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Numerical Simulation
of Cropping
Cropping is a cutting process whereby opposing aligned blades create a shearing failure
by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on
recent efforts to quantify cropping, this paper formulates a plane strain elastic–plastic
model of a plate subject to shearing action by opposing rigid platens. Shear failure at the
local level is modeled by a cohesive zone characterized by the peak shear traction and
the energy dissipated by shear failure process at the microscopic level. The model reveals
the interplay between shear cracking and the extensive plastic shearing accompanying
the cutting process. Specifically, it provides insight into the influence of the material’s mi-
croscopic shear strength and toughness on the total work of cropping. The computational
model does not account for deformation of the cropping tool, friction between sliding
surfaces, and material temperature and rate dependence. [DOI: 10.1115/1.4026891]
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1 Background to the Present Study

Cutting by forced shear-off, often called blanking or cropping,
is widely employed to cut flat sheets and plates of structural met-
als having thickness ranging from submillimeter to 10 mm or
more. Forced shear-off can also occur in the plugging process in
ballistic penetration when a high velocity projectile impacts a
plate. The simplest notions of cropping imagine that the process is
essentially a shear failure within a localized shear band that is pri-
marily controlled by the shear strength of the material. The pres-
ent paper continues the line of investigation initiated in a series of
papers by Atkins [1–4] who takes the view that shear cracking and
material shear toughness play an essential role in the cropping
process and in determining the energy required for cropping. The
series of Atkins’ papers presents models of cropping with an
increasing level of sophistication without recourse to finite ele-
ment models of finite plastic straining. An early paper by Zhou
and Wierzbicki [5] also employs analytical modeling and accounts
for tensile fracture as well as shearing in the cropping process,
which in their paper and in some of the earlier literature is referred
to as blanking.

Following Atkins, the view adopted in this paper is that crop-
ping is a large scale yielding fracture problem dominated by shear.
As in the case of the present authors’ earlier work on elastic–
plastic crack growth in mode I [6] and mixed mode [7], the pres-
ent paper exploits the finite element analysis to deal with large
plastic strains. The present paper also makes use of recent devel-
opments in modeling fracture under shear dominated conditions.
The cropping model developed here imbeds a cohesive shearing
zone, which, in a phenomenological manner, represents the micro-
scopic shear localization and fracture processes, within a finite
element model that accounts for the geometric distribution of the
large plastic shear strains that occur in the cropping process. The
model quantifies the interplay between the microscopic shearing
failure process and the extensive macroscopic plastic shearing. A
systematic study is made of the effects of the microscopic fracture
energy and the material stress–strain properties on the cropping
force– displacement behavior and the macroscopic cropping
energy.

Alternative approaches to studying cropping could be based on
analyses that adopt either a critical effective plastic strain as a

failure criterion or a constitutive law that incorporates damage
and a failure criterion. When carefully calibrated, the critical plas-
tic strain criterion has proved effective in the studies of ballistic
plugging of plates by projectiles, e.g., Borvik et al. [8,9] and Nah-
shon et al. [10]. Xue et al. [11] demonstrated the applicability to
ballistic shear-off of the Gurson model [12,13] of void-based dam-
age and failure, extended to account for damage in shear. A dis-
tinct advantage of the cohesive zone model adopted in the present
paper is that the microscopic strength and fracture energy are well
defined parameters and their role in establishing macroscopic
behavior clearly emerges.

1.1 An Illustrative Cropping Experiment. Xue et al. [11]
carried out carefully designed cropping tests on plates of the steel
DH 36 of thickness h ¼ 3 mm. As illustrated in Fig. 1, the tests
provided the response of a hard tool steel cylindrical plunger
pushing against a plate clamped tightly outside the plunger radius
by a stiff fixture. The nominal shear stress supported by the plate
at radius R, P=ð2pRhÞ, is plotted as a function of the plunger dis-
placement divided by the plate thickness D=h for one test in
Fig. 1(b). The peak nominal shear stress is about 420 MPa at
D=h ffi 0:25. The largest plunger displacement shown is
D=h ffi 0:55. The load drops precipitously at larger displacements
such that the macroscopic work of cropping is directly related to the
area under the curve in Fig. 1(b). Tests were interrupted at various
stages and cross sections of the sheared-off region were opened to
viewing by electrodischarge machining (EDM). In addition to intense
plastic shearing throughout the region of shear-off, shear cracks are
observed. Examples of shear cracks near the corner of the plunger at
D=h ¼ 0:5 are seen in Fig. 1(d), where it is noted that some cracks
form slightly offset from the line extending the corner of the plunger.

