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Abstract

Motivated by a selection of results on the plastic buckling of column members within a sandwich plate core where
of the sandwich is subject to an intense impulse, the problem addressed is one where lateral buckling takes place simu
as a compressive axial wave propagates down the member. The bucklewave problem is modeled as an infinitely long c
wide plate) which is clamped against lateral deflection at the end where velocity is imposed and has a moving clamped
coinciding with the front of the plastic compression wave. The model reveals that a column or plate suddenly compre
the plastic range is dynamically stabilized against lateral buckling for lengths that are significantly longer than the corres
length at which the member would buckle quasi-statically. This stabilization has significant implications for energy ab
under intense dynamic loading. The analysis method is benchmarked against a simpler, but mathematically analogou
for which closed form solutions are available: the dynamics of a guitar string lengthening at constant velocity.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Dynamic buckling of columns and plates has been studied from various points of view for many years. We cite a
selection of theoretical papers (Bell, 1988; Hayashi and Sano, 1972; Jones and Reis, 1980; Karagiozova and Jo
Kenny et al., 2002; Su et al., 1995) and experimental papers (Abrahamson and Goodier, 1966; Ari-Gur et al., 1982;
and Yeung, 1990) which provide a background to the subject. In the theoretical work, all but a few recent studies have
the time required to produce the axial state of stress is sufficiently short compared to the time for lateral buckling de
to evolve such that axial wave propagation can be decoupled from buckling by taking the axial stress to be establishe
buckling; coupled approaches are exceptional but they have been pursued by Anwen and Wenying (2003), Lepik (2001
et al. (2005). Recent work by Vaughn et al. (2005) has shown that buckling cannot be decoupled from axial wave pro
when columns or plates are loaded at one end by high axial velocities, representative of those occurring in column
webs in the cores of sandwich plates subject to blast loading. In what follows, to motivate the study in the paper, exam
be presented which clearly reveal that lateral buckling deflections develop simultaneously as the axial plastic wave p
down the member when the velocity imposed on the end gives rise to stresses well into the plastic range. Buckling
wave propagation are intrinsically coupled in the form of a bucklewave. Lateral inertia stabilizes the member such th
compressive axial strains can develop simultaneously with the growth of buckling deflections.

* Corresponding author.
E-mail address: jhutchin@fas.harvard.edu (J.W. Hutchinson).
0997-7538/$ – see front matter 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.euromechsol.2005.09.003
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Throughout the paper, the following notation for material properties will be used: elastic modulus,E; density,ρ; elastic wave
speed,c0 = √

E/ρ; yield stress (positive in compression)σY; and compressive yield strain,εY = σY/E. Without sacrifice
of physical significance, the discussion and analysis will be simplified by restricting attention to materials with linea
hardening having a tangent modulus,Et, that is independent of strain. In uniaxial compression, withσ and ε positive in
compression, the true stress-strain relation isε = σ/E for σ � σY andε = εY + (σ − σY)/Et for σ > σY. The plastic wave
speed, whose significance will be detailed below, is given by (Taylor, 1958; Von Karman and Duwez, 1950; Vaughn et a

cp =
√

Et + σ

ρ
∼=

√
Et

ρ
. (1)

The un-approximated expression applies with quantities defined in a finite strain context in terms of true stress and lo
strain. Finite strain aspects are not of primary importance in this paper; and because, usually,σ/Et � 1, cp = √

Et/ρ will be
used.

We begin by quoting some results for the axial propagation of plastic waves along a semi-infinite straight m
(0 � x < ∞) initially at rest whose left end is abruptly moved att = 0 with constant velocityV0 so as to produce a uniax
ial compression wave (Taylor, 1958; Von Karman and Duwez, 1950; Vaughn et al., 2005). IfV0/c0εY < 1, the ensuing strain
are elastic. Of primary interest here are imposed velocities withV0/c0εY > 1, such that strains exceed yield. Two distinct wa
segments emerge. For 0� x � cpt , the member moves with uniform velocityV0 and is in a uniform state of stress and str
given to high accuracy by

σ

σY
= 1+

√
Et

E

(
V0

c0εY
− 1

)
and

ε

εY
= 1+

√
E

Et

(
V0

c0εY
− 1

)
. (2)

In the transition region ahead of this uniform compressive state, the stress and strain decay monotonically (and sha
x, attaining initial yield values at the wave front atx = c0t . The front of the uniform compressive state propagates down
member with the plastic wave speed,cp; it will be referred to as the plastic wave front in the sequel.

