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Bucklewaves
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Abstract

Motivated by a selection of results on the plastic buckling of column members within a sandwich plate core where one face
of the sandwich is subject to an intense impulse, the problem addressed is one where lateral buckling takes place simultaneously
as a compressive axial wave propagates down the member. The bucklewave problem is modeled as an infinitely long column (or
wide plate) which is clamped against lateral deflection at the end where velocity is imposed and has a moving clamped condition
coinciding with the front of the plastic compression wave. The model reveals that a column or plate suddenly compressed into
the plastic range is dynamically stabilized against lateral buckling for lengths that are significantly longer than the corresponding
length at which the member would buckle quasi-statically. This stabilization has significant implications for energy absorption
under intense dynamic loading. The analysis method is benchmarked against a simpler, but mathematically analogous problem,
for which closed form solutions are available: the dynamics of a guitar string lengthening at constant velocity.
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1. Introduction

Dynamic buckling of columns and plates has been studied from various points of view for many years. We cite a limited
selection of theoretical papers (Bell, 1988; Hayashi and Sano, 1972; Jones and Reis, 1980; Karagiozova and Jones, 1996;
Kenny et al., 2002; Su et al., 1995) and experimental papers (Abrahamson and Goodier, 1966; Ari-Gur et al., 1982; Thornton
and Yeung, 1990) which provide a background to the subject. In the theoretical work, all but a few recent studies have assumed
the time required to produce the axial state of stress is sufficiently short compared to the time for lateral buckling deflections
to evolve such that axial wave propagation can be decoupled from buckling by taking the axial stress to be established prior to
buckling; coupled approaches are exceptional but they have been pursued by Anwen and Wenying (2003), Lepik (2001), Vaughn
et al. (2005). Recent work by Vaughn et al. (2005) has shown that buckling cannot be decoupled from axial wave propagation
when columns or plates are loaded at one end by high axial velocities, representative of those occurring in columns or plate
webs in the cores of sandwich plates subject to blast loading. In what follows, to motivate the study in the paper, examples will
be presented which clearly reveal that lateral buckling deflections develop simultaneously as the axial plastic wave propagates
down the member when the velocity imposed on the end gives rise to stresses well into the plastic range. Buckling and axial
wave propagation are intrinsically coupled in the form of a bucklewave. Lateral inertia stabilizes the member such that large
compressive axial strains can develop simultaneously with the growth of buckling deflections.
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Throughout the paper, the following notation for material properties will be used: elastic molutiensity,o; elastic wave
speedco = /E/p; yield stress (positive in compressiosmy ; and compressive yield straiay = oy /E. Without sacrifice
of physical significance, the discussion and analysis will be simplified by restricting attention to materials with linear strain
hardening having a tangent modulus, that is independent of strain. In uniaxial compression, witland ¢ positive in
compression, the true stress-strain relationiso/E for o <oy ande = ¢y + (0 — oy)/Et for o > oy. The plastic wave
speed, whose significance will be detailed below, is given by (Taylor, 1958; Von Karman and Duwez, 1950; Vaughn et al., 2005)

[Et+o  |Et

The un-approximated expression applies with quantities defined in a finite strain context in terms of true stress and logarithmic
strain. Finite strain aspects are not of primary importance in this paper; and because, agliahy, 1, cp = /Et/p will be
used.

We begin by quoting some results for the axial propagation of plastic waves along a semi-infinite straight member
(0 < x < o0) initially at rest whose left end is abruptly movedrat 0 with constant velocityy so as to produce a uniax-
ial compression wave (Taylor, 1958; Von Karman and Duwez, 1950; Vaughn et al., 2005)cffey < 1, the ensuing strains
are elastic. Of primary interest here are imposed velocities Wgftagey > 1, such that strains exceed yield. Two distinct wave
segments emerge. ForOx < cpt, the member moves with uniform velocitgy and is in a uniform state of stress and strain
given to high accuracy by

i=1+\/E< Yo —1) and i=1+ﬁ< Yo —1). @)

oy E \ coey ey Et \ coey

In the transition region ahead of this uniform compressive state, the stress and strain decay monotonically (and sharply) with
x, attaining initial yield values at the wave front.at= cgt. The front of the uniform compressive state propagates down the
member with the plastic wave speeg; it will be referred to as the plastic wave front in the sequel.

