient the-
ories. It is useful to begin by reviewing these conditions
for the classical J2 flow theory. The condition for yield is
σe = σY, where during plastic loading the yield stress, σY,
evolves according to σ̇Y = σ̇e. For elastic increments, σY

remains unchanged and σe must satisfy σe ≤ σY. The ini-
tial yield stress is σY = σe(0). Given yield is satisfied, i.e.,
σe = σY, the conditions for plastic loading and elastic un-
loading for the next incremental step are

ε̇p > 0, mi jε̇i j > 0, loading,

ε̇p = 0, σ̇e = 2μmi jε̇i j ≤ 0, unloading.
(26)

Now consider the strain gradient version. The two
branches of the incremental constitutive model are specified
by Eqs. (17), (23)–(25) for plastic loading and by Eq. (17)
(with ε̇p = 0, ε̇p,i = 0, Q̇ = 0 and τ̇i = 0) for elastic unload-
ing. A criterion for switching from one branch to the other
is required with the constraint that it reduces to the classi-
cal criterion (26) when strain gradients play no role. It is
important to note that, of all the stress quantities, only σi j

changes when the solid is deforming elastically—Q and τi

change only when plastic straining occurs. Thus, only the
Cauchy stress, σi j, can be used to characterize whether the
state of stress lies inside the yield surface and whether the
stress re-attains yield following an elastic excursion. For the
generalization of J2 flow theory proposed above, a criterion
consistent with the formulation and with the observations
just noted is the criterion for the conventional theory spe-
cified by the same yield condition and Eq. (26). Thus, initial
yield requires σe = σ0(0) = σY and yield following plastic
straining requires σe = σY, where the yield stress evolves
according to σ̇Y = σ̇e during plastic yielding. As in the con-
ventional theory, the plastic strain increment ε̇p

i j, is normal
to the current yield surface specified by σe = σY. For the
conventional J2 flow theory the evolution of yield stress can
be integrated to give σY = σe(εp). For the gradient version,
the yield stress can be integrated to give

σY = Q − τi,i = σ0(Ep)
εp

Ep
−
(
�2σ0(Ep)

εp,i

Ep

)

,i

. (27)

In a numerical implementation of the theory, it will generally
be preferable to use σ̇Y = σ̇e when plastic loading occurs to
update σY because this requires evaluation of only the first
gradients of ε̇p. For the gradient theory, σ̇e can be negative
for plastic loading and, thus, for some deformation histories
σY can undergo a decrease.

It can be noted in passing that one can show that the
higher order stress quantities introduced above always sa-
tisfy the equation
√

Q2 + �−2τiτi = σ0(Ep). (28)

It might be tempting to regard this as a yield condition, but it
is not. This equation is a consequence of the postulated con-
stitutive relation, and it remains in force even when the solid
has unloaded elastically and is not at yield. As already noted,
only the Cauchy stress changes when the straining is elastic
and only it can be used to characterize the elastic region.

The yield condition and the associated criteria for load-
ing/unloading Eq. (26) are compatible with the equilibrium
equations relating the stress quantities. Specifically, in re-
gions of plastic loading in the incremental boundary value
problem, satisfaction of σe = Q − τi,i is ensured given that
σ̇e = Q̇ − τ̇i,i and given the previously stipulation for updat-
ing the stress quantities. Furthermore, prior to any plastic
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deformation, Q = σY = σe(0) and τi = 0 such that at initial
yield σe = Q = σY. In elastic regions of the incremental
boundary value problem, the second equilibrium equation
(8), σe = Q − τi,i, will generally not be satisfied, but re-
activation of this equation occurs continuously with reload-
ing for the yield condition chosen because Q and τi do not
change for elastic deformations and because σe reassumes
σe = σY when yielding last occurred.