The radius of the plunger in the Xue et al. [11] test is suffi-
ciently large compared to the plate thickness, i.e., R=h ¼ 6:3, such
that it is reasonable to assume that the specific cropping work
CCROP, with units work/area cut, would be nearly the same as that
measured for a long straight cut. The total work done by the
plunger in Fig. 1(b) is W ¼ a2pRh2ð�sYÞMAX, where ð�sYÞMAX is the
maximum nominal shear stress and a is a dimensionless numerical
factor that depends on the parameters of the system. The specific
cropping work (per area cut) is

CCROP ¼
W

2pRh
¼ að�sYÞMAXh (1)
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For the 3 mm thick plate of DH 36 in Fig. 1(b),
ð�sYÞMAX ¼ 420 MPa and the area under the load–displacement
curve implies a ffi 1=2, such that CCROP ffi 6� 105 Jm�2. This
value is consistent with the specific work of cropping reported for
other metals in the early work of Johnson and Slater [14] dis-
cussed in [4,5].

One of the aims of this paper is to relate the specific macro-
scopic work of cropping CCROP to the specific microscopic work
of shear fracture of the material C0, both of which are measured in
units of energy/area, Jm�2. Figure 2 presents simulations based
on the extended Gurson model [13] for the shear stress–strain
behavior accounting for damage in the form of voids with an ini-
tial effective volume fraction f0. A pure power-law material is
used to describe the undamaged material in the Gurson model
with a tensile relation between the true stress and logarithmic
strain given by r ¼ rReN . The extended model accounts for pro-
gressive shear damage, due to shear distortion of the voids, in a
phenomenological manner such that in shear (with zero stress tri-
axiality) damage grows according to _f ¼ kxf _c, with c as the loga-
rithmic shear strain and kx as the shear damage coefficient
[13,15,16]. The trends in Figs. 2(a) and 2(b) should only be
regarded as qualitative since no effort has been made to include
the final coalescence stage of the shear failure process. Moreover,
microscopic mechanisms other than the void mechanism may be
responsible for softening and shear localization. Nevertheless, the
results illustrate the roles of damage f0 and damage growth sus-
ceptibility as measured by kx in determining the peak shear stress
at which point shear localization would begin. This stress–strain

behavior has been used to compute the work dissipated in shearing
subsequent to attainment of the peak shear stress in a shear band
of thickness D. Figure 2(c) presents the specific work dissipated in
the shear band per area C0, normalized by rRD, as a function of
the shear damage coefficient for several values of the initial dam-
age. We emphasize that the purpose of Fig. 2 is not to present
quantitatively reliable predictions for the shear response or the
work dissipated in a shear band but, rather, to suggest trends and
to provide rough estimates.

Figure 2(c) indicates that the specific work of shear fracture
scales as

C0 ¼ brRD (2)

where b is a factor of order unity depending on the initial damage
level and the susceptibility of the damage to shearing as modeled
here by the coefficient kx. For materials failing by the mechanism
of void nucleation, shear distortion, and coalescence, the thickness
D of the shear localization zone before the final coalescence stage
is usually on the order of the spacing between the dominant voids.
Thus, for many ductile alloys, D is typically measured in tens of
microns. Assume this is so for DH 36, and note also that for this
material the tensile stress at a log strain extrapolated to unity is
rR � 1000 MPa. With b ¼ 2 in (2), this implies for DH 36 that C0

is estimated to lie within the range 2� 104 Jm�2 (for D ¼ 10 lm)
to 1� 105 Jm�2 (for D ¼ 50 lm). The specific macroscopic work
of cropping (1) for the 3 mm plate of DH 36 was estimated to be
CCROP ffi 6� 105 Jm�2. This comparison suggests that the work
of cropping is at least 6 times, and possibly as much at 30 times,

Fig. 1 A cropping shear-off test of Xue et al. [11]. (a) Schematic of the axisymmetric test config-
uration. The two sections of central plunger are bolted together through the center of the plate
whose thickness is h. (b) An experimentally measured nominal shear stress P=ð2pRhÞ versus
normalized displacement of the plunger D=h for the steel DH 36. For this test: h ¼ 3 mm,
R519:05 mm, and the gap width is d ffi 0:075 mm. Beyond D=h 5 0:55, the curve drops precipi-
tously. (c) A test interrupted at D=h 5 0:5 with a section removed from the plate to reveal the
details of the shear-off process. (d) A blow up of the region at the corner of the plunger showing
that shear cracks have formed, some of which are offset from the corner.
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the specific microscopic work of shear fracture for DH 36. If this
comparison is correct, it suggests that the major part of the work
of cropping is due to plastic deformation occurring outside the
shear fracture zone. This relation between the microscopic and
macroscopic fracture work is similar to that in mode I crack
advance in tough ductile alloys where the macroscopic work of
fracture far exceeds the microscopic work of fracture due to plas-
tic dissipation occurring outside the fracture process zone [6].
Nevertheless, in mode I cracking the microscopic work of fracture
remains essential in determining the macroscopic toughness, and
it will be seen that a similar dependency holds for cropping.

