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Growing layers on elastic substrates are capable of creating a wide variety of
surface morphologies. Moderate growth generates a regular pattern of sinusoidal
wrinkles with a homogeneous energy distribution. While the critical conditions
for periodic wrinkling have been extensively studied, the rich pattern formation
beyond this first instability point remains poorly understood. Here, we show that
upon continuing growth, the energy progressively localizes and new complex
morphologies emerge. Previous studies have often overlooked these secondary
bifurcations; they have focused on large stiffness ratios between layer and sub-
strate, where primary instabilities occur early, long before secondary instabilities
emerge. We demonstrate that secondary bifurcations are particularly critical in
the low stiffness ratio regime, where the critical conditions for primary and
secondary instabilities move closer together. Amongst all possible secondary
bifurcations, the mode of period-doubling plays a central role – it is energeti-
cally favourable over all other modes. Yet, we can numerically suppress period-
doubling, by choosing boundary conditions, which favour alternative higher order
modes. Our results suggest that in the low stiffness regime, pattern formation
is highly sensitive to small imperfections: surface morphologies emerge rapidly,
change spontaneously and quickly become immensely complex. This is a common
paradigm in developmental biology. Our results have significant applications in
the morphogenesis of living systems where growth is progressive and stiffness
ratios are low.

Keywords: thin films; growth; instabilities; bifurcation; period-doubling;
period-tripling

1. Motivation

Growth-induced wrinkling instabilities are an important mechanism in the evolution and
morphogenesis of living systems [26]. Typical examples range from undesired folding in
asthmatic airways [28], via wrinkling in skin [9], to desired cortical folding in mammalian
brains [8,31]. Agrowing layer, confined by a non-growing substrate with dissimilar material
properties, eventually buckles into sinusoidal wrinkles with a well-defined wavelength [27].
Continued growth beyond the onset of primary wrinkling induces secondary bifurcations
associated with advanced wrinkling modes of increasing complexity [2,6]. This coordinated
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self-organizing mechanism creates a wide variety of surface patterns [20] and is an essential
feature of life [14]. Understanding the critical conditions for these instabilities could allow
us to control surface pattern formation during organogenesis and manipulate congenital
abnormalities.

Continuum approaches towards the formation of growth-induced instabilities in living
systems typically adopt the concept of finite growth [32]. They couple growth and defor-
mations at the kinematic level using the multiplicative decomposition of the deformation
gradient into an elastic and a grown part [35]. In this description, confined growth induces
residual stresses and triggers mechanical instabilities [17]. The resulting wrinkled state is
permanent without any external impact [30]. Soft living materials are especially susceptible
to surface buckling due to low elastic moduli and high stimulus sensitivity [26]. However,
studying instabilities in living systems is challenging from a conceptual point of view:
it requires non-linear constitutive equations and low moduli ratios between layer and
substrate.

Several mechanical models have contributed to understanding the critical conditions of
instabilities and the corresponding wrinkling patterns. While early analytical investigations
were restricted to linear elastic materials and primary wrinkling modes [1,3], more recent
studies consider non-linear elastic material behaviour [13,29] and explain secondary bifur-
cations in weakly non-linear confined systems [5,36]. However, those studies do not consider
growing materials and fail to provide profound insight into the wrinkle-to-fold transition
and multiple bifurcations in highly non-linear confined layers [30]. Growth induces a
non-conventional buckling problem, in which the critical load is not applied directly, but
arises from the interplay between growth and geometric constraints. This mechanism is
conceptually similar to manufacturing processes including cooling or consolidation, in
which the critical load results from secondary effects [15]. Understanding the highly non-
linear post-buckling behaviour and advanced wrinkling modes requires the application of
non-linear elasticity [10,33]. Finite element modelling proves practical to further explore
growth-induced folding instabilities [22]. Motivated by the clinical problem of mucosal
folding during chronic airway wall remodelling [16], researchers have observed secondary
folding phenomena in double-layered hollow cylindrical tubes [25]. Those numerical studies
investigate stiffness ratios of layer to substrate greater than 100. In soft materials such
as living tissue, elastomers and gels, however, the stiffness ratio between the different
layers is typically only moderate. The objective of this manuscript is to analyse the critical
conditions of growth-induced primary and secondary instabilities for small stiffness ratios
between layer and substrate. We illustrate the corresponding failure modes using combined
analytical bifurcation analyses and computational modelling.