3.2 Summary of incremental equations, convexity, minimum
principles and uniqueness

The constitutive relation is summarized as follows. With
yield satisfied, i.e., σe = σY, plastic loading requires
mi jε̇i j > 0 and ε̇p > 0 with ε̇p

i j = ε̇pmi j and mi j = 3si j/(2σe).
The stress increments for plastic loading are

σ̇i j = 2με̇e
i j
′ + λε̇e

kkδi j,

Q̇ = Cε̇p + Ciε̇p,i,

τ̇=i Ciε̇p + Ci jε̇p, j,

(29)

with C, Ci, and Ci j given by Eq. (8), and where the recover-
able and dissipative stresses have been combined. For plastic

loading the yield stress evolves as σ̇Y = σ̇e with εp =

∫
ε̇pdt

and Ep defined in Eq. (2). If σe < σY or, if σe = σY, with
mi jε̇i j ≤ 0 and ε̇p = 0 , the incremental response is elastic
with σ̇i j = 2με̇e

i j
′ + λε̇e

kkδi j. For elastic increments, σ̇Y = 0.

The incremental equations for Q̇ and τ̇i for plastic load-
ing are identical to those of the deformation theory Eq. (7).
It follows that Q and τi can be integrated and expressed in
terms of εp and εp,i by Eq. (6); Equation (28) also holds.
Just as in conventional J2 flow theory, history dependence in
this theory arises through εp

i j andσi j which are strongly path-
dependent owing to the normality condition, ε̇p

i j = ε̇pmi j, and
the constraint ε̇p ≥ 0. Thus, while Q and τi are given in inte-
grated form by Eq. (6), they are nevertheless path-dependent
through the path-dependence of εp and εp,i.

Next consider the incremental boundary value problem.
Let

Φ(ε̇e, ε̇p, ε̇p,i) =
1
2

(σ̇i jε̇
e
i j + Q̇ε̇p + τ̇iε̇p,i)

=
1
2

(2με̇e′
i j ε̇

e′
i j + λε̇

e2
kk)

+
1
2

(Cε̇2
p + 2Ciε̇p,iε̇p +Ci jε̇p,iε̇p, j)

∗, (30)

where ε̇e
i j = ε̇i j − ε̇pmi j. The terms in the brackets ( )∗are set

to zero with ε̇p = 0 if σe < σY, or if σe = σY and mi jε̇i j ≤ 0;
otherwise they are included with ε̇p ≥ 0. With the set of
strain increments denoted by Ė̇ĖE ≡ (ε̇e, ε̇p, ε̇p,i) and the stress
increments denoted by Ṡ̇ṠS ≡ (σ̇i j, Q̇, τ̇i), Φ = Ṡ̇ṠS · Ė̇ĖE/2 and
Ṡ̇ṠS = ∂Φ/∂Ė̇ĖE. One can prove that Φ is convex. That is, for all
pairs generated by Eq. (30), (Ė̇ĖE(1), Ṡ̇ṠS (1)) and (Ė̇ĖE(2), Ṡ̇ṠS (2)), we
have shown that

Φ(Ė̇ĖE(2)) −Φ(Ė̇ĖE(1)) − Ṡ̇ṠS (1) · (Ė̇ĖE(2) − Ė̇ĖE(1)) ≥ 0, (31)

where the equality holds if and only if Ė̇ĖE(2) = Ė̇ĖE(1).

For a body with volume V and surface S , define a func-
tional F of the incremental displacement fields, u̇i and ε̇p(xxx),
with ε̇i j = (u̇i, j + u̇ j,i)/2, by

F(u̇i, ε̇p) =
∫

V
Φ(ε̇e

i j, ε̇p, ε̇p,i)dV −
∫

S T

(Ṫiu̇i + ṫε̇p)dS , (32)

where Ṫi and ṫ are prescribed on the portion of the surface
S T and the dependence on ε̇p,i in Φ is evaluated as the gradi-
ent of ε̇p(xxx). It follows directly from the convexity of Φ that
any solution to the incremental boundary value problem min-
imizes F among all admissible fields satisfying prescribed u̇i

and ε̇p on the portions of the surface other than S T . More-
over, if a solution exists, it is unique. Existence of a solution
has not been established.