The dimensionless parameter characterizing the intensity of the compression wave isV0/c0εY. With Et/E = 0.01 as repre-
sentative, axial strains of magnitude≈ 100εY are predicted by (2) ifV0/c0εY ≈ 10. Many steel and aluminum alloys havec0εY
in the range from 5 to 20 m s−1. Thus, typically, imposed velocities,V0, greater than about 50 m s−1, will generate compressiv
axial strains many times the yield strain.

These results provide the setting for the present study which is motivated by interest in the plastic buckling and
absorption of columns and plates employed as core members in all-metal sandwich plates designed to withstand hig
blast loads. An intense blast in either air or water imposes a sudden velocity typically in the range 50 to 200 m s−1 on the
face sheet of the sandwich plate towards the blast (Fleck and Deshpande, 2004; Xue and Hutchinson, 2004). Core
experience this suddenly imposed velocity where they are attached to the impulsively loaded face sheet. The impose
diminishes as the core is compressed, but the inertia of the face sheet towards the blast is substantial and, typical
posed velocity remains high for overall core crushing strains as large as 30% or even higher. Thus, for blast applica
relevant dimensionless imposed velocity,V0/c0εY, falls in the range where plastic waves will be initiated in the core mem
potentially generating relatively large compressive axial strains and associated plastic energy dissipation. The study
veals conditions under which the members can be expected to remain sufficiently straight, stabilized by lateral inertia,
significantly enhanced energy absorption can indeed take place due to axial straining.

One of the early studies of dynamic buckling of suddenly compressed columns was performed by Abrahamson and
(1966). Like many analyses that followed, their theoretical analysis decoupled plastic wave propagation and buckling b
ing the state of uniform stress was established along the entire member prior to the onset of lateral motion. Their exp
on aluminum rods fired against a massive anvil at velocities on the order of 100 m s−1 reveal that compressive axial strains
large as 20% can be achieved accompanied by only moderate buckling deflections (Fig. 1).

2. Selected numerical results illustrating coupled buckling and wave propagation

To illustrate the behavior experienced by a core column member oriented perpendicularly to the faces of a sandw
struck by a blast, we consider a unit cell model (see insert in Fig. 2) composed of solid circular column of lengthL and radiusR
clamped at each end to a rigid plate. The plates are constrained against rotation but are able to undergo free flight in th
perpendicular to the faces. (An earlier related investigation by Vaughn et al. (2005) considered different conditions with
end of the column fixed and the left end is subject to a uniform imposed velocity.) Each of the plates is assigned the sa
as the column,m = ρπR2L, representing a sandwich plate with one third of its total mass in the core, which is not untypi
all-metal sandwich plates designed against impulsive loads. More extensive investigation of the preferred proportion
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Fig. 1. Aluminum rods impacting a massive anvil at the velocities ranging from 145 to 210 m s−1 showing large axial compression and buckli
deformations from Abrahamson and Goodier (1966).

Fig. 2. Development of lateral buckling deflection (wmax in m) in free-flight model pictured in insert forV0 = 160 m s−1, L/R = 60,
L = 0.567 m and imperfection amplitudeδR/R = 1/4 and moden = 6. The time at which the plastic wave front reaches the right en
the column is indicated. Material properties are cited in the text.

in the core and face sheets has been given elsewhere (Fleck and Deshpande, 2004; Hutchinson and Xue, 2005). At = 0, the
column and the plate on the right end are at rest, but the plate at the left end is abruptly set in motion with initial
V0 towards the plate at the right end. The column material is taken to be representative of a stainless steels being c
for such applications withE = 190 GPa,ρ = 7920 kg m−3 andσY = 400 MPa, andEt = 2.4 GPa; thus,c0 = 4898 m s−1,
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cp = 550 m s−1 andεY = 0.0021. Material rate dependence is neglected. In the numerical examples presented, the
length is fixed atL = 0.567 m; the radius is varied to generate results for various values of the slenderness ratio,R/L.