The dimensionless parameter characterizing the intensity of the compression wWayepis, . With Et/E = 0.01 as repre-
sentative, axial strains of magnitugdel0Cy are predicted by (2) itp/coey ~ 10. Many steel and aluminum alloys haxgy
in the range from 5 to 20 nT<. Thus, typically, imposed velocitie¥, greater than about 50 &, will generate compressive
axial strains many times the yield strain.

These results provide the setting for the present study which is motivated by interest in the plastic buckling and energy
absorption of columns and plates employed as core members in all-metal sandwich plates designed to withstand high intensity
blast loads. An intense blast in either air or water imposes a sudden velocity typically in the range 50 to200mtise
face sheet of the sandwich plate towards the blast (Fleck and Deshpande, 2004; Xue and Hutchinson, 2004). Core member
experience this suddenly imposed velocity where they are attached to the impulsively loaded face sheet. The imposed velocity
diminishes as the core is compressed, but the inertia of the face sheet towards the blast is substantial and, typically, the im.
posed velocity remains high for overall core crushing strains as large as 30% or even higher. Thus, for blast applications, the
relevant dimensionless imposed velocity,/coey, falls in the range where plastic waves will be initiated in the core members
potentially generating relatively large compressive axial strains and associated plastic energy dissipation. The study herein re-
veals conditions under which the members can be expected to remain sufficiently straight, stabilized by lateral inertia, such that
significantly enhanced energy absorption can indeed take place due to axial straining.

One of the early studies of dynamic buckling of suddenly compressed columns was performed by Abrahamson and Goodier
(1966). Like many analyses that followed, their theoretical analysis decoupled plastic wave propagation and buckling by assum-
ing the state of uniform stress was established along the entire member prior to the onset of lateral motion. Their experiments
on aluminum rods fired against a massive anvil at velocities on the order of 108 regeal that compressive axial strains as
large as 20% can be achieved accompanied by only moderate buckling deflections (Fig. 1).

2. Selected numerical resultsillustrating coupled buckling and wave propagation

To illustrate the behavior experienced by a core column member oriented perpendicularly to the faces of a sandwich plate
struck by a blast, we consider a unit cell model (see insert in Fig. 2) composed of solid circular column otlengtradius®
clamped at each end to a rigid plate. The plates are constrained against rotation but are able to undergo free flight in the directior
perpendicular to the faces. (An earlier related investigation by Vaughn et al. (2005) considered different conditions with the right
end of the column fixed and the left end is subject to a uniform imposed velocity.) Each of the plates is assigned the same mass
as the colummy = pr R2L, representing a sandwich plate with one third of its total mass in the core, which is not untypical for
all-metal sandwich plates designed against impulsive loads. More extensive investigation of the preferred proportion of metal
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Fig. 1. Aluminum rods impacting a massive anvil at the velocities ranging from 145 to 218 shewing large axial compression and buckling
deformations from Abrahamson and Goodier (1966).
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Fig. 2. Development of lateral buckling deflectiompfax in m) in free-flight model pictured in insert fovg = 160 ms 1, L/R = 60,
L =0.567 m and imperfection amplitudiy/R = 1/4 and mode: = 6. The time at which the plastic wave front reaches the right end of
the column is indicated. Material properties are cited in the text.

in the core and face sheets has been given elsewhere (Fleck and Deshpande, 2004; Hutchinson and Xuer 2005)hé\t

column and the plate on the right end are at rest, but the plate at the left end is abruptly set in motion with initial velocity
Vo towards the plate at the right end. The column material is taken to be representative of a stainless steels being considered
for such applications wittE = 190 GPa, = 7920 kgnT3 andoy = 400 MPa, andt; = 2.4 GPa; thusgg = 4898 ms'L,
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cp =550 ms 1 andey = 0.0021. Material rate dependence is neglected. In the numerical examples presented, the column
length is fixed at. = 0.567 m; the radius is varied to generate results for various values of the slendernegg/iatio,