As in any incremental plasticity problem, the location
of the boundary between the regions which undergo elastic
and plastic increments is unknown and depends on the cur-
rent state and the imposed incremental boundary conditions.
For the incremental problem for a homogeneous material, ε̇p

is not constrained at the elastic-plastic boundary, assuming
dislocations can flow through the boundary. Thus, by the
incremental principle of virtual work (16), ṫ = τ̇ini = 0 on
the plastic side of the boundary with ni as its normal. This
implies that a plastic region encroaching into a virgin elas-
tic region has t = 0 and Q = σ0(0) at the boundary and,
therefore, Q and t are continuous across the boundary. The
situation is different at the boundary between two materials
with differing yield strengths, one deforming plastically and
the other deforming only elastically. On the plastic side of
the boundary the constraining effect of the abutting higher
strength material can be modelled by taking ε̇p = 0 at the
boundary. Then, generally, t = τini will not vanish at the
boundary on the plastic side as plastic deformation proceeds.
In this theory, it is assumed that the abutting elastic material
can support the higher order traction, t, exerted on it.

4 Strain gradient version of J2 flow theory 2: higher or-
der stresses dependent on increments of strain gradients

The alternative version of the theory given in this section fol-
lows the procedure used by Gudmundson [1] and Gurtin and
Anand [5] to construct the constitutive model ensuring that
the plastic deformation is entirely dissipative. The theory in
this section employs the same measures introduced for the
other flow theory in Sect. 3, i.e., ε̇p, ε̇p,i with ε̇p

i j = ε̇pmi j and
ε̇p ≥ 0. The increments of the Cauchy stress increments are
again given by Eq. (17) with ε̇p > 0 for plastic loading and
ε̇p = 0 for elastic unloading.

For plastic loading, let ΣΣΣ = (Q, �−1τi), Ė̇ĖEp = (ε̇p, �ε̇p,i)
and note the following
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ΣΣΣ · Ė̇ĖEp = Qε̇p + τiε̇p,i,

Σ = |ΣΣΣ| = √Q2 + �−2τiτi,

Ėp =
∣∣∣Ė̇ĖEp

∣∣∣ =
√
ε̇2

p + �2ε̇p,iε̇p,i.

(33)

In this version, Ep =

∫
Ėpdt is different from the defini-

tion (2) used in Sect. 3; the two definitions only coincide for
proportional straining. The crucial step in constructing the
class of constitutive relations of Gudmundson [1] and Gurtin
and Anand [5] is to choose ΣΣΣ co-directional with Ė̇ĖEp so as to
ensure that the plastic work rate, ΣΣΣ · Ė̇ĖEp, is always positive.
Here the specific choice of Fleck and Willis [6] is adopted
because it has been formulated to coincide with the J2 defor-
mation theory in Sect. 2

ΣΣΣ = σ0(Ep)
Ė̇ĖEp

Ėp
,

Q = σ0(Ep)
ε̇p

Ėp
,

τi = �
2σ0(Ep)

ε̇p,i

Ėp
.

(34)

It follows immediately that ΣΣΣ · Ė̇ĖEp = σ0(Ep)Ėp ≥ 0 and, also,
that Σ = σ0(Ep). Constitutive models of this class have also
been considered by Reddy [12].

Unlike the theories in Sect. 3, the stress quantities, Q
and τi, in this class of theories are not known in the cur-
rent state; only the Cauchy stress, σi j, is known. Here, Q
and τi depend on the solution to the incremental boundary
value conditions imposed on current state of a body. Thus,
Q and τi, will, in general, change discontinuously when the
boundary conditions for the incremental problem change the
direction of loading. Specifically, if changes are made to the
prescribed traction increments, Ṫi and ṫ, on S T , and/or to pre-
scribed values of u̇i and ε̇p on the remaining portion of the
boundary, then Q and τi will usually change discontinuously
throughout the body. Physical implications of such discon-
tinuous behaviour will be discussed later.