The initial kinetic energy imparted to the model ismV 2
0 /2. Apart from relatively small elastic vibratory motion, the ent

unit cell moves with a common velocity after the column is compressed. Conservation of momentum gives the common
asV0/3 and the associated kinetic energy of the unit cell asmV 2

0 /6. Assume the kinetic energy deficit,mV 2
0 /3, is dissipated

entirely in plastic deformation of the column during the stage the unit cell attains the common velocity (the numerical
tions verify this). Further, to obtain a simple approximate relation, assume the column remains straight and that the com
plastic strain,εP, is uniformly distributed along the full length of the column. Then, equatingmV 2

0 /3 to the plastic deformation
in the column, one obtains

εP

εY
+ 1

2

Et

E

(
εP

εY

)2
= 1

3

(
V0

c0εY

)2
. (3)

As will be seen, this equation provides a useful reference to understand detailed numerical results for the model.
The numerical simulations have been carried out using the finite strain version of ABAQUS Explicit (2001). The c

is fully meshed using three-dimensional hexahedral elements. At both ends it is rigidly attached to the face plates w
comprised of rigid elements that cannot deform. The mesh density was increased beyond the level reported here w
appreciable change in the results. Initial imperfections in the form of slight lateral waviness play a critical role in the re
and for each slenderness ratio an entire set of geometric imperfections was generated by employing ABAQUS to com
buckling eigenfunctions for the quasi-static problem of the perfect elastic column subject to a compressive axial fo
initial imperfections were taken to be proportional to these eigenfunctions. Away from the ends, the lateral deflectio
eigenfunction is approximately sinusoidal in form (with zero deflection and slope at the ends). The number of local
and minima of the initial deflection,n, will be used to identify the imperfection, and the magnitude of the maxima,δI , will be
referred to as the imperfection amplitude. The mesh used to generate the imperfections is the same as that used in th
computations, permitting the nodal locations of the imperfect column to be transported directly into the dynamic code

An example which illustrates that the buckling deflection develops simultaneously with the propagation of the com
wave down the column is presented in Fig. 2. The maximum lateral buckling deflection,wmax, is plotted as a function o
time, including snap shots of the column at four stages of deformation. For reference, the time (7.8 × 10−4 s) that the plastic
wave front reaches the right end is noted. The initial imperfection in this example was chosen havingδI/R = 1/4 with n = 6,
corresponding to an imperfection wavelength (LI ≈ L/3) that is near critical. It is apparent from Fig. 2 that buckling is w
underway by the time the compression wave is just half-way down the column, and the buckling deflection has mainly
by the time the compression wave reaches the right end of the column.

Further evidence for the coupling between the axial plastic wave and lateral buckling can be seen in Fig. 3 where
compressive strain,ε33, at many points across one transverse section through the beam (atx = 0.47L) is plotted as a function
of time. The times of arrival of both the initial wave front (x/c0) and the plastic wave front (x/cp) are noted on Fig. 3. Yielding
occurs with the arrival of the initial wave front, but the sharp rise in strain occurs only with the arrival of the plastic wave
This sharp rise of strain in time is associated with a steep fall off in space of stress and strain in the transition region
the plastic wave front. The strain at the midsection is essentially constant after the plastic wave front has passed, cons
the existence of a uniform state behind the front when there is no initial imperfection. The divergence of the strains in
associated with the growth of the buckling deflection. Prior to arrival of the plastic wave front the buckling deflection
small. However, it grows rapidly after arrival of the plastic wave front as evidenced by the diverging strain magnitude
the cross-section. Somewhat later (att ∼= 0.00065 s but well before the plastic wave front reaches the right end), the s
cease to change implying that the buckling deflection is fully developed at this location.