2 Definition of the Model and Dimensionless

Parameters

To set the stage for the computational results presented in sub-
sequent sections, the material and geometric parameters govern-
ing the cropping model used in this paper will now be listed and
the important dimensionless collections of these parameters will
be identified. The plate being cut is taken to be isotropic with
Young’s modulus E, Poisson’s ratio �, initial tensile yield stress
rY , initial shear yield stress sY ¼ rY=

ffiffiffi
3
p

, and strain hardening
exponent N. In this paper no attempt will be made to account for
temperature or rate effects in cropping. The process is modeled as
quasi-static and the plate material is taken to be rate independent,
excluding any direct relevance to cropping at high temperatures.
Elasticity of the cropping tool is also neglected in this study—the
surfaces of the cutting tool are taken to be nondeforming. As
depicted in Figs. 1(a) and 3(b), the thickness of the plate is h and
the gap between the surfaces of the cropping tool is d. The band
of localized shear and shear fracture will be modeled by a cohe-
sive zone whose primary parameters are the peak shear stress ŝ,
and the specific work of fracture in shear C0. Full details of the co-
hesive zone will be given in the next section, including the maxi-
mum shearing displacement across the zone prior to loss of shear
strength. The maximum shearing displacement can be expressed

in terms of ŝ and C0, which are preferred for specifying the cohe-
sive law in the present study.

It is useful to define the following material reference length:

RS ¼
1

pð1� �2Þ
EC0

s2
Y

(3)

which is can be interpreted as the extent of the plastic zone ahead
of a mode II (shear) crack in plane strain small scale yielding
when subject to the mode II stress intensity factor
KII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC0=ð1� �2Þ

p
. The only independent material-based

length parameter in the present study is RS. It is important to
appreciate that RS is not the plastic zone size of a mode II crack
with specific microscopic work of fracture C0— that plastic zone
size would generally be much larger, i.e., given by (3) with the
specific macroscopic work of mode II fracture CII replacing C0. In

Fig. 2 (a) and (b) True shear stress versus log shear strain predicted by the extended Gurson
model as dependent on the initial effective void volume fraction f0 and shear damage coefficient
kx. The reference stress rR is defined in the text. (c) The normalized specific work of shear sepa-
ration C0=rRD, which is computed for shearing beyond the peak shear stress assuming shear-
ing takes place in a layer of thickness D. For this model, the normalized work is only weakly
dependent on the strain hardening exponent N .

Fig. 3 (a) The cohesive traction–displacement relation in
shear. (b) The undeformed geometry of the numerical model
showing the reference coordinates. The cohesive plane in the
undeformed state lies along the x1 axis. The bottom surface
along x2 5 2a is constrained to undergo frictionless sliding
with zero vertical displacement. The upper surface along x2 5 a
is traction-free. Sliding is suppressed at the contact surfaces
between the rigid tools and the metal block.
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earlier work on mode I cracking, Tvergaard and Hutchinson [6]
introduced the corresponding length for a tensile crack
R0 ¼ 1=ð3pð1� �2Þ½ �EC0=r2

Y , which is RS=9. With CCROP as the
specific work expended by the cropping plunger (per area of plate
cut) for long straight cuts, two dimensionless forms for the spe-
cific cropping work in terms of the parameters identified above
will be considered

CCROP

sYh
¼ g1

h

RS
;

ŝ
sY
;N;

d

h
;
sY

E

� �
(4)

CCROP

C0

¼ g2

h

RS
;

ŝ
sY
;N;

d

h
;
sY

E

� �
(5)

where the dependence on � has not been noted explicitly, and

g1 ¼
C0

sYh
g2 ¼ pð1� �2Þ sY

E

RS

h
g2 (6)

Both normalizations will be used to reveal important aspects of
the parametric dependencies. For example, it will be seen that the
dependence on sY appears mainly through the first two dimension-
less parameters in g2 in (5) and not through the fifth parameter
sY=E, while g1 in (4) has a strong dependence on sY=E in its list
of parameters.

The preferred dimensionless relation relating the cropping force
per length F with units Nm�1 ¼ Jm�2, and the displacement of
the cropping tool through which it works D is

F

sYh
¼ g3

D
h
;

h

RS
;

ŝ
sY
;N;

d

h
;
sY

E

� �
(7)

By (4), one notes that g1 ¼
Ð 1

0
g3dðD=hÞ.

3 Prescription of the Computational Model

3.1 The Cohesive Zone. As noted above, a cohesive zone
model is used to characterize the strength and fracture interface of
the plane along which cutting occurs. Because the cutting process
is not strictly shearing, a mixed mode traction-separation law is
employed in the form introduced in [7] for studying mixed mode
interface crack growth. While the tangential displacement dt

across the failure plane is expected to dominate the cutting behav-
ior, the model also accounts for a normal separation dn. Denote
the critical value of dt at which the traction vanishes under strictly
shearing as dc

t and similarly denote the critical strictly normal sep-
aration by dc

n. Under mixed mode conditions, the displacement

measure k ¼ dn=d
c
n

� �2þ dt=d
c
t

� �2
h i1=2

is employed such that the

tractions drop to zero at k ¼ 1. The tractions are derived from a
potential function given by