The initial kinetic energy imparted to the modelnizs/oz/z. Apart from relatively small elastic vibratory motion, the entire
unit cell moves with a common velocity after the column is compressed. Conservation of momentum gives the common velocity
asVp/3 and the associated kinetic energy of the unit cekh&%z/& Assume the kinetic energy defio’vﬁ,voz/& is dissipated
entirely in plastic deformation of the column during the stage the unit cell attains the common velocity (the numerical simula-
tions verify this). Further, to obtain a simple approximate relation, assume the column remains straight and that the compressive
plastic straing", is uniformly distributed along the full length of the column. Then, equaiir\g/S to the plastic deformation
in the column, one obtains

P 1E (&P 2 1 Vo 2 3
8Y+2E<8Y) _3(608\() ' ®

As will be seen, this equation provides a useful reference to understand detailed numerical results for the model.

The numerical simulations have been carried out using the finite strain version of ABAQUS Explicit (2001). The column
is fully meshed using three-dimensional hexahedral elements. At both ends it is rigidly attached to the face plates which are
comprised of rigid elements that cannot deform. The mesh density was increased beyond the level reported here without ar
appreciable change in the results. Initial imperfections in the form of slight lateral waviness play a critical role in the response,
and for each slenderness ratio an entire set of geometric imperfections was generated by employing ABAQUS to compute the
buckling eigenfunctions for the quasi-static problem of the perfect elastic column subject to a compressive axial force. The
initial imperfections were taken to be proportional to these eigenfunctions. Away from the ends, the lateral deflection of the
eigenfunction is approximately sinusoidal in form (with zero deflection and slope at the ends). The number of local maxima
and minima of the initial deflectiom, will be used to identify the imperfection, and the magnitude of the maxdmaill be
referred to as the imperfection amplitude. The mesh used to generate the imperfections is the same as that used in the dynam
computations, permitting the nodal locations of the imperfect column to be transported directly into the dynamic code.

An example which illustrates that the buckling deflection develops simultaneously with the propagation of the compression
wave down the column is presented in Fig. 2. The maximum lateral buckling defleatigg, is plotted as a function of
time, including snap shots of the column at four stages of deformation. For reference, the.ﬂmeLOT“ s) that the plastic
wave front reaches the right end is noted. The initial imperfection in this example was chosendaRirgl/4 with n = 6,
corresponding to an imperfection wavelength & L/3) that is near critical. It is apparent from Fig. 2 that buckling is well
underway by the time the compression wave is just half-way down the column, and the buckling deflection has mainly formed
by the time the compression wave reaches the right end of the column.

Further evidence for the coupling between the axial plastic wave and lateral buckling can be seen in Fig. 3 where the axial
compressive strairgzs, at many points across one transverse section through the bears @#7L) is plotted as a function
of time. The times of arrival of both the initial wave front/co) and the plastic wave fronk(cp) are noted on Fig. 3. Yielding
occurs with the arrival of the initial wave front, but the sharp rise in strain occurs only with the arrival of the plastic wave front.
This sharp rise of strain in time is associated with a steep fall off in space of stress and strain in the transition region ahead of
the plastic wave front. The strain at the midsection is essentially constant after the plastic wave front has passed, consistent witt
the existence of a uniform state behind the front when there is no initial imperfection. The divergence of the strains in Fig. 3 is
associated with the growth of the buckling deflection. Prior to arrival of the plastic wave front the buckling deflection is very
small. However, it grows rapidly after arrival of the plastic wave front as evidenced by the diverging strain magnitudes across
the cross-section. Somewhat later {& 0.00065 s but well before the plastic wave front reaches the right end), the strains
cease to change implying that the buckling deflection is fully developed at this location.