Define the overall strain of the column asε̄ = �/L where� is the permanent shortening of the distance between its e
Fig. 4 presents the final overall strain as a function of the slenderness ratio for simulations withV0 = 160 m s−1 for columns
each havingδI/R = 1/4 with n = 6. Snap shots of the final deformed state are shown for four values of slendernes
immediately notes that the more stocky columns develop much smaller buckling deflections than their slender cou
but even the most slender columns have been significantly stabilized by lateral inertia. The overall strain in the mor
columns (≈ 11%) is roughly 60εY and is almost entirely due to axial compression. For the relatively slender column disc
in connection with Fig. 2 withL/R = 60, more than three quarters of the overall strain of 13.5% is due to axial compre
and less than one quarter is a result of buckling. Although not shown, plastic dissipation was computed for each c
Fig. 4 givingmV 2

0 /3 to within a few percent; the missing energy is associated with persistent elastic vibrations of the un
The wavelength of the initial imperfection,LI ≈ 2L/n, is an important parameter in dynamic buckling, as illustrated

the results in Fig. 5. The final overall strain for the unit cell having a slender column withL/R = 80 and set in motion with
various initial velocities,V0, is plotted in Fig. 5 for the full range of relevant wave numbers,n, all with δI/R = 1/4. For this
slenderness ratio, the initial imperfection that produces the largest buckling deflection (and, thus, the largest end sh
hasn ≈ 6. At the largest values ofV0/c0εY plotted, an imperfection in the critical mode results in an end shortening th
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Fig. 3. Axial strain distribution across the column cross-section atx = 0.47L in the free-flight model as a function of time (V0 = 160 m s−1,
L/R = 60, L = 0.567 m,δI/R = 1/10 andn = 6). The times at which the elastic and plastic wave fronts reach this point are indicate
jump in plastic strain occurs when the plastic wave front passes the point. As buckling develops, plastic compressive loading occurs
on the concave side of the buckle, but elastic unloading and immediate reloading in tension on the convex side.

Fig. 4. Final overall strain and buckle shapes of the free-flight model as a function of the slenderness ratio forV0 = 160 m s−1, L/R = 60,
L = 0.567 m,δI/R = 1/4 andn = 6. Material properties are cited in the text. The overall strain 0.11 forL/R = 20 and 30 is essentially tha
for a column that undergoes no buckling.
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Fig. 5. Final overall strain of the free-flight model for the full range of initial imperfection mode shapes,n, for V0 = 160 m s−1, L/R = 80,
L = 0.567 m, andδI/R = 1/4. Included in the figure is the result (3) determined under the assumption that no buckling occurs and th
strain is uniformly distributed.

twice that predicted for columns whose initial imperfections are so far away from being critical (e.g.n = 1 orn = 11) that they
undergo very little buckling. The simple result (3) derived under the assumption of no buckling captures the general
the dependence of the overall strain onV0/c0εY, but it is not strictly correct even when there is no buckling since the a
strain is not uniformly distributed along the member. Further insight into the critical imperfection wavelength emerges f
bucklewave model.

3. The bucklewave model

As depicted in Fig. 6, the lateral deflection of the column,w(x, t), in the bucklewave is modeled by an infinitely long be
that is clamped both at the left end and at the moving right end,xR = √

Et/ρ t : i.e.

w(0, t) = w,x(0, t) = 0, and w(xR, t) = w,x(xR, t) = 0. (4)

The right clamp moves at constant velocity along the beam, coinciding with the front of the region of uniform comp
stress,σ , associated with the axial wave propagating along the column.

The primary interest here is in plastic waves, but it can be noted in passing that the model is also applicable in th
range, and the rationale for the moving end condition for elastic behavior is argued first. IfV0/c0εY < 1, the compression wav
is elastic (Et = E) and a uniform stressσ = EV0/c0 exists throughout the region behind the wave front atxR = √

E/ρ t . For
x > xR the beam is undisturbed. Thus, zero deflection and slope atx = xR is necessarily imposed on the lengthening beam

The argument for taking clamped conditions atxR = cpt whenV0/c0εY > 1 is less clear because of the existence of
transition region ahead ofxR where yielding occurs. Nevertheless, the numerical solutions of the previous section reve
a sharp fall off in axial stress and strain with distance ahead ofxR and very small lateral deflections in the transition regi
consistent with the approximation of the beam being clamped atxR. Another feature in Fig. 3 relevant to bucklewave model
is the elastic unloading and subsequent plastic reloading with tensile strain increments that occur on the convex s
cross-section due to bending. The switch from compressive loading to tensile loading occurs over a very short period
just after the arrival of the plastic wave front, because the plastic strains are large compared toεY. In the model, the short elast
unloading period is ignored and the tangent modulus,Et, is taken to govern the bending stiffness everywhere in the beam b
the plastic wave front. This approximation is consistent with the fact that the strains are large compared toεY. Thus, the mode
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Fig. 6. The bucklewave model for the lateral buckling deflection.