In Section 2, we establish an exact finite strain bifurcation analysis to establish the
critical wrinkling condition for a bilayered system with a growing Neo–Hookean layer
bonded to a non-growing infinitely deep Neo–Hookean substrate. In Section 3, we illustrate
the corresponding continuum model based on the theory of finite growth. In Section 4, we
perform computational simulations to study the critical conditions for primary and secondary
instabilities. We explore advanced post-bifurcation modes including period-doubling and
period-tripling. We illustrate how appropriate boundary conditions can drive the solution
into different bifurcation modes and demonstrate that period-doubling is energetically
favourable over period-tripling. Although our study focuses exclusively on growth-induced
instabilities, we expect our results to be generally applicable to any compressed bilayered
system with moderate stiffness ratios between layer and substrate.
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2. Analytical model

In this section, we discuss the general condition for the onset of wrinkling in a constrained
bilayered system in which uniform growth occurs in the layer and no growth occurs in
the infinitely deep substrate. We will later see that our results easily generalize to growing
substrates. Both layer and substrate are Neo–Hookean elastic with ground-state shear moduli
μl and μs. We assume a Cartesian coordinate system {x1, x2, x3}, where x1 is the direction
parallel to the layer–substrate interface, x2 is the thickness direction perpendicular to the
interface and x3 is the out-of-plane direction in which no variation occurs under plane strain
conditions.

Initially, the layer grows under homogeneous conditions and introduces stretches λI in
all I = 1, 2, 3 directions. We assume a multiplicative decomposition of these total stretches
λI into elastic contributions λe

I and grown contributions λg
I ,

λ1 = λe
1λ

g
1
.= 1 λ2 = λe

2λ
g
2 λ3 = λe

3λ
g
3
.= 1 with J = λ1λ2λ3

.= λ2, (1)

where the Jacobian J denotes the total volume change. Here, we have used the lateral
boundary condition λ1

.= 1 and the plain strain condition λ3
.= 1, such that the total volume

change is entirely attributed to changes in layer thickness J
.= λ2. Figure 1 suggests that we

can picture the growth stretches λg
I as the stretches, which would occur if the growing layer

was not attached to the elastic substrate. For example, we could consider two-dimensional
in-plane growth in line with the plane strain condition,

λ
g
1 = ϑ λ

g
2 = ϑ λ

g
3 = 1 with J g = λ

g
1 λ

g
2 λ

g
3 = ϑ2, (2)

or three-dimensional isotropic growth,

λ
g
1 = ϑ λ

g
2 = ϑ λ

g
3 = ϑ with J g = λ

g
1 λ

g
2 λ

g
3 = ϑ3. (3)

For now, we will consider general, arbitrary growth with the only constraint that λg
1 ≥ λ

g
3 to

ensure that the onset of wrinkling does not occur in the out-of-plane direction. We assume
that the elastic deformation is incompressible, J e .= 1, and derive the elastic stretches λe

I ,
which give rise to the stresses in the growing layer,

λe
1 = 1/λg

1 λe
2 = λ

g
1λ

g
3 λe

3 = 1/λg
3 with J e = λe

1 λ
e
2 λ

e
3
.= 1. (4)

This implies that the total volume change is entirely caused by growth, J
.= J g = λ2.

We denote the thickness of the layer prior to growth by T . If the layer was detached from
substrate, its thickness would be t g = λ

g
2 T . According to Figure 1, in the attached state, the

grown layer thickness is

t = λ2 T = λe
2 λ

g
2 T = λe

2 tg with t g = λ
g
2 T . (5)

The analysis in the Appendix 1 reveals that, for any combination of growth stretches, the
critical growth condition for the onset wrinkling depends on only two characteristics: the
elastic stretch ratio between thickness and wrinkle direction, r = λe

2/λ
e
1 = (

λ
g
1

)2
λ

g
3, and

the stiffness ratio between layer and substrate, μl/μs.
Figure 2 illustrates the critical elastic stretch ratios rw at the onset of wrinkling for varying

stiffness ratios μl/μs. Associated with this critical growth condition is the wavelength of
the critical sinusoidal mode. Figure 3 illustrates the critical condition (nt g)w, which defines
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4 S. Budday et al.

Figure 1. (colour online) Analytical model for growing layer on elastic substrate. In the initial,
ungrown configuration, the layer has a width W and a thickness T . If the layer was unattached, it
would undergo unconstrained growth towards a new width wg = λ

g
1W and thickness tg = λ

g
2T .

Reattaching the layer to the ungrown elastic substrate requires elastic stretches to bring the layer to
its final width w = λe

1w
g = λ1W and thickness t = λe

2tg = λ2T . Here, w
.= W , such that λ1

.= 1.
Positive growth λg

1 > 1 thus induces compression λe
1 = 1/λg

1 < 1. Beyond a critical amount of
growth, the compressive energy in the layer exceeds a critical value and the layer buckles.

Figure 2. (colour online) Condition for the onset of wrinkling of a growing layer on an elastic
substrate with varying stiffness ratio μl/μs. Uniform growth in the layer drives periodic wrinkling,
where rw is the critical value of the single growth parameter, r = λe

2/λ
e
1 = (λ

g
1)

2 λ
g
3. The solid curve

is based on the exact analysis and the dashed curve is the asymptotic result from Equation (6.1) for
large values of μl/μs .

the wavelength, λ/t = 2π/[rw (nt g)w], scaled by the current layer thickness t at the onset
of wrinkling.