Define the overall strain of the column as= A/L whereA is the permanent shortening of the distance between its ends.
Fig. 4 presents the final overall strain as a function of the slenderness ratio for simulatiori4with60 ms 1 for columns
each havings|/R = 1/4 with n = 6. Snap shots of the final deformed state are shown for four values of slenderness. One
immediately notes that the more stocky columns develop much smaller buckling deflections than their slender counterparts,
but even the most slender columns have been significantly stabilized by lateral inertia. The overall strain in the more stocky
columns & 11%) is roughly 68y and is almost entirely due to axial compression. For the relatively slender column discussed
in connection with Fig. 2 with./R = 60, more than three quarters of the overall strain of 13.5% is due to axial compression
and less than one quarter is a result of buckling. Although not shown, plastic dissipation was computed for each column in
Fig. 4 givingm V02/3 to within a few percent; the missing energy is associated with persistent elastic vibrations of the unit cell.

The wavelength of the initial imperfectiod, ~ 2L/n, is an important parameter in dynamic buckling, as illustrated by
the results in Fig. 5. The final overall strain for the unit cell having a slender columnlyfigh= 80 and set in motion with
various initial velocitiesVy, is plotted in Fig. 5 for the full range of relevant wave numbersall with &, /R = 1/4. For this
slenderness ratio, the initial imperfection that produces the largest buckling deflection (and, thus, the largest end shortening)
hasn ~ 6. At the largest values ofy/coey plotted, an imperfection in the critical mode results in an end shortening that is




D.G. Vaughn, J.W. Hutchinson / European Journal of Mechanics A/Solids 25 (2006) 1-12 5

0.4
03 - . - 4
arrival of plastic wave concave
{0, 0.2, 0.4, 0.6,0.8, 1) R
S Soes v W W !
0.2 -
e arrival of elastic wave
33 0T T

(0.2,0.4,06,08, 1) R

convex
convex 7

0.1 - B
02 | | | |
0 0.0002 0.0004 0.0006 0.0008 0.001

time (s)

Fig. 3. Axial strain distribution across the column cross-section-at0.47L in the free-flight model as a function of tim&{ = 160 ms 1,

L/R =60,L =0.567 m,§;/R =1/10 andn = 6). The times at which the elastic and plastic wave fronts reach this point are indicated. The
jump in plastic strain occurs when the plastic wave front passes the point. As buckling develops, plastic compressive loading occurs at all times
on the concave side of the buckle, but elastic unloading and immediate reloading in tension on the convex side.
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Fig. 4. Final overall strain and buckle shapes of the free-flight model as a function of the slenderness #gfie: fi60 ms1 L/R =60,
L =0.567 m,§|/R =1/4 andn = 6. Material properties are cited in the text. The overall strain 0.1Lfat = 20 and 30 is essentially that
for a column that undergoes no buckling.
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Fig. 5. Final overall strain of the free-flight model for the full range of initial imperfection mode shapés, Vo = 160 m s, L/R =80,
L =0.567 m, and’; /R = 1/4. Included in the figure is the result (3) determined under the assumption that no buckling occurs and the plastic
strain is uniformly distributed.

twice that predicted for columns whose initial imperfections are so far away from being critical (e.§orn = 11) that they
undergo very little buckling. The simple result (3) derived under the assumption of no buckling captures the general trend of
the dependence of the overall strain Bgycoey, but it is not strictly correct even when there is no buckling since the axial
strain is not uniformly distributed along the member. Further insight into the critical imperfection wavelength emerges from the
bucklewave model.

3. Thebucklewave model

As depicted in Fig. 6, the lateral deflection of the columtiy, 1), in the bucklewave is modeled by an infinitely long beam
that is clamped both at the left end and at the moving right enés /Et/pt: i.e.

w(0,1)=w(0,1)=0, and w(kgr,t)=w x(xR,1) =0. (4)

The right clamp moves at constant velocity along the beam, coinciding with the front of the region of uniform compressive
stressg, associated with the axial wave propagating along the column.