is based on the notion that the beam is most susceptible to buckling in the region of high compressive stress and low
stiffness on 0� x � xR. The moving clamp condition atxR overestimates the constraint of the beam segment ahead ofxR, but
it appears to be a good modeling approximation based on the numerical simulations.

With I andA as the moment of inertia and cross-sectional area of the beam the equation governing the lateral defl

EtIw,xxxx + σ(w,xx + w0,xx) = −ρAw,tt on 0� x � xR = √
Et/ρ t (5)

wherew0(x) is the initial imperfection. The equation applies to the elastic case withEt replaced byE. Eq. (5) is often referred
to as the beam-column equation. Von Karman plate theory for a wide plate undergoing one-dimensional deflections r
(5) if I = h3/12(1− ν2) andA = h whereh is the plate thickness andν is Poisson’s ratio.

4. Carrier’s guitar string problem

The bucklewave problem cannot be solved in closed form. An analogous, lower order problem for the dynamics of
string fixed atx = 0 with right end that lengthens at constant velocity has closed form solutions (Carrier, 1949), and, mo
provides a benchmark for validating the numerical method employed to solve the bucklewave problem. The lateral d
w(x, t), of the string satisfies the wave equation,w,xx − c−2

0 w,tt = 0, subject tow(0, t) = 0 andw(xR, t) = 0. The prescribed
lengthening rate isc with xR = ct ; attention is restricted to subsonic lengthening withλ ≡ c/c0 < 1.

The analytical solution which follows makes use of the dimensionless variable,ξ = x/ct , with the fixed range, 0� ξ � 1.
With τ = ln(t), Carrier showed that separable solutions exist with

w(x, t) = Re
(
Y (ξ)(λ−2 − ξ2)(iω−1)/2 eiωτ

)
(6)

where i= √−1 and the eigenvalue problem for (Y,ω) is

d2Y

d2ξ
− λ2(1+ ω2)

(1− λ2ξ2)2
Y = 0, Y (0) = Y (1) = 0. (7)

The eigenvalue problem must be solved numerically, but standard methods apply.
An example of a solution generated by the above recipe is shown in Fig. 7 for a lengthening rate set at one half of

speed,λ = 1/2. The deflection of the string is plotted as a function ofx/x0 for several values oft/t0 corresponding to roughly
one full oscillation period in which the length of the string more than doubles. Here,t0 is introduced as reference time a
x0 = ct0. This solution, and others, was used to validate the numerical solution method employed for the buckle wave
as will be described in the next section.

5. Solution of the bucklewave problem

5.1. Reduction to a system of ordinary differential equations

Eq. (5) is transformed using a variable similar to that employed in the guitar string problem:ξ = x/xR = x/cpt , with fixed
range 0� ξ � 1. With w(x, t) = f (ξ, τ ) and dimensionless time,τ = cpt/r , wherer = √

I/A is the radius of gyration of the
cross-section, (5) becomes

τ2f,ττ − 2ξτf,xτ + (ξ2f,ξ ),ξ + Sf,ξξ + τ−2f,ξξξξ = −S(rτ )2w0,xx (8)

whereS = σ/Et. The imperfection adopted in the present study is

w0(x) = δI
(

1− cos

(
2πx

))
(9)
2 LI
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Fig. 7. An example of the motion of a guitar string where the left end (x = 0) is fixed and the right end (x = ct ) moves at constant velocity. Th
example withλ = c/c0 = 1/2 shows roughly one full oscillation period during which the length of the string has more than doubled.

whereLI will be referred to as the imperfection wavelength.
Solutions to (8) are sought in the form of an eigenfunction expansion

f (ξ, τ ) =
N∑

n=1

an(τ )un(ξ). (10)

The eigenfunctions and associated eigenvalues,{un,λn}, are generated from the problem

d4un

d4ξ
− λ4

nun = 0, with un(0) = dun(0)

dξ
= un(1) = dun(1)

dξ
= 0. (11)

Analytical expressions for the eigenfunctions and the eigenvalue equation are readily obtained. The latter is used to
numerical values for the eigenvalues. Details need not be included here. The eigenfunctions are orthogonal and eac
the clamped conditions at the ends of the interval.