U dn; dtð Þ ¼ dc
t

ðk

0

s k0ð Þdk0 (8)

where sðkÞ characterizes the traction–separation relation in shear.
Use of the potential results in a work of cohesive failure that is the
same for all mixed mode separations, which is given by (8) with
k ¼ 1, i.e., C0 ¼ dc

t

Ð 1

0
s k0ð Þdk0. The normal and tangential compo-

nents of the traction acting on the cohesive failure plane are given
by

Tn ¼
@U
@dn
¼ sðkÞ

k
dn

dc
n

dc
t

dc
n

; Tt ¼
@U
@dt
¼ sðkÞ

k
dt

dc
t

(9)

In this paper the following piecewise linear traction–separation
law is used (see Fig. 3(a)):

sðkÞ ¼ k
k1

ŝ for 0 � k < k1 (10)

sðkÞ ¼ ŝ for k1 � k < k2 (11)

sðkÞ ¼ 1� k
1� k2

ŝ for k2 � k < 1 (12)

Here ŝ denotes the maximum shear traction sustained by the fail-
ure plane under a mode II shear, i.e., dn ¼ 0. The peak normal
traction under mode I separation is r̂ ¼ dc

t =d
c
n

� �
ŝ. The specific

work of separation per unit area of interface is

C0 ¼
1

2
ŝdc

t 1� k1 þ k2ð Þ (13)

In all the simulations carried out in this paper, the values
k1 ¼ 0:15 and k2 ¼ 0:5 have been used such that C0 ¼ 0:675ŝdc

t .
Studies of mode I and mixed mode crack growth in elastic–plastic
solids indicated that the detailed shape of the traction–separation
law as determined by k1 and k2 are less important than C0 and ŝ
[6,7], and this is expected to be true for cropping as well.

3.2 The Elastic–Plastic Constitutive Behavior and the
Finite Element Model. The cropped material is elastic–plastic,
with the elastic modulus and Poisson’s ratio E and �, uniaxial
yield stress rY , and strain hardening exponent N. This material is
described by a finite strain generalization of J2-flow theory [17],
with the uniaxial true stress–natural strain curve represented by a
piecewise power law

e ¼

r
E

r � rY

rY

E

r
rY

� �1=N

r > rY

8>><
>>:

(14)

A Lagrangian convected coordinate formulation of the field
equations is used for the analyses, with a material point identified
by the coordinates xi in the reference configuration, accounting
for finite strains. The contravariant components of the Cauchy
stress tensor rij and the Kirchhoff stress tensor sij are related by
sij ¼

ffiffiffiffiffiffiffiffiffi
G=g

p
rij. The metric tensors in the current and reference

configurations are denoted by Gij and gij, with determinants G and
g; and the incremental stress–strain relationship is of the form
_sij ¼ Lijkl _gkl, where Lijkl are the instantaneous moduli.

The Lagrangian strain tensor is given by

gij ¼
1

2
ui;j þ uj;i þ uk

;iuk;j

� �
(15)

where ui are the displacement components on the reference base
vectors and ðÞ;j denotes covariant differentiation in the reference
frame. Numerical solutions are obtained by a linear incremental
solution procedure, based on the principle of virtual work

ð
V

sijdgijdV þ
ð

SI

Tnd dnð Þ þ Ttd dtð Þf gdS ¼
ð

S

TiduidA (16)

Here Vand S are the volume and surface of the body in the refer-
ence configuration, respectively, SI is the bonded surface cohesive
region, and Ti are contravariant components of the nominal sur-
face tractions. An incremental version of the PVW (16) is used for
the numerical solution. The displacement fields are approximated
in terms of planar eight-noded isoparametric elements. The vol-
ume integral in Eq. (16) is carried out by using 2� 2 integration
points within each element.

The region analyzed numerically is specified by �a � x2 � a
and 0 � x1 � h in terms of the reference coordinates xi (see
Fig. 3(b)). The plunger is pressed against the surface
�a � x2 � �d at x1 ¼ 0, with the plunger displacement D in the
x1 direction. The plate is supported on the back surface
d � x2 � a at x1 ¼ h with zero displacement in the x1 direction.
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The cohesive plane, on which shear localization and failure is
modeled, coincides with the x1 axis. In all but two of the simula-
tions, the gap d between the plunger and the cohesive plane is
taken to be zero. Full sticking is assumed at both the plunger and
the support so that zero displacement in the x2 direction is pre-
scribed at these surfaces. Even though this is a plane strain analysis,
the displacements in the x2 direction are prescribed to be zero at the
lower edge x2 ¼ �a, for 0 � x1 � h, thus modeling an effect simi-
lar to that at the centerline for circular geometries such as that in
Fig. 1. The surface at x2 ¼ a is traction-free. The initial geometry is
here taken to be specified by h=a ¼ 0:8. Figure 4(a) shows the ini-
tial mesh in the vicinity of the cohesive interface, with 64� 4 uni-
form quadrilaterals on each side of the interface. The length of one
square element inside this uniformly meshed region is denoted D0.
To adequately resolve the fracture process, the length of the active
process region (i.e., the region where k1 < k < 1) should not be
smaller than three or four times this element length D0.