Included in Figures 2 and 3, as dashed curves, are the asymptotic results for layers
satisfying μl/μs � 1. The critical conditions for wrinkling of a growing, relatively stiff
layer are

rw = 1 + 1
2 [ 3μs/μl ]2/3 and (nt g)w = [ 3μs/μl ]2/3 . (6)
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Figure 3. (colour online) Dimensionless critical wave number of the sinusoidal mode associated
with the condition for the onset of period wrinkling in Figure 2. The solid curve is based on the exact
analysis outlined in the Appendix 1 and the dashed curve is the asymptotic result from Equation (6.2)
for large values of μl/μs .

The comparison between solid curves of the exact solution and the dashed curves of the
asymptotic solution suggests that the asymptotic solution generates significant errors in the
low stiffness ratio regime for μl/μs < 10.

In Figures 2 and 3, we have not analysed stiffness ratios belowμl/μs = 2 since wrinkling
of the type analysed here may not be the dominant mode in that regime. The wrinkles
analysed here have long wavelengths, which are significantly larger than the layer thickness.
Included in Figure 2, markers are showing the condition for the onset of arbitrarily short-
wavelength Biot surface wrinkles and arbitrarily small surface creases. The conditions for
the onset of these modes can also be expressed as a critical conditions in terms of the elastic
stretch ratio r . The Biot surface wrinkling condition is rbiot = (

λ
g
1

)2
λ

g
3 = 3.383 [4], and

the surface creasing condition is rcrease = (
λ

g
1

)2
λ

g
3 = 2.37 [18,19,23].

Figure 2 confirms that the Biot condition is not met within the range of stiffness ratios
considered here. However, the surface creasing condition is met prior to the condition for
long-wavelength wrinkling for stiffness ratiosμl/μs < 2.7. This implies that in this regime,
small, finite strain creases are likely to form prior to wrinkling.Another possibility, however,
is that long-wavelength folds may be unstable and imperfection sensitive in this regime, and
thereby likely to appear at lower growth strains than predicted by the bifurcation analysis.

For growing layers, the stability and imperfection sensitivity of the long-wavelength
mode have not been analysed, but such an analysis has been carried out for the closely related
Neo–Hookean bilayer problem where wrinkling is driven by the simultaneous compression
of layer and substrate [21]. In that case, the long-wavelength mode becomes unstable and
imperfection sensitive in the range of μl/μs < 2.7. The above discussion suggests that
modest stiffness contrasts in the range of μl/μs < 3, which are relevant for surface pattern
formation due to differential growth in living systems [31], are likely to be complex and
rich in phenomena.

Figure 4 illustrates two special cases of growth: two-dimensional in-plane growth with
r = ϑ2 according to Equations (2) and three-dimensional isotropic growth with r = ϑ3
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6 S. Budday et al.

Figure 4. Critical conditions for onset of wrinkling for two-dimensional in-plane growth and three-
dimensional isotropic growth for varying stiffness ratio μl/μs. The critical growth to induce periodic
surface wrinkling decreases with increasing stiffness ratio.

according to Equations (3). We can infer the corresponding wavelengths from Figure 3
using λ/t = 2π/[rw(nt g)w]. Cases with λg

1 = λ
g
3 > 1 generate equibiaxial compression

in the layer. Sinusoidal modes with the same critical wavelength exist at rw with wrinkle
variations in any direction parallel to the interface. Any superposition of these modes is also
a bifurcation mode.

The results in Figures 2 and 3 for a uniformly growing layer on a Neo–Hookean elastic
substrate also apply for growing substrates as long as growth in the layer is greater.
Specifically, with λ

g
1l, λ

g
2l, λ

g
3l now denoting uniform growth stretches in the layer and

λ
g
1s, λ

g
2s, λ

g
3s denoting growth stretches in the substrate, let λe

1 = λ
g
1s/λ

g
1l, and λe

3 = λ
g
3s/λ

g
3l,

such that r =
[(
λ

g
1l

)2
λ

g
3l

]
/
[(
λ

g
1s

)2
λ

g
3s

]
. Figure 2 provides the critical value of r assuming

λ
g
1l/λ

g
1s > λ

g
3l/λ

g
3s. The critical wavelength is λ/t = 2π/ [rw(nt g)w] where now t =[

λ
g
1lλ

g
2lλ

g
3l

]
/
[
λ

g
1sλ

g
2sλ

g
3s

]
T and (nt g)w follows from Figure 3. This study is limited to wrinkling

phenomena on flat substrates; on curved substrates, the analysis is conceptually similar but
includes higher order correction terms. We have recently shown that curvature delays the
onset of wrinkling and that flat regions tend to fold earlier than curved regions [16].