The equations governing thean(τ ) are obtained by substitution of (10) into (8) and adoption of a Galerkin proce
enforcing the requirement,

∫ 1
0 {}um dξ = 0 for m = 1,N where{·} denotes all the terms in (8). The result is

äm − 2τ−1
N∑

n=1

D
(1)
mnȧn +

N∑
n=1

[−D
(2)
mn − SD

(3)
mn]τ−2an + τ−4λ4

mam

= −2π2S(r/LI)
2δI

cm

1∫
0

cos

(
2πτr

LI
ξ

)
um(ξ)dξ ≡ Rm(τ), m = 1,N, (12)

where

cm =
1∫

0

u2
m dξ, D

(1)
mn =

∫ 1
0 ξu′

num dξ

cm
, D

(2)
mn =

∫ 1
0 ξ2u′

nu′
m dξ

cm
, D

(3)
mn =

∫ 1
0 u′

nu′
m dξ

cm
.

This system of coupled ordinary differential equations can be expressed in vector-matrix form as

ä = 2τ−1D(1)ȧ + τ−2(D(2) + SD(3))a − τ−4D(4)a + R (13)

where

a =
[

a1
•

]
, R =

[
R1
•

]
, D(4) =

[
λ4

1 •
4

]
.

aN RN λ
N
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Initial conditions require special consideration because the beam has zero length atτ = 0. For smallτ , the contribution
in (12) from the inhomogeneous term due to the imperfection (9) isRm(τ) = −(2π2S(r/LI)

2δI/cm)
∫ 1
0 um(ξ)dξ . Careful

examination of the system of Eqs. (12) reveals that to lowest order inτ , τ−4λ4
mam andRm(τ) are dominant and they mu

balance one another such that for sufficiently smallτ ,

am = −τ4(
2π2S(r/LI)

2δI/λ
4
mcm

) 1∫
0

um(ξ)dξ, m = 1,N. (14)

These provide the “initial” conditions for the system of differential equations.
The system of Eqs. (12) is linear in theam, and these amplitudes are proportional to the imperfection amplitude,δI . Only two

dimensionless parameters,S andLI/r , appear in (12) and (14), in addition to the dimensionless time,τ = cpt/r . For purposes
of interpreting the solutions, alternative length and time scales are introduced. LetLC be the length of a beam (or wide plate
clamped at both ends, at the onset of quasi-static buckling when compressed into the plastic range by stressσ :

LC = 2πr
√

Et/σ = 2πr/
√

S. (15)

Let tC be the time for a plastic wave front to propagate the distanceLC:

tC = LC/cp. (16)

With these definitions,

LI

r
= 2π√

S

LI

LC
and τ = 2π√

S

t

tC
. (17)

In presenting results below, we will useS, LI/LC andt/tC.

5.2. The analytical form solution for the one mode approximation, N = 1

The solution for a one-mode approximation gives analytical insight and provides another check on the numerical
because it can be expressed in analytical form, although it is unable to capture shape evolution of the deflection. WitN = 1,
(12) fora1(τ ) becomes

ä1 + τ−1ȧ1 + [
τ−4λ4

1 − τ−2(α + Sβ)
]
a1 = R1(τ ) (18)

whereλ1 = 4.730, α = c−1
1

∫ 1
0 ξ2u′2

1 dξ = 4.052 andβ = c−1
1

∫ 1
0 u′2

1 dξ = 12.303. The homogeneous solution to (18) c

be expressed as linear combinations of the Bessel functionsJν(λ2
1/τ) andYν(λ2

1/τ), whereν2 = α + Sβ. The “variation of
parameters” solution to (18) satisfying the starting condition (14) is

a1(τ ) = π

2

[
Jν

(
λ2

1
τ

) τ∫
0

tYν

(
λ2

1
t

)
R1(t)dt − Yν

(
λ2

1
τ

) τ∫
0

tJν

(
λ2

1
t

)
R1(t)dt

]
. (19)