The primary interest here is in plastic waves, but it can be noted in passing that the model is also applicable in the elastic
range, and the rationale for the moving end condition for elastic behavior is argued figgtcdty < 1, the compression wave
is elastic €t = E) and a uniform stress = E Vy/cq exists throughout the region behind the wave frontpat= ./E/p t. For
x > xR the beam is undisturbed. Thus, zero deflection and slope-=atg is necessarily imposed on the lengthening beam.

The argument for taking clamped conditionsxat= cpt when Vp/coey > 1 is less clear because of the existence of the
transition region ahead afk where yielding occurs. Nevertheless, the numerical solutions of the previous section reveal both
a sharp fall off in axial stress and strain with distance aheackaind very small lateral deflections in the transition region,
consistent with the approximation of the beam being clampeg afnother feature in Fig. 3 relevant to bucklewave modeling
is the elastic unloading and subsequent plastic reloading with tensile strain increments that occur on the convex side of the
cross-section due to bending. The switch from compressive loading to tensile loading occurs over a very short period of time,
just after the arrival of the plastic wave front, because the plastic strains are large compareih the model, the short elastic
unloading period is ignored and the tangent modufiysis taken to govern the bending stiffness everywhere in the beam behind
the plastic wave front. This approximation is consistent with the fact that the strains are large compgrethtas, the model
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Fig. 6. The bucklewave model for the lateral buckling deflection.

is based on the notion that the beam is most susceptible to buckling in the region of high compressive stress and low bending
stiffness on O< x < xR. The moving clamp condition afr overestimates the constraint of the beam segment aheag bfit
it appears to be a good modeling approximation based on the numerical simulations.

With I and A as the moment of inertia and cross-sectional area of the beam the equation governing the lateral deflection is

Etdw yxxx +0 (W xx + wO,xx) =—pAw; ON O<x <xpr=+Et/pt (5)

wherewg(x) is the initial imperfection. The equation applies to the elastic caseKyiteplaced byE. Eq. (5) is often referred
to as the beam-column equation. Von Karman plate theory for a wide plate undergoing one-dimensional deflections reduces to
(5) if I =h3/12(1 — v2) andA = h whereh is the plate thickness andis Poisson’s ratio.

4. Carrier’'sguitar string problem

The bucklewave problem cannot be solved in closed form. An analogous, lower order problem for the dynamics of a guitar
string fixed atx = 0 with right end that lengthens at constant velocity has closed form solutions (Carrier, 1949), and, moreover,
provides a benchmark for validating the numerical method employed to solve the bucklewave problem. The lateral deflection,
w(x, 1), of the string satisfies the wave equatian,, — cazw,n =0, subject taw(0, r) = 0 andw (xR, t) = 0. The prescribed
lengthening rate is with xg = ct; attention is restricted to subsonic lengthening viita c/cq < 1.

The analytical solution which follows makes use of the dimensionless variable;/ct, with the fixed range, & & < 1.

With T = In(r), Carrier showed that separable solutions exist with

w(x, 1) =Re(Y (§) (72 — g2)(0"D/2 o) (6)
where i= +/—1 and the eigenvalue problem fdf, ) is
2y 221+ 02
dZE 1- k2E2)2
The eigenvalue problem must be solved numerically, but standard methods apply.
An example of a solution generated by the above recipe is shown in Fig. 7 for a lengthening rate set at one half of the wave
speed) = 1/2. The deflection of the string is plotted as a function pfq for several values af/ 1y corresponding to roughly
one full oscillation period in which the length of the string more than doubles. Hgis,introduced as reference time and

xg = ctg. This solution, and others, was used to validate the numerical solution method employed for the buckle wave problem,
as will be described in the next section.