Figure 4(b) shows the deformed mesh at D=h ¼ 0:136 for the
reference case (case 1). This is just before the point where the full
cross section at the interface has attained k � k1, i.e., the equiva-
lent of localization in the cohesive plane. A numerical difficulty
encountered in this case with d ¼ 0 is that nodal points on the co-
hesive interface very near the corner of the plunger approach final
separation k � 1ð Þ slowly. A few interface nodal points on the
plunger side moved past the plunger corner resulting in significant
mesh distortion. This difficulty was resolved by prescribing that
no nodal points on the plunger side of the interface can move past
the current location of the corner of the plunger. The problem
does not arise in analyses where the value of the normalized peak
stress ŝ=sY is sufficiently small, but becomes pronounced when
the value of the normalized peak stress is in the upper range con-
sidered in this paper.

4 Trends in Cropping Force and Work

In this section the results from a selection of simulations will be
presented to expose the roles of the parameters identified in Sec. 2 on
the cropping force–displacement behavior and the macroscopic work
of cropping. A total of 21 simulations have been carried out. The
dimensionless parameters for each simulation are listed in Table 1
and identified by a case number. The four primary parameters are
h=RS, ŝ=E, N, and sY=E. The thickness of the plate enters only
through h=RS. An alternative dimensionless parameter to h=RS is

hsY

C0

¼ E

pð1� �2ÞsY

h

RS
(17)

which is also listed in Table 1.

Case 1 in Table 1 will be used at the reference case throughout
this paper. The dimensionless parameters for case 1 are believed
to be representative of a plate of a tough, intermediate strength
steel of several millimeters thickness, such as the DH 36 plate dis-
cussed in the Introduction. Neither ŝ=sY nor h=RS are known for
this material, or any other comparable material, and thus the
choices for these parameters must be regarded as educated
guesses. In addition to the parameters listed in Table 1, the other
parameters which must be specified in the simulation code are
taken as

� ¼ 0:3; k1 ¼ 0:15; k2 ¼ 0:5; dc
n=d

c
t ¼ 1

The first three are used in all the simulations. Simulations with
values of dc

n=d
c
t other than 1 have been carried out and will be

reported later, but dc
n (and r̂ ¼ ðdc

t =d
c
nÞŝ) have very little effect on

Fig. 4 (a) The mesh in the undeformed state. The cohesive plane lies along the x1 axis. (b) The
deformed mesh for the reference case (case 1) at D=h 5 0:136.

Table 1 Simulation casesa

Case

h

Rs

ŝ
sY N

sY

E
d

h

rPS

rY

hsY

C0

*
CCROP

C0

CCROP

sYh

1 (R) 0.0427 3.12 0.185 0.000785 0 1 19.0 6.11 0.321
2 0.0427 3.12 0.185 0.000393 0 1 38.0 6.59 0.173
3 0.0427 3.12 0.185 0.001570 0 1 9.51 5.07 0.533
4 0.0427 3.12 0.125 0.000785 0 1 19.0 11.90 0.626
5 0.0427 3.12 0.156 0.000785 0 1 19.0 9.46 0.498
6 0.0427 3.12 0.227 0.000785 0 1 19.0 3.69 0.194
7 0.0427 3.12 0.33 0.000785 0 1 19.0 1.85 0.0973
8 0.0480 2.77 0.185 0.000785 0 1 21.4 4.53 0.212
9 0.0384 3.46 0.185 0.000785 0 1 17.1 7.99 0.467
10 0.0427 2.77 0.185 0.000785 0 1 19.0 4.27 0.224
11 0.0427 3.46 0.185 0.000785 0 1 19.0 8.55 0.450
12 0.0854 3.12 0.185 0.000785 0 1 38.0 9.02 0.237
13 0.0284 3.12 0.185 0.000785 0 1 12.7 4.91 0.387
14 0.0214 3.12 0.185 0.000785 0 1 9.51 4.08 0.429
15 0.0256 3.46 0.185 0.000785 0 1 11.4 5.99 0.526
16 0.0192 3.46 0.185 0.000785 0 1 8.56 4.94 0.578
17 0.0427 3.12 0.185 0.000785 0 1.2 19.0 6.08 0.320
18 0.0427 3.12 0.185 0.000785 0 2.0 19.0 5.55 0.292
19 0.0427 3.12 0.185 0.000785 0.031 1 19.0 11.96 0.630
20 0.0427 3.12 0.185 0.000785 0.047 1 19.0 14.20 0.747
21 0.0427 3.12 0.185 0.000785 0 1 19.0 6.01 0.316

aIn all calculations: � ¼ 0:3, k1 ¼ 0:15, k2 ¼ 0:50, and dc
n=d

c
t ¼ 1 (except

for 21, dc
n=d

c
t ¼ 1=2). Case 1 is the reference case and denoted by a sub-

script R in the text and figures.
*hsY=C0, given by (17), is not an independent parameter.
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the predictions due to the dominance of shearing in the cropping
process.