The dependence of the maximum deflectionwmax = (a1u1)max as a function oft/tC for variousS has been compute
from (19) and is plotted in Fig. 8. An unbounded response ast/tC increases arises due to the logarithmic behavior ofYν as its
argument approaches zero. As will be discussed in connection with the full numerical results, the ranges ofS andt/tC in Fig. 8
are those relevant to the plastic bucklewave problem. The trends seen in Fig. 8 are qualitatively correct, although the
solution is a poor approximation for reasons discussed below.

5.3. Numerical solutions for multiple modes

To validate the approach laid out above for the bucklewave problem, the same transformation of variables, eigen
expansion and Galerkin procedure were applied to the guitar string problem. In this case, the eigenfunctions are{sin(nπξ)},
which satisfy the single boundary condition at each end of the interval. The resulting system of equations is anal
(12) and (13) but without the inhomogeneous term. A numerical solution of the system of ordinary differential equatio
was obtained using standard methods (a Runge–Kutta–Verner method), and the string deflection was computed from
compared with responses such as those in Fig. 7. Initial conditions onan andȧn were obtained by fittingw(x, t) andẇ(x, t) to
the expansion at a starting time (e.g.t/t0 = 3/2 in Fig. 7), and the deflection was computed at subsequent times. In this m
it was found that the exact results in Fig. 7 could be reproduced to high accuracy (within a small fraction of a percent)
time range shown for expansions withN = 7.
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Fig. 8. Growth of the maximum lateral deflection of the bucklewave for the one-mode approximation (N = 1) with LI/LC = 1.

Fig. 9. Snapshots of the lateral buckling deflection of the buckle-
wave at three times withS = σ/Et = 0.1, LI/LC = 1 andN = 7.

Fig. 10. Growth of the maximum lateral deflection of the buck
wave at variousS = σ/Et with LI/LC = 1 andN = 7.

The numerical procedure for generating bucklewaves is similar to that described above except that initial conditioan

and ȧn are determined from (14) by taking a very small starting time,t/tC ≈ 0.01. The numerical solution was insensitive
the choice of staring time over a fairly wide range of values. Seven-mode expansions (N = 7) were found to be adequate ov
the time range of interest. The exact one-mode solution (19) was used to check the numerical program forN = 1.

An illustration of the growth of the beam deflection as the compression wave propagates along the beam is shown
for the caseLI/LC = 1 andS = σ/Et = 0.1. The deflection is shown at three times when the plastic wave front has tra
the distanceLC,2LC and 3LC, respectively, whereLC has been defined in (15) as the length at which a clamped beam bu
quasi-statically under the same compressive stress. Very little deflection growth has occurred at the time the front atLC,
and even when the front has reached 3LC the maximum deflection is less than five times the initial imperfection amplitude
t/tC = 3 the maximum deflection occurs atx ∼= LC/2, but the magnitude of the deflection atx ∼= LC is growing more rapidly
at this time and subsequently it becomes larger than the deflection atx ∼= LC/2. A notable feature of the solution is the fa
that the locations of the local peaks are essentially frozen in space even though the length of the deforming beam is in
The one-mode solution cannot capture this feature as its peak coincides with the maximum ofu1(ξ) which always lies midway
along the expanding uniformly stressed region.
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Fig. 11. Growth of the maximum lateral deflection of the bucklewave with various imperfection wavelengths,LI/LC, with S = σ/Et = 0.2 and
N = 7.