Owing to the fact that the higher order stresses are ex-
pressed in term of the increments of strain and strain gradi-
ent, the incremental boundary value is not standard. Fleck
and Willis [6] have formulated minimum principles for the
incremental boundary value problem for this class of theo-
ries which determine the distribution of Ė̇ĖEp and ΣΣΣ through-
out the body in terms of prescribed increments of boundary
loads or displacements. They have called attention to the fact
that this class of formulation has parallels to the classical the-
ory of rigid-plasticity in the sense it too has the feature that
the stress is a function of the plastic strain increment and,
therefore, depends on the solution to the incremental bound-
ary value problem itself.

A full description of conditions for plastic yield, plastic
loading and elastic unloading has not yet been presented for
this class of theories. For the version specified by Eq. (34),

Fleck and Willis [6] have noted that

Σ =
√

Q2 + �−2τiτi = σ0(Ep) (35)

has the appearance of a yield condition in the sense that it is
satisfied for any plastic loading increment. Moreover, Ė̇ĖEp is
normal to the surface specified by Σ = σ0(Ep). The correct
way to think of Eq. (35) is that the stress, ΣΣΣ, locates its po-
sition on the surface such that Ė̇ĖEp is aligned with the normal
and not vice versa.

As a yield condition, Eq. (35) is incomplete. Similarly
to condition (28) for the other flow theory, Eq. (35) is a con-
sequence of Eq. (34) and not an extra equation. Moreover,
for the same reasons described for the other theory, Eq. (35)
can not characterize the elastic region within the yield sur-
face or the condition for plastic re-loading if the solid has
undergone excursions within the elastic region. As noted in
Sect. 3, only the Cauchy stress changes when the solid de-
forms elastically and, consequently, the Cauchy stress must
enter into any criterion characterizing elastic responses. The
yield condition, together with the conditions for plastic load-
ing and elastic unloading Eq. (26), proposed for the other
flow theory can also be invoked for this version. The equa-
tion for the evolution of the yield stress under plastic load-
ing, σ̇Y = σ̇e, again allows for the possibility that σY may
undergo a decrease for certain deformation histories.

4.1 Are discontinuous stress changes due to infinitesimal
changes in boundary tractions physically acceptable?

As noted, one consequence of the constitutive equation (34)
is a discontinuous change in the direction of the stress quanti-
ties, Q and τi, with a change in the “direction” of prescribed
surface traction increments or displacement increments on
the boundary of the solid body. A simple illustration would
be a bar or tube stretched into the plastic range in tension
and then subject to an increment of both tension and torsion.
Fleck and Willis [6] have formulated minimum principles
for the incremental boundary value problems for the class of
theories of which Eq. (34) is perhaps the simplest example.
Their work shows that the distributions of ε̇p and ε̇p,i, depend
on the boundary conditions posed for the incremental prob-
lem. If the incremental boundary conditions are changed, the
distributions of ε̇p/Ėp and ε̇p,i/Ėp on the right hand side of
Eq. (34) will generally change. In other words, infinites-
imal changes in prescribed boundary tractions or displace-
ment can result in finite changes in Q and τi.

Discontinuous stresses changes due to infinitesimal
changes in strain are characteristic of a fluid not a solid, al-
though, as noted in Ref. [6], such discontinuous stress be-
haviour is characteristic of rigid-plastic solids for which elas-
tic strains are neglected. Rigid-plasticity theory can not be
used to evaluate elastic strains or even plastic strain changes
on the order of elastic strains under non-proportional strain-
ing. It has not been the intention of the developers of either
class of gradient plasticity considered in this paper to neglect
elastic strains. Indeed, incompatibility associated with gra-
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dients of plastic strain must be offset by gradients of elastic
strains. Thus, one must ask if it is physically acceptable for
the higher order stresses to undergo discontinuous changes
in the manner described by Eq. (34).