3. Continuum model

To explore pattern evolution beyond the onset of folding, we model growth using the non-
linear field theories of mechanics supplemented by the theory of finite growth. This results in
a set of five equations, which are the three-dimensional, finite deformation generalizations
of the kinematic equation, the constitutive equation, the mechanical equilibrium equation,
the growth kinematics and the growth kinetics, which define the evolution of growth. To
characterize the kinematics of finite deformation, we introduce the deformation map ϕ,
which maps points X from the ungrown configuration to their new positions x = ϕ (X, t)
in the grown configuration. As the three-dimensional generalization of Equations (1), we
introduce the deformation gradient F = ∇Xϕ, which we multiplicatively decompose into
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Philosophical Magazine 7

an elastic part Fe and a growth part Fg,

F = ∇Xϕ = Fe · Fg with J = det (F) = J e J g. (7)

A similar multiplicative decomposition holds for the Jacobian J = det (F), which we
decompose into an elastic part J e and a growth part J g. In analogy to Equation (3), to define
the growth kinematics, we assume that growth is purely isotropic, parameterized in terms
of a single scalar-valued growth multiplier ϑ ,

Fg = ϑ I with J g = det (Fg) = (ϑ)ndim . (8)

This implies that the grown volume J g is identical to the growth multiplier to the power of
the number of spatial dimensions ndim with ndim= 2 in the case of two-dimensional in-plane
growth according to Equations (2) and ndim= 3 in the case of three-dimensional isotropic
growth according to Equations (3). In analogy to Equations (4), the elastic tensor Fe and
its Jacobian J e simply follow by scaling the total deformation gradient F and its Jacobian
J by the amount of growth ϑ ,

Fe = F / ϑ with J e = det (Fe) = J / (ϑ)ndim . (9)

We introduce a Neo–Hookean free-energy function parameterized exclusively in terms of
the elastic tensor Fe and its Jacobian J e,

ψ = 1

2
λ ln2(J e)+ 1

2
μ [ Fe : Fe − ndim− 2 ln (J e)], (10)

where λ and μ are the Lamé constants. This implies that only the elastic part of the
deformation generates stress. Following standard arguments of thermodynamics, the Piola
stress P follows as energetically conjugate to the deformation gradient F,

P = ∂ψ

∂F
= ∂ψ

∂Fe
: ∂F
∂F

e

= μ

[
1

ϑ2
F − F−t

]
+ λ ln(J e) F−t. (11)

The Piola stress enters the standard balance of linear momentum, the equation of mechanical
equilibrium. In the absence of inertia terms and volume forces, the balance of linear
momentum reduces to the vanishing divergence of the Piola stress,

Div ( P )
.= 0. (12)

In contrast to the analytical model, now we are not only interested in the critical condition at
which growth occurs. Rather, we want to explore the evolution of surface patterns beyond
the onset of folding for ϑ > ϑ crit . It thus remains to define the kinetics of growth, the
equation that characterizes the evolution of growth in time. For simplicity, we assume that
growth is purely morphogenetic, independent of mechanical stress or strain, characterized
exclusively by the linear growth rate g,

ϑ̇ = g. (13)

In the following examples, we consider a growing layer, gl > 0, on a Neo–Hookean elastic
substrate, gs = 0. We solve the non-linear set of equations within a finite element framework
implemented in Matlab [29], and represent growth as a scalar-valued internal variable ϑ at
the integration point level [7].
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8 S. Budday et al.

4. Computational Model

For the following examples, we consider a periodic, two-dimensional plane strain domain,
which consists of a growing layer on a Neo–Hookean elastic substrate. The domain width
W is constant; the domain height H and layer thickness T evolve as growth progresses.
For the growing layer, we assume Lamé constants of λl = 34.2 kPa and μl = 3.3 kPa [8]
and allow it to grow linearly in time. For the elastic substrate, we assume Lamé constants
of λs = μs/μl λl and μs where μl/μs denotes the stiffness contrast between layer and
substrate. Here, we focus on the range of stiffness contrasts between 2 ≤ μl/μs ≤ 12 to
mimic instability phenomena in living matter.

We adopt plain strain conditions and apply periodic boundary conditions on the left
and right boundaries. We constrain the bottom nodes orthogonal to the boundary, but allow
them to slide freely along the edge. To mimic an infinitely thick substrate, we select a
specimen height that is significantly larger than the expected wavelength, H � λ. We
estimate the wavelength λ numerically in a preliminary simulation with a large domain
width, W � λ. For all following simulations, we explore two different domain widths,
W = 2 λ and W = 3 λ. We discretize the growing layer with four and the Neo–Hookean
elastic substrate with 48 bilinear quadrilateral elements along the height H and with 64
to 128 elements along the width W depending on the estimated wavelength λ. To trigger
instabilities in this homogeneous set-up, we apply a small kinematic imperfection inside a
vertical band in the centre of the substrate and confirm numerically that both the wavelength
λ and the amplitude A are insensitive to this imperfection. To accurately capture the onset
of the bifurcation, we adopt an adaptive time-stepping scheme, in which we adjust the time
step size based on convergence of the global Newton Raphson iteration [24].