Y =0, Y(0) =Y (1) =0. (7)

5. Solution of the bucklewave problem
5.1. Reduction to a system of ordinary differential equations

Eq. (5) is transformed using a variable similar to that employed in the guitar string problemyxr = x/cpt, with fixed
range 0< & < 1. Withw(x, t) = f(£, ) and dimensionless time,= cpt/r, wherer = /I /A is the radius of gyration of the
cross-section, (5) becomes

02 for — %t o + €2 f.0) 6+ Sfee + 1 2 feeee = — S0 w0 (8)

whereS = o/ Et. The imperfection adopted in the present study is

wo(x) = %<l—c03<217f—|x>> 9)
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Fig. 7. An example of the motion of a guitar string where the left eng Q) is fixed and the right end: (= ct) moves at constant velocity. The
example withh. = ¢/cg = 1/2 shows roughly one full oscillation period during which the length of the string has more than doubled.

whereL, will be referred to as the imperfection wavelength.
Solutions to (8) are sought in the form of an eigenfunction expansion

N
fETD =) an(@un(®). (10)
n=1
The eigenfunctions and associated eigenvaligs,\,, }, are generated from the problem
d*u . du, (0 du, (1
d4; - }‘3”}1 =0, withu,(0)= C’;E( ) =up(}) = C’;E( ) =0. (11)

Analytical expressions for the eigenfunctions and the eigenvalue equation are readily obtained. The latter is used to generate
numerical values for the eigenvalues. Details need not be included here. The eigenfunctions are orthogonal and each satisfie
the clamped conditions at the ends of the interval.

The equations governing the, () are obtained by substitution of (10) into (8) and adoption of a Galerkin procedure

enforcing the requiremenfol{}um dé =0 form = 1, N where{-} denotes all the terms in (8). The result is

N N
.. - 1. 2 3), — -
im — 2071 Dinin + Y [~ D — SDA1t 2an + v i am
n=1 n=1
27 2S(r /L2 [ (2
- ZeSe/hy) '/cos( ””s>um@)d&sz(r), m=1N, (12)
Cm L
0
where
1 1o 0 1e2 .7 7 1
u) up d uhu d uhu, d
= [0 = oS e JoSund e ot
Cm Cm Cm
0
This system of coupled ordinary differential equations can be expressed in vector-matrix form as
i=2r"DWi+172(DP@ + 5D®)a - *DPa + R (13)
where

4

al Rq A7
a:[o}, R:|:o:|, D(4):|: . i|
an Ry )‘;1\/
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Initial conditions require special consideration because the beam has zero lemgthGatFor smallz, the contribution
in (12) from the inhomogeneous term due to the imperfection (F,isr) = —(2n2S(r/L|)28|/cm)folum(g)dg. Careful
examination of the system of Egs. (12) reveals that to lowest order frT4Afnam and Ry, (t) are dominant and they must
balance one another such that for sufficiently small

1
am = —tH (2728 (r/L1)281 /apycm) / um(§)ds, m=1,N. (14)
0
These provide the “initial” conditions for the system of differential equations.

The system of Eqgs. (12) is linear in thg , and these amplitudes are proportional to the imperfection ampligudenly two

dimensionless parametetsandL|/r, appear in (12) and (14), in addition to the dimensionless timept/r. For purposes

of interpreting the solutions, alternative length and time scales are introducefliclls the length of a beam (or wide plate),
clamped at both ends, at the onset of quasi-static buckling when compressed into the plastic rangeday stress

Lc =27rEtjo =2nr/V/S. (15)
Let rc be the time for a plastic wave front to propagate the distdnge

tc=Lc/cp. (16)
With these definitions,

L 2r L 2n t

Ly _ I 7T a7

== and r=—"——.
r JSLc VS tc

In presenting results below, we will use L /Lc andt/tc.
5.2. The analytical form solution for the one mode approximation, N =1

The solution for a one-mode approximation gives analytical insight and provides another check on the numerical solution
because it can be expressed in analytical form, although it is unable to capture shape evolution of the deflectddr= With
(12) foray (r) becomes

i1+t Yo+ [t — 2@ + SB)]ar = Ry(v) (18)

whereiq = 4.730,a = ¢; 3 £2u)2dé = 4.052 andp = ¢; * ¢ u}?dg = 12.303. The homogeneous solution to (18) can
be expressed as linear combinations of the Bessel funcmm%/r) andY, (A%/r), wherev? = o + SB. The “variation of
parameters” solution to (18) satisfying the starting condition (14) is