4.1 The Role of h=RS—Specifically, the Role of the
Specific Microscopic Work of Fracture C0 and/or the Plate
Thickness h. In this set of simulations, N and sY=E are fixed and
h=RS is varied for two choices of ŝ=sY . By (17), for each choice of
ŝ=sY , varying h=RS is equivalent to varying hsY=C0. In other
words, if one considers all the other dimensional parameters as
being fixed, this set of simulations is equivalent to either varying
only C0 with h fixed or varying h with C0 fixed. For this set of
simulations, varying only C0 is accomplished by varying only dc

t
[cf. (13)]. Figure 5 displays the dimensionless force–displacement
curves. The influence of the parameter h=RS (or, equivalently,
hsY=C0) on the force–displacement behavior is significant, espe-
cially so considering that dimensionless results for any model
based only on plastic shearing alone cannot contain a dependence
on h, at least assuming that there is no gap d ¼ 0. This assertion
follows from the dimensional argument that the only parameter
containing a length dimension available to combine with h to
form a dimensionless parameter is C0, e.g., h=RS or hsY=C0.

Values of the two dimensionless measures of the specific crop-
ping work are given in Table 1. While it is essential to make use
of dimensionless parameter combinations for problems such as
cropping, which have a large number of independent parameters,
relations among dimensionless variables often mask connections
between dimensional quantities. This is particularly true for the
specific work of cropping. Thus, to clearly display the effect of
the specific microscopic work of fracture C0 on the specific work
of cropping CCROP, normalized variables are used in Fig. 6 with
CCROP=ðCCROPÞR plotted as a function of C0=ðC0ÞR for plates with
the same thickness h. Here, and subsequently, the subscript R
denotes a value from Table 1 for the reference case 1. These same
curves provide the relation between CCROP=ðCCROPÞR and ðhÞR=h
for plates having the same C0. Clearly the specific microscopic
work of fracture has significant influence on the specific macro-
scopic cropping work, even though C0 is a small fraction of
CCROP (cf. Table 1). The quantitative predictions in Fig. 6 back up
the earlier modeling of Atkins [1–4], who seems to be the first to
view cropping as a shear fracture problem and not just a plastic
shear-off process.

The curves in Fig. 6 also reveal the effect of plate thickness on
the specific cropping work for the reference material. Doubling

the thickness decreases CCROP by about 30%, and vice versa.
Recall that both CCROP and C0 are defined as energy per separated
area, with units Jm�2. Thus, the simulations predict that the total
work required to crop a plate of the considered material increases
by only a factor of about 1.4 when the thickness of the plate is
doubled—much less than the factor of 2 expected if CCROP were
independent of thickness. Conversely, cropping a plate of this ma-
terial with half the thickness only reduces the total cropping work
by a factor of about 0.7 rather than 0.5. This dependency on plate
thickness is not at all obvious. However, it follows directly from
dimensional arguments that there must be a dependence of CCROP

on h if there is a dependence on C0—as noted above, the only
length parameter in the problem that can be used to form a dimen-
sionless parameter involving C0 is h.

The several stages of the cropping process are indicated in
Fig. 7 for the reference case. The entire cropping region under-
goes extensive plastic yielding through the thickness of the plate
prior to the onset of any crack growth. The fully plastic nature of
the cropping process, emphasized in the Introduction, is evident in
Fig. 7 where large nonlinear displacements due to plasticity occur
prior to any cracking. At the maximum load, the shear cracks
emerging from the corners of the platens have grown to a length
of approximately h=20. With further imposition of the cropping
displacement, each zone of shear decohesion extends towards the
center of the plane until, at D=h ffi 0:14, they merge at the center.
Prior to this point in the process, significant plastic deformation
takes place outside the cohesive zone. However, for D=h > 0:14,
the deformation is mainly confined to the cohesive zone, the
cracks grow toward each other, and the cropping force drops dra-
matically until the cracks connect at the center at D=h ffi 0:16.

There are some differences between the sequence of events
occurring in Fig. 7 and those laid out in the early work of Johnson
and Slater [14]. These authors argued that at the time their paper
was written there was no evidence for shear cracking prior to the
maximum punch force, and they suggest that the maximum is a
result of shear localization. In their view, cracking first occurs af-
ter the maximum load is attained. Specific details such as these
will depend on the tendency for a given material to undergo shear
localization prior to shear damage. To some extent, the sequence
of events can be explored within the context of the present model
by varying the cohesive zone parameters. For example, decreasing
the shear strength ŝ while fixing, or increasing, the specific work

Fig. 5 The role of h=RS 5 pð12m2Þhs2
Y =ðEC0Þ on the normalized

force–displacement relation for cropping for two values of ŝ=sY

and with N 5 0:185 and sY =E 5 0:000785. With all the other
dimensional parameters fixed, each set of curves (for a given
ŝ=sY ) can be interpreted as either the effect of varying C0 (with h
fixed) or varying h (with C0 fixed). Cases 1, 11, 12, 13, 14, 15,
and 16.