4.1. Emerging instability patterns of primary and secondary bifurcations

To explore the morphogenesis of primary and secondary bifurcations, we analyse the
instability pattern of a progressively growing layer on a Neo–Hookean elastic substrate. We
compare two different widths, W = 2 λ and W = 3 λ, of the periodic simulation domain to
drive the solution into two distinct instability patterns: period-doubling and period-tripling.

Figure 5 illustrates the instability patterns of primary and secondary bifurcations, which
emerge for domain widths of W = 2 λ and W = 3 λ at a stiffness contrast of μl/μs = 3.
The colour code reflects the normal compressive stress in the growing layer, with blue
indicating low and red indicating high levels of compression. Once the compressive stress
reaches a critical primary bifurcation point, the layer wrinkles into a periodic sinusoidal
pattern to release the growth-induced residual stress, first row. Further growth triggers
symmetry breaking into a non-symmetric wrinkling mode with sharper valleys and smoother
ridges, second row. With continuing growth, the stresses in the growing layer reach a
critical secondary bifurcation point and advanced wrinkling modes emerge, third row. These
secondary instability patterns are sensitive to the domain width:Awidth of W = 2 λ favours
period-doubling, left column; a width of W = 3 λ favours period-tripling, occurring slightly
later, right column. Secondary instability patterns alternate between growing and decaying
valleys with progressively increasing and decreasing amplitudes. As growth continues,
contact zones emerge along the neighbouring edges of a growing valley, while decaying
valleys have almost entirely flattened out, fourth row. As the left and right close-ups
of growing and decaying valleys indicate, amplitude growth increases the stress in the
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Philosophical Magazine 9

Figure 5. (colour online) Emerging instability patterns of primary and secondary bifurcations:
Moderate growth beyond the first instability point creates symmetric, sinusoidal wrinkling patterns,
which are similar for period-doubling and -tripling (first row). Further growth triggers symmetry
breaking into non-symmetric wrinkling patterns with sharper valleys and smoother ridges (second
row). Continuing growth beyond a second instability point initiates period-doubling and period-
tripling with alternating increasing and decreasing amplitudes (third row). As growth continues,
contact zones emerge along two neighbouring edges of a growing valley, while decaying valleys have
almost entirely flattened out (fourth row). The close-ups of each snapshot highlight increasing (left)
and decreasing (right) amplitudes.

layer, while amplitude decay decreases the stress. In summary, this example suggests that
instabilities emerge according to a distinct time line with a primary bifurcation point of
periodic wrinkling followed by a secondary bifurcation point of period-doubling. With the
choice of appropriate boundary conditions, we can suppress the mode of period-doubling
and drive the solution into a later secondary bifurcation of period-tripling [34].

Figure 6 summarizes the final configurations at the formation of contact between two
neighboring edges of a growing valley for period-doubling, period-tripling, period-
quadrupling, period-quintupling. Increasing the width of the simulation domain by mul-
tiples of the wavelength, W = 2λ, 3λ, 4λ, 5λ drives the numerical solution into different
secondary bifurcation modes, from row 3 to row 6. While the modes of period-doubling
in row 3 and period-tripling in row 4 display two distinct amplitudes, one increasing and
one decreasing, the modes of period-quadrupling in row 5 and period-quintupling in row 6
display three distinct amplitudes, one increasing, one decreasing and one in between.

4.2. Pitchfork bifurcations of period-doubling and period-tripling

The previous analysis suggests a characteristic time line for emerging instabilities of primary
and secondary bifurcations. To investigate this time line more closely, we monitor the
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10 S. Budday et al.

Figure 6. (colour online) Emerging instability patterns of primary and secondary bifurcations:
symmetric sinusoidal wrinkling, non-symmetric periodic wrinkling, period-doubling, period-tripling,
period-quadrupling, period-quintrupling (from top to bottom).

temporal evolution of the folding amplitude for two different stiffness contrasts, μl/μs = 5
and μl/μs = 8.

Figure 7 illustrates the emerging folding amplitudes for progressive growth. At the first
instability point ϑw, the initially flat growing layer wrinkles into a sinusoidal pattern to
partially release residual stresses and the amplitudes begin to grow uniformly. Once growth
reaches the second instability pointϑpd, a second instability mode of period-doubling occurs.
Every second amplitude accelerates to grow, while those in between decay. Choosing the
domain width to W = 3 λ instead of W = 2 λ suppresses the period-doubling mode and
triggers a different secondary instability pattern, period-tripling. The solution passes the
point of period-doubling ϑpd without undergoing a bifurcation. Further growth triggers the
advanced mode of period-tripling at a later secondary bifurcation point ϑpt. This indicates
that period-doubling is energetically favourable over period-tripling. Yet, we can suppress
the period-doubling mode numerically by choosing the domain size such that periodicity
favours the mode of period-tripling. The direct comparison of the pitchfork bifurcations
for two different stiffness contrasts, μl/μs = 5 and μl/μs = 8, suggests that the distance
between primary and secondary bifurcations increases with increasing stiffness contrast.