At this stage in the development of higher order theo-
ries, a definitive answer to this question may not be possi-
ble because a widely accepted physical intuition of higher
order stresses is not yet in place. Nevertheless, physical ar-
guments for continuous changes in the higher order stress
can be put forward. If an internal or external boundary in
the solid has unit normal, nnn, it is generally held that t = τini

constitutes a measure of local traction on the boundary as-
sociated with the local plastic strain gradient. Recent ef-
forts to model transmission of plastic straining across bound-
aries have made use of this interpretation [13]. If this inter-
pretation is correct, it is hardly acceptable that infinitesimal
changes in boundary tractions or displacements could result
in finite changes in local boundary tractions within the body.
In addition, higher order stresses are believed to be directly
related to the current dislocation distribution. Challenging
as the problem is, efforts to quantitatively characterize this
connection have been pursued [14]. From a physical stand-
point, it seems highly unlikely that dislocation distributions
would routinely undergo finite changes due to infinitesimal
changes in boundary tractions or displacements. Thus, the
existence of a connection between the higher order stress and
the current dislocation distribution would also suggest that
discontinuous changes in stress with infinitesimal changes in
boundary loads are physically suspect.

5 Summary of the current status of a basic J2 flow theory
of strain gradient plasticity

Two simple extensions of the classical J2 flow theory have
been given. The inputs to these two versions, and to the
J2 deformation theory version to which they have been tied,
are the same: the isotropic elastic moduli, the tensile stress-
strain curve in the plastic range and a single material length
parameter that sets the scale of the gradient effects. Both
flow theory versions have been constructed to coincide with
the deformation theory for proportional straining and both
reduce to the classical J2 flow theory when gradient ef-
fects become negligible. The two versions differ for non-
proportional straining. Version 1 in Sect. 3 specifies incre-
ments of stress in terms of increments of strain, while Ver-
sion 2 in Sect. 4 specifies the higher order stresses them-
selves in terms of increments of strain.

Nearly all the micron scale plasticity tests to date have
been tests with monotonic loading and straining conditions
that do not depart significantly from proportional straining.
By the same token, the theoretical efforts employed to inter-
pret and fit the existing experimental data have invoked so-
lutions with monotonic loading and near-proportional strain-
ing. For such problems, little difference between the two
flow theory versions in this paper should be expected. In-

deed, for the same reasons, it has been justified to use J2

deformation theory solutions in a number of these cases to
compare theory and experiment. Apart from an effort to mea-
sure the Bauschinger effect under reversed loading in thin
films [15], we are unaware of any micron scale experiments
carried out to explicitly explore non-proportional straining
effects. Thus, at this time, it is not possible to make use of
experimental data to settle the issues related to stress conti-
nuity and non-proportionality raised in Sect. 4 in connection
with Version 2.

In Sect. 4.1, it has been argued that there are physical
grounds for requiring any constitutive law to give rise to con-
tinuous temporal variations of the higher order stress even
if the incremental boundary conditions undergo an abrupt
change in loading direction. If this argument survives fur-
ther scrutiny, it would mean that the type of constitutive re-
lation represented in its simplest form by Eq. (34) is not
physically acceptable. The inclusion of a rate-dependence
in this class of theories, as in Gurtin and Anand [5] and
Lele and Anand [16], can eliminate temporal stress discon-
tinuities. However, at any abrupt change in direction of the
boundary conditions for which the rate-independent limit un-
dergoes stress jumps, the dependence on the parameter set-
ting the rate-dependence will be exceptionally strong and
difficult to justify physically. Thus, the incorporation of rate-
dependence side steps the problem without resolving the fun-
damental physical issue. Lele and Anand [16] have explored
the sensitivity of this class of strain gradient formulations
to the level of rate-dependence for problems without abrupt
changes in boundary conditions.

The formulation in Sect. 3 in which increments of
stress are related to increments of strain can be extended
to more complicated versions which make use of other in-
variants of the plastic strain rate such as those identified
in Ref. [2]. Nevertheless, there is need for a more sys-
tematic approach to construct incremental constitutive rela-
tions for gradient plasticity theories which satisfy thermody-
namic constraints. The modified version of the earlier Fleck-
Hutchinson constitutive model presented in Section 3 meets
these constraints by partitioning the rate of plastic work into
recoverable and dissipative components. In the version put
forward, the work associated with the higher order stress τi

is taken to be recoverable. From a physical standpoint it
seems likely that some of the work associated with τi should
be non-recoverable. To our knowledge, a general system-
atic method to construct incremental constitutive relations
for dissipative or non-recoverable gradient contributions is
not available.
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