Fig. 6 The dependence of the specific cropping work CCROP on
the microscopic specific work of fracture C0 for plates of the
same thickness. Equivalently, the dependence of the specific
cropping work CCROP on inverse thickness 1=h for plates with
fixed material properties. The normalizing quantities denoted
by the subscript R refer to reference case 1. The points plotted
are cases 1, 11, 12, 13, 14, 15, and 16.
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of fracture C0 promotes early localization relative to shear crack-
ing. In addition, Johnson and Slater [4] discuss the role friction is
expected to play once a shear crack has developed. Friction is not
taken into account in the present model and; thus, the cropping
force vanishes when the cracks connect.

4.2 The Role of the Normalized Shear Strength ŝ=sY . In
this set of simulations h=RS, N, and sY=E are fixed at the reference
values and ŝ=sY is varied. To generate the force–displacement
curves presented in Fig. 8 and the associated values of the crop-
ping work in Table 1, both ŝ and dc

t are varied such that
C0 ¼ 0:675ŝdc

t and h are unchanged. The microscopic shear
strength ŝ obviously has significant effect on both the maximum
cropping force and the cropping work. The dimensionless crop-
ping work from Table 1 for these three cases are

CCROP=C0 ¼ 4:27; 6:11; 8:55 for ŝ=sY ¼ 2:77; 3:12; 3:46, respec-
tively. This strong dependency is similar to the role that the cohe-
sive tensile strength plays in mode I crack growth resistance in
small scale yielding [6].

The cropping process is dominated by shear both in the cohe-
sive zone and in the surrounding field of plasticity as the strong
dependence on ŝ reflects. All but one of the simulations listed in
Table 1 take dc

n=d
c
t ¼ 1, which by the cohesive law (9) implies

that under a purely normal separation the peak stress would be
r̂ ¼ dc

t =d
c
n

� �
ŝ ¼ ŝ. For most materials this would be an unusually

low peak for normal separation. To see the effect of the parameter
dc

n=d
c
t on the cropping process, a simulation (case 21) was carried

out with dimensionless parameters identical to those of the refer-
ence case except with dc

n=d
c
t ¼ 1=2 corresponding to r̂ ¼ 2ŝ. Both

the normalized force–displacement curve and the normalized spe-
cific cropping work (see Table 1) were essentially unchanged
from the reference case 1. For the present model, the mixed mode
cohesive characteristics as determined by dc

n=d
c
t have almost no

influence on cropping, at least with no gap d=h ¼ 0ð Þ, consistent
with the notion that cropping is dominated by shearing.

4.3 The Role of Strain Hardening N. The simulated force–
displacement curves in Fig. 9 show the effect of varying N with
the other dimensionless parameters held fixed. Increased strain
hardening elevates the cropping force, but makes it easier to attain
the tractions required to cause cohesive shear. The result is that
higher strain hardening decreases the normalized displacement
D=h at which the cropping force become zero. With fixed sY , the
cropping work is also a strong function of N, varying from
CCROP=sYh ¼ 0:0973 for N ¼ 0:33 to CCROP=sYh ¼ 0:626 for
N ¼ 0:125 (Table 1). Of course, for a family of alloys, processing
treatments that increase N are usually accompanied by a decrease
in sY , and thus, when that is the case, a change in the parameter
sY=E must also be taken into account.

4.4 The Role of sY=E. In this subsection, the effect of
changes in sY=E with h=RS, ŝ=sY , and N held fixed are examined.
To carry out these calculations, E was changed, but to ensure that
h=RS did not change, C0 was also changed such that the product
EC0 was fixed. The normalized force displacement curves are
shown in Fig. 10, where the influence of sY=E is seen to be signifi-
cant. The role of sY (or E) is not easy to decipher because it is
present in three (two) of the dimensionless parameter combina-
tions. While the dimensionless specific work of cropping
CCROP=sYh is strongly affected by variations in sY=E, the second
measure in Table 1 CCROP=C0 is only weakly dependent on sY=E.
A fourfold change in sY=E (with h=RS, ŝ=sY , and N fixed) pro-
duces only about a 25% change in CCROP=C0. The important con-
clusion to be drawn is that the cropping work as measured by
CCROP=C0 depends primarily on h=RS, ŝ=sY , and N.