2 & 2 2\ =& 2
ay(t) = Z|:JU<);1>/IYV<);1>R1(t)dt—Y,)();l)/tjv();l)Rl(t)dt} (19)
0 0

The dependence of the maximum deflectiogax = (a111)max @s a function of/¢c for various S has been computed
from (19) and is plotted in Fig. 8. An unbounded responsg/ gsincreases arises due to the logarithmic behavidf,0és its
argument approaches zero. As will be discussed in connection with the full numerical results, the réngredrgfc in Fig. 8
are those relevant to the plastic bucklewave problem. The trends seen in Fig. 8 are qualitatively correct, although the one-mode
solution is a poor approximation for reasons discussed below.

5.3. Numerical solutions for multiple modes

To validate the approach laid out above for the bucklewave problem, the same transformation of variables, eigenfunction
expansion and Galerkin procedure were applied to the guitar string problem. In this case, the eigenfunct{ginga},
which satisfy the single boundary condition at each end of the interval. The resulting system of equations is analogous to
(12) and (13) but without the inhomogeneous term. A numerical solution of the system of ordinary differential equations (13)
was obtained using standard methods (a Runge—Kutta—\Verner method), and the string deflection was computed from (10) and
compared with responses such as those in Fig. 7. Initial conditiong anda,, were obtained by fittingv (x, 1) andw(x, t) to
the expansion at a starting time (e.gtg = 3/2 in Fig. 7), and the deflection was computed at subsequent times. In this manner,
it was found that the exact results in Fig. 7 could be reproduced to high accuracy (within a small fraction of a percent) over the
time range shown for expansions with= 7.
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Fig. 9. Snapshots of the lateral buckling deflection of the buckle- Fig. 10. Growth of the maximum lateral deflection of the buckle-
wave at three times wit = o/Et =0.1, L|/Lc =1 andN =7. wave at various§ = o/Et with L /Lc =1 andN =7.

The numerical procedure for generating bucklewaves is similar to that described above except that initial conditjons on
anda, are determined from (14) by taking a very small starting tiniez ~ 0.01. The numerical solution was insensitive to
the choice of staring time over a fairly wide range of values. Seven-mode expanSieng ) were found to be adequate over
the time range of interest. The exact one-mode solution (19) was used to check the numerical prograsifor

An illustration of the growth of the beam deflection as the compression wave propagates along the beam is shown in Fig. 9
for the casel|/Lc =1 andS = o/Et = 0.1. The deflection is shown at three times when the plastic wave front has traveled
the distancd.c, 2L¢c and 3¢, respectively, wheréc has been defined in (15) as the length at which a clamped beam buckles
quasi-statically under the same compressive stress. Very little deflection growth has occurred at the time the frobtattains
and even when the front has reachdad-3he maximum deflection is less than five times the initial imperfection amplitude. At
t/tc = 3 the maximum deflection occurs.a& Lc/2, but the magnitude of the deflectionxa® L¢ is growing more rapidly
at this time and subsequently it becomes larger than the deflectioB=dtc/2. A notable feature of the solution is the fact
that the locations of the local peaks are essentially frozen in space even though the length of the deforming beam is increasing
The one-mode solution cannot capture this feature as its peak coincides with the maximu#) evhich always lies midway
along the expanding uniformly stressed region.
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Fig. 11. Growth of the maximum lateral deflection of the bucklewave with various imperfection wavelengths, with S = o/Et = 0.2 and
N=T.

The magnitude of the maximum deflection is plotted as a function of time in Fig. 10 for a wide rarfgeaghin with
L)/Lc = 1. The range of is consistent with the range of interest fiag/cgey noted in connection with (2). Note that, by (15),

Lc depends or$, so that both; andsc decrease a8 is increased. Increasin§results in more rapid growth of the bucking
deflection, as would be expected. Nevertheless, even at the largest valtiés Big. 10, the maximum buckling deflection

has only grown tox~ 155, by the time the plastic wave front has reachdd-3For beams with small initial imperfections,

this is a modest buckling deflection. The main conclusion to be drawn from Figs. 9 and 10 is that lateral inertial stabilizes the
beam such that it remains nearly straight even when the axial plastic wave front has engulfed three or more times the length
of beam associated with quasi-static buckling. As emphasized in connection with (2), the plastic strains associated with the
axial compression wave are large whégycgey > 5. The important consequence for applications is that the significant energy
dissipation associated with the axial compression wave can be expected to occur over lengigooe8en longer before
buckling alleviates the load on the column.