4.3. Stiffness sensitivity of primary and secondary bifurcations

The previous example suggests that the evolution of primary and secondary bifurcations
is highly sensitive to the stiffness contrast between layer and substrate. To explore this
sensitivity further, we systematically vary the stiffness contrast between 3 ≤ μl/μs ≤ 12.
For each stiffness contrast, we numerically identify the critical growth multiplier at the
onset of periodic wrinkling ϑw, at the onset of period-doubling ϑpd, and the onset of period-
tripling ϑpt using an accompanying eigenvalue analysis: The smallest eigenvalue of the
system decreases progressively until it reaches a first minimum close to zero, which we
define as the primary instability point; then, the smallest eigenvalue increases, but soon
decreases again towards a second minimum, which we define as second instability point.

Figure 8 illustrates the critical growth of periodic wrinkling ϑw, period-doubling ϑpd

and period-tripling ϑpt for varying stiffness contrasts μl/μs. In analogy to the analytical
estimates in Figure 4, the primary critical condition for periodic wrinkling ϑw decreases
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Figure 7. (colour online) Pitchfork bifurcations of period-doubling and period-tripling for stiffness
contrasts of μl/μs = 5 and μl/μs = 8. Initially, the growing layer is flat and the amplitudes are
zero. At first instability point ϑw, all amplitudes begin to grow simultaneously. For the case of period-
doubling (red curves), at the second instability point ϑpd, a pitchfork bifurcation occurs: every second
amplitude grows and those in between decay. For the case of period-tripling (blue curves), ϑpd is
passed without bifurcation. Further growth initiates period-tripling at the secondary bifurcation point
ϑpt: every third amplitude grows and those in between decay. The time between primary and secondary
bifurcation increases with increasing stiffness contrast μl/μs.

asymptotically as the stiffness contrast μl/μs increases. The secondary critical condition
for both period-doubling ϑpd and period-tripling ϑpt seems only marginally sensitive to
the stiffness contrast. This implies that for increasing stiffness contrasts, the secondary
bifurcation points ϑpd and ϑpt move further away from the primary bifurcation point ϑw.
Critical growth for period-doubling ϑpd, with a mean of 1.56 ± 0.03, is consistently lower
than critical growth for period-tripling ϑpt, with a mean of 1.64 ± 0.03. This supports the
findings from our previous example that period-doubling occurs earlier than period-tripling
and seems to be the energetically favourable mode.

4.4. Stiffness sensitivity of folding amplitude during period-doubling

Our previous examples suggest that the growing and decaying amplitudes during secondary
bifurcation are highly sensitive to the stiffness contrast between layer and substrate. To
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12 S. Budday et al.

Figure 8. (colour online) Stiffness sensitivity of primary and secondary bifurcations. The primary
critical condition for periodic wrinklingϑw (orange) decreases asymptotically with increasing stiffness
contrast μl/μs. The secondary critical condition for period-doubling ϑpd (red) and period-tripling ϑpt

(blue) is only marginally sensitive to the stiffness contrast. The critical growth for period-doubling
ϑpd is lower than the critical growth for period-tripling ϑpt, which suggests that period-doubling
is energetically favourable over period-tripling. For increasing stiffness contrasts, the primary and
secondary bifurcation points move further apart.

Figure 9. (colour online) Stiffness sensitivity of folding amplitude for period-doubling. With
increasing stiffness contrast of μl/μs = 4, 6, 8, 10, 12 (from top to bottom), the amplitude ratio of
growing and decaying amplitudes decreases. For μl/μs = 4 (top), the decaying amplitude has almost
entirely flattened out while for μl/μs = 12 (bottom), it is still markedly present. With increasing
stiffness contrast, both the maximum amplitude and the wavelength increase (from top to bottom).

explore this sensitivity further, we systematically vary the stiffness contrast between 4 ≤
μl/μs ≤ 12 in increments of �μl/μs = 2. For each stiffness contrast, we illustrate the
emerging secondary instability mode and analyse the evolution of the amplitude ratio,
the relation between growing and decaying amplitudes A1/A2, beyond the secondary
bifurcation point �ϑ = ϑ − ϑpd.

Figure 9 illustrates the stiffness sensitivity of the folding amplitude for period-doubling.
With increasing stiffness contrast ofμl/μs = 4, 6, 8, 10, 12, the amplitude ratio of growing
and decaying amplitudes decreases, from top to bottom. For μl/μs = 4, the decaying
amplitude has almost entirely flattened out while for μl/μs = 12, it is still markedly
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Figure 10. (colour online) Stiffness sensitivity of folding amplitude for period-doubling. At the onset
of period-doubling ϑpd, every second amplitude A1 grows while every other amplitude A2 decays.
This implies that the amplitude ratio A1/A2 increases progressively with �ϑ beyond the secondary
bifurcation point. For increasing stiffness contrasts μl/μs, the amplitude ratio A1/A2 decreases (see
Figure 9).

present. With increasing stiffness contrast, both the maximum amplitude and the wavelength
increase.