The magnitude of the maximum deflection is plotted as a function of time in Fig. 10 for a wide range ofS, again with
LI/LC = 1. The range ofS is consistent with the range of interest forV0/c0εY noted in connection with (2). Note that, by (15
LC depends onS, so that bothLI andtC decrease asS is increased. IncreasingS results in more rapid growth of the buckin
deflection, as would be expected. Nevertheless, even at the largest values ofS in Fig. 10, the maximum buckling deflectio
has only grown to≈ 15δI by the time the plastic wave front has reached 3LC. For beams with small initial imperfection
this is a modest buckling deflection. The main conclusion to be drawn from Figs. 9 and 10 is that lateral inertial stabi
beam such that it remains nearly straight even when the axial plastic wave front has engulfed three or more times t
of beam associated with quasi-static buckling. As emphasized in connection with (2), the plastic strains associated
axial compression wave are large whenV0/c0εY > 5. The important consequence for applications is that the significant en
dissipation associated with the axial compression wave can be expected to occur over lengths of 3LC or even longer before
buckling alleviates the load on the column.

The role of the imperfection wavelength,LI , is seen in Fig. 11 where the growth of the maximum deflection is plo
for variousLI/LC in each case forS = 0.2. At small times, the imperfections with the shortest wavelengths grow the
rapidly since the length of the beam engulfed by the plastic wave is still small. At larger times (t/tC ≈ 2), the deflection having
imperfection wavelengthLI/LC = 1 becomes the largest and, at least untilt/tC = 3, this dominance persists. At even long
times, imperfections with longer wavelengths may give rise to larger deflections. Thus, for this example, when the
deflection develops during the periodt/tC = 3, the critical imperfection has a wavelength roughly equal to the quasi-s
mode lengthLC. Calculations with other values ofS indicate that imperfection wavelengths longer thanLC can give rise
to larger buckling deflections when the column is much longer thanLC and t is much greater thantC. This is illustrated
by the finite element results discussed earlier in Fig. 2. For this relatively slender column (L/R = 60), LC = 0.05 m, L =
0.567 m andtC = 0.00008 s. The large buckling amplitudes evident in Fig. 2 are associated witht/tC > 5, consistent with the
analytical model. The imperfection wavelength giving rise to the largest buckle is roughly 1.5LC (Fig. 5). On the other hand
the buckle wavelength for the less slender member withL/R = 20 which develops whent/tC ≈ 3 is close toLC (Fig. 4). The
relation between the fully developed buckle and the amplitude and shape of the initial imperfection under dynamic lo
complicated and in need of further elucidation.

The slight decrease after the initial peak in the maximum deflection for the caseLI/LC = 0.5 in Fig. 11 is almost certainly
associated with the neglect of elastic loading in the model. The discontinuity in slope of that response att/tC ∼= 1.5 and
subsequent increase is associated with the second local deflection peak from the end overtaking the magnitude of the
as was mentioned in connection with Fig. 9.

6. Conclusions

Columns and plates loaded abruptly at one end such that an axial plastic wave is induced are stabilized by later
Buckling deflections grow simultaneously with the axial compression wave propagating down the column from the loa
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Most importantly, before significant buckling deflections arise, the length of column subject to a given stress level can
or more times greater than the length at which quasi-static buckling would take place. The importance of this pheno
that the column is able to dissipate all the plastic energy associated with the axial compression wave, as long as th
remains nearly straight. In the range of loading rates of interest here, much larger plastic strains occur due to the co
axial wave than due to buckling. Thus, for slender members, the delay of buckling allows longer segments of the
experience the plastic strains due to the axial wave. If it is desired that the entire length of the member experience the
of the axial wave, then a the present results suggest the length should be roughly three timesLC as a rule of thumb, subject t
the level of initial imperfection.

For columns or plates loaded with a uniform velocityV0 at one end, the dimensionless parameter governing whether buc
and wave propagation are coupled isV0/c0εY: if V0/c0εY > 5, strong coupling occurs and bucklewaves are generated
study in this paper has addressed nominally straight members loaded axially. The buckle wave phenomenon also
straight members that are inclined to the faces of the sandwich plate such as columns in truss cores or plates in fo
cores, as discussed by Vaughn et al. (2005). Although non-axial deformations occur immediately at the dynamically lo
of the member where it is attached to the face, nevertheless, a well-developed axial wave is initiated and propagates
member. Vaughn et al. (2005) showed that the phenomena discussed in Section 2 are also observed in inclined straigh
On the other hand, if the members are not nominally straight but have a significant bow, it is not likely that fully develop
compression wave will occur, although this has not been investigated.
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