The role of the imperfection wavelength,, is seen in Fig. 11 where the growth of the maximum deflection is plotted
for variousL|/Lc in each case fof = 0.2. At small times, the imperfections with the shortest wavelengths grow the most
rapidly since the length of the beam engulfed by the plastic wave is still small. At larger tifngs{ 2), the deflection having
imperfection wavelengtli| /Lc = 1 becomes the largest and, at least untit = 3, this dominance persists. At even longer
times, imperfections with longer wavelengths may give rise to larger deflections. Thus, for this example, when the buckling
deflection develops during the periogic = 3, the critical imperfection has a wavelength roughly equal to the quasi-static
mode lengthLc. Calculations with other values df indicate that imperfection wavelengths longer thiap can give rise
to larger buckling deflections when the column is much longer thanand ¢ is much greater tharc. This is illustrated
by the finite element results discussed earlier in Fig. 2. For this relatively slender colyfn=60), Lc =0.05 m,L =
0.567 m andc = 0.00008 s. The large buckling amplitudes evident in Fig. 2 are associated sl 5, consistent with the
analytical model. The imperfection wavelength giving rise to the largest buckle is roudtily: IFig. 5). On the other hand,
the buckle wavelength for the less slender member WjtR = 20 which develops whery:c ~ 3 is close toL¢ (Fig. 4). The
relation between the fully developed buckle and the amplitude and shape of the initial imperfection under dynamic loading is
complicated and in need of further elucidation.

The slight decrease after the initial peak in the maximum deflection for thelgdge: = 0.5 in Fig. 11 is almost certainly
associated with the neglect of elastic loading in the model. The discontinuity in slope of that respofwge=atl.5 and
subsequent increase is associated with the second local deflection peak from the end overtaking the magnitude of the first peak,
as was mentioned in connection with Fig. 9.

6. Conclusions

Columns and plates loaded abruptly at one end such that an axial plastic wave is induced are stabilized by lateral inertia.
Buckling deflections grow simultaneously with the axial compression wave propagating down the column from the loaded end.
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Most importantly, before significant buckling deflections arise, the length of column subject to a given stress level can be three
or more times greater than the length at which quasi-static buckling would take place. The importance of this phenomenon is
that the column is able to dissipate all the plastic energy associated with the axial compression wave, as long as the columr
remains nearly straight. In the range of loading rates of interest here, much larger plastic strains occur due to the compressive
axial wave than due to buckling. Thus, for slender members, the delay of buckling allows longer segments of the beam to
experience the plastic strains due to the axial wave. If it is desired that the entire length of the member experience the full effect
of the axial wave, then a the present results suggest the length should be roughly thrdetiases rule of thumb, subject to
the level of initial imperfection.

For columns or plates loaded with a uniform velodityat one end, the dimensionless parameter governing whether buckling
and wave propagation are coupledWg/coey: if Vg/coey > 5, strong coupling occurs and bucklewaves are generated. The
study in this paper has addressed nominally straight members loaded axially. The buckle wave phenomenon also occurs ir
straight members that are inclined to the faces of the sandwich plate such as columns in truss cores or plates in folded plate
cores, as discussed by Vaughn et al. (2005). Although non-axial deformations occur immediately at the dynamically loaded end
of the member where it is attached to the face, nevertheless, a well-developed axial wave is initiated and propagates along the
member. Vaughn et al. (2005) showed that the phenomena discussed in Section 2 are also observed in inclined straight member
On the other hand, if the members are not nominally straight but have a significant bow, it is not likely that fully developed axial
compression wave will occur, although this has not been investigated.
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