Figure 10 shows the evolution of the amplitude ratio A1/A2 for progressive growth
after the onset of period-doubling for the range of stiffness contrasts 4 ≤ μl/μs ≤ 12.
With increasing stiffness contrast, the slope of the curves decreases. This implies that the
amplitudes grow and decay slower and the pitchfork narrows.

5. Concluding remarks

Growing layers on elastic substrates can create a rich set of surface morphologies beyond
the commonly studied primary instability: moderate growth creates symmetric, sinusoidal
wrinkling patterns, further growth triggers symmetry breaking into non-symmetric patterns
with sharp valleys and smooth ridges and continuing growth initiates secondary bifurcations
with alternating increasing and decreasing amplitudes. Here, we have studied the emergence
of surface morphologies upon progressive growth for low stiffness ratios between layer and
substrate. Our simulations reveal that the critical amount of growth required for primary
surface wrinkling increases exponentially as the stiffness ratio decreases, while the critical
growth for secondary instabilities remains almost constant. This suggests that in the low
stiffness ratio regime, the conditions for primary and secondary bifurcations move closer
together and secondary folding becomes progressively more common. Most existing studies
focus on large stiffness ratios and naturally overlook these secondary phenomena because
they occur significantly later than classical periodic wrinkling. Yet, in living systems, in
particular during organogenesis when new systems form, stiffness contrasts are low and
these phenomena are critical. Our results suggest that for low stiffness ratios, emergent
morphologies are highly sensitive to small imperfections: surface morphologies emerge
rapidly, change spontaneously and quickly become immensely complex. This is a common
paradigm in developmental biology. Understanding emerging higher order bifurcations in
layered structures could have significant applications in the morphogenesis of living systems
where growth is progressive and stiffness ratios are low.
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Appendix 1. Analytical model
In what follows, we summarize the bifurcation analysis of a Neo–Hookean bilayer with uniform
growth in the layer and no growth in the infinitely deep substrate. We construct the governing equations
of the bifurcation problem from exact solutions for increments of displacements and stresses in a
uniformly stretched layer [11]. Imagine the two layers are detached from one another. The Cartesian
coordinates {x1, x2, x3} label material points in the unstressed layer at the current state of growth with
x1 parallel to the interface in the direction of the wrinkle variation, x2 perpendicular to the interface,
and x3 in the out-of-plane direction, for which we assume a plane strain state. The displacement
increments associated with the bifurcation mode are u1 and u2, while u3

.= 0. The layer grows
uniformly denoted by the growth stretches λg

1, λg
2, and λg

3. There is no growth in the infinitely deep
substrate.

In the unattached state, the layer is grown but stress free. Reattaching the grown layer to the
ungrown substrate requires stress-generating elastic stretches in the layer,

λe
1 = 1/λg

1 λe
2 = λ

g
1λ

g
3 λe

3 = 1/λg
3, (A1)

where λe
2 = 1/(λe

1λ
e
3) = λ

g
1λ

g
3 follows from the elastic incompressibility condition, J e = λe

1λ
e
2λ

e
3
.=

1. The thickness of the growing layer in the fictitious, unattached state is tg = λ
g
2 T and the current

thickness in the grown, attached state is tg = λ2 T , where T is the initial thickness prior to growth. In
the Neo–Hookean layer with ground-state shear modulusμl, separated solutions to the field equations
for the incremental problem exist with displacement increments,[

u1
u2

]
=

[
U1 sin(nx1)
U2 cos(nx1)

]
, (A2)

with coefficients[
U1
U2

]
=

[ − c1 ernx2 − c2 r−1enx2 + c3 e−rnx2 + c4 r−1e−nx2

c1 ernx2 + c2 enx2 + c3 e−rnx2 + c4 e−nx2

]
. (A3)

Here, r = λe
2/λ

e
1 = (λ

g
1)

2λ
g
3, denotes the ratio between the elastic stretches in thickness and wrinkle

direction under the assumption that r �= 1. The current stretch state enters (A3) only through this
ratio r . The solution holds for any wave number n. We can express the associated nominal stress
increments, [

n21
n22

]
=

[
N21 sin(nx1)
N22 cos(nx1)

]
, (A4)

with the following coefficients, defined as force per undeformed area,

N21 = −μln [ c12rernx2 + c2r−1(r2+1)enx2 + c32re−rnx2 + c4r−1(r2+1)e−nx2 ]
N22 = −μln [ −c1r−1(r2+1)ernx2 − c22enx2 + c3r−1(r2+1)e−rnx2 + c42e−nx2 ]. (A5)

This Lagrangian formulation, which employs the components of the second Piola-Kirchhoff stress,
is similar to the stability analysis of wrinkling of a homogeneous half-space [4,11,12]. To express the
coefficients [c3, c4] in terms of [c1, c2] we enforce the traction free condition, [N21, N22] = [0, 0]
on x2 = tg, in the layer with 0 ≤ x2 ≤ tg, in the unstressed state at the current state of growth,[

c3
c4

]
= A

[
c1
c2

]
, (A6)

with

A =
[

2re−rntg
r−1(r2 + 1)e−ntg

r−1(r2 + 1)e−rntg
2e−ntg

]−1 [ −2rerntg −r−1(r2 + 1)entg

r−1(r2 + 1)erntg
2entg

]
. (A7)

We can then solve for the interface tractions [N21, N22] on x2 = 0+ in terms of the coefficients
[c1, c2], [

N21
N22

]
= μln B

[
c1
c2

]
, (A8)
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with

B =
[ −2r(1 + A11)− r−1(r2 + 1)A21 −r−1(r2 + 1)(1 + A22)− 2r A12

r−1(r2 + 1)(1 − A11)− 2A21 2(1 − A22)− r−1(r2 + 1)A12

]
. (A9)

Next, solve for the interface displacements [U1,U2] on x2 = 0+ in terms of the coefficients [c1, c2]
using Equations (A3) and (A6) with (A7),[

U1
U2

]
= C

[
c1
c2

]
, (A10)

with

C =
[ −1 + A11 + r−1 A21 −r−1 + A12 + r−1 A22

1 + A11 + A21 1 + A12 + A22

]
. (A11)

By Equations (A8)–(A11), the increments of nominal tractions and displacements on the bottom of
the layer, x2 = 0+, which has a traction-free top surface, are related by[

N21
N22

]
= μln B C−1

[
U1
U2

]
. (A12)

Now we consider the semi-infinite substrate which is unstressed in the reference state with no growth.
We denote all substrate quantities by an overbar and introduce its Cartesian coordinates as {x̄1, x̄2, x̄3}.
In analogy to Equations (A2) and (A4), substrate displacements and nominal tractions associated with
the bifurcation solution have the form,[

ū1
ū2

]
=

[
Ū1 sin(n̄ x̄1)

Ū2 cos(n̄ x̄1)

]
(A13)

and [
n̄21
n̄22

]
=

[
N̄21 sin(n̄ x̄1)

N̄22 cos(n̄ x̄1)

]
. (A14)

The solution for the unstressed infinitely deep substrate provides the following connection between
its variables on its top surface, [

N̄21
N̄22

]
= μsn̄

[
Ū1
Ū2

]
, (A15)

where μs denotes the ground-state shear modulus of the substrate. Continuity of displacement incre-
ments and nominal tractions across the layer–substrate interface requires that[

Ū1 sin(n̄ x̄1)

Ū2 cos(n̄ x̄1)

]
=

[
U1 sin(nx1)
U2 cos(nx1)

]
(A16)

and [
N̄21 sin(n̄ x̄1)

N̄22 cos(n̄ x̄1)

]
= 1

λ
g
1λ

g
3

[
N21 sin(nx1)
N22 cos(nx1)

]
. (A17)

The factor 1/λg
1λ

g
3 in Equation (A17) accounts for the fact that the nominal stress increments in the

two layers are defined relative to different interface areas. Displacement continuity (A16) across the
interface requires that [

Ū1
Ū2

]
=

[
U1
U2

]
with n̄ x̄1 = nx1, (A18)

such that x1 = λ
g
1 x̄1 and n = n̄/λg

1. Traction continuity (A17) across the interface together with
Equations (A12) and (A15) requires that

M
[

U1
U2

]
= 0 with M = BC−1 − 2r

μs

μl
I, (A19)

where I is the identity matrix. The eigenvalue problem, which governs the bifurcation is | M | .= 0.
Significantly, M depends only on the stretch ratio r = (λ

g
1)

2λ
g
3, the stiffness ratio μl/μs, and the

thickness-scaled wave number ntg.
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We interpret r as the eigenvalue associated with growth, and denote the critical eigenvalue, i.e.
the smallest value associated with the onset of wrinkling, by rw. This critical value follows from
minimizing r over all values of ntg. Consequently, rw, and with it the associated minimizing value of
(ntg)w, depends only on the stiffness ratio between layer and substrate μl/μs. This implies that the
curves in Figures 2 and 3 apply to all uniform growth conditions in the layer governed by λg

1, λg
2, and

λ
g
3, as long as λg

1 ≥ λ
g
3. To generate the solid curves in Figures 2 and 3, we solved the eigenvalue

problem (A19) numerically. The critical wavelength with respect to the current state is

λ = 2π

n̄w

λ

tg
= 2π

λ
g
1(ntg)w

λ

t
= 2π

rw(ntg)w
, (A20)

where λ/tg denotes the dimensionless wavelength normalized by the thickness of the fictitious
unattached grown layer, tg = λ

g
2 T , and λ/t denotes the dimensionless wavelength normalized by

the current thickness of the grown layer at the onset of the bifurcation, t = λ2 T = λ
g
1λ

g
2λ

g
3 T .
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