Fig. 7 Three stages of the cropping process illustrated for the
reference case. (i) Onset of cracking when k first attains 1 in the
cohesive zones at the corners of the cropping tool. (ii) At maxi-
mum force the cracks at each corner of the tool on opposite
surfaces have extended a distance approximately 1/20th the
plate thickness. (iii) The point at which the traction plateau is
attained in the cohesive zone throughout the central cross sec-
tion of the plate, i.e., k � k1. As D increases beyond this point,
localized shear-off is confined to the cohesive zone and the
cracks spread toward the center until they meet at D=h ffi 0:16.
Case 1.

Fig. 8 The role of the normalized shear strength in the cohe-
sive zone ŝ=sY on the normalized force–displacement curve
with the other dimensionless parameters held fixed. Cases 1,
10, and 11.

Fig. 9 The role of the strain hardening exponent on the nor-
malized force–displacement curves with the other dimension-
less parameters held fixed. Cases 1, 4, 5, 6, and 7.
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4.5 The Role of Prestress rPS=rY . To illustrate one possible
application of the model, the effect of uniform prestraining [1] is
considered. Assume the plate is strained in uniaxial tension
beyond yield to a stress rPS then released to the unstressed state
prior to cropping. This prestressing is accounted for in the crop-
ping simulations by simply expanding the starting radius of Mises
yield surface from its initial value associated with rY to the value
associated with rPS. Case 17, with rPS=rY ¼ 1:2, and case 18,
with rPS=rY ¼ 2, given in Table 1, have their other parameters
identical to those of the reference, case 1. (In Table 1, for all the
other cases, rPS=rY ¼ 1 has been used to indicate there has been
no plasticity due to prestress.) The cropping force–displacement
curves in Fig. 11 reveal that a small prestress rPS=rY ¼ 1:2 has
essentially no effect on cropping. However, the larger value
rPS=rY ¼ 2 has a noticeable effect on the cropping curve and
reduces the specific work of cropping by about 10%.

4.6 The Role of the Gap d=h. A few computations have
been carried out to study the effect of a cropping gap. Specifically,
for case 19, the initial gap between the edge of the plunger and
the cohesive plane was taken to be two element sizes, d ¼ 2D0,
and the same gap is assumed at the edge of the supporting tool.
Thus, the cohesive plane coincides with the center of the gap. If
the mesh in Fig. 4(a) is used, strong mesh distortion at the edge of
the plunger leads to early breakdown of the computation. There-
fore, a specially refined mesh is used around the point where
intense straining is induced at the edge of the plunger, as shown in
Fig. 12(a). This enables the computation to proceed, but the mate-
rial in the gap rotates significantly, even to the extent that it over-
laps the material under the plunger. Consequently, an extra
condition is introduced stipulating that the material in the gap can-
not penetrate the plunger, as illustrated by the deformed mesh in
Fig. 12(b). This contact condition is taken to be frictionless
sliding.

The normalized force–displacement curves for two gaps sizes
d=h ¼ 0:031 and 0.047 are presented in Fig. 13 along with that
for the reference case (case 1) which has no gap but otherwise
identical parameters. A gap has a significant influence resulting in
larger plastic deformation accompanying the cropping process.
For the smaller of the two gap sizes, d=h ¼ 0:031, the cropping
work is approximately twice that of the reference case (cf.
Table 1).

As indicated by the above discussion, the large plastic strain
and extensive rotation accompanying the shear decohesion pro-
cess is challenging to simulate, especially when a gap is present.
More extensive studies accounting for the gap are clearly
required. Handbook rules exist recommending maximum gap to
thickness ratios for cropping; modeling these rules is part of the
challenge ahead. It should also be mentioned that the effect of
changing the relative tensile strength in the cohesive zone

Fig. 10 The role of sY =E on the normalized force–displacement
curves with the other dimensionless parameters held fixed. As
discussed in the text, the specific cropping work with the nor-
malization CCROP=C0 is only weakly dependent on sY =E with the
other dimensionless parameters held fixed. Cases: 1, 2, and 3.

Fig. 11 A tensile prestress rPS is applied to the plate to pro-
duce uniform plastic stretch and then released prior to crop-
ping. The other dimensionless parameters for the prestress
cases (cases 17 and 18) are the same as for case 1, the refer-
ence case.

Fig. 12 (a) Undeformed mesh for simulation with a gap d 5 2D0. (b) Deformed mesh with gap in
the vicinity of the plunger corner for case 19 at D=h 5 0:108.
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r̂ ¼ ðdc
t =d

c
nÞŝ has not been studied in the presence of a gap when

it is more likely to be important [5].

5 Concluding Remarks

Cropping falls within the larger field concerned with the
mechanics and physics of cutting [18]. The present paper has
introduced a model which links macroscopic aspects of cropping,
such as the cropping force–displacement behavior and the work of
cropping, to properties at the microscopic scale such as the funda-
mental fracture energy of the material and its shear strength. Pre-
dictions based on the model have been presented to reveal trends
in this relationship. In the examples presented in the body of the
paper, the specific macroscopic work of cropping ranges from 2 to
15 times the specific microscopic work of fracture. Nevertheless,
even when the microscopic work of fracture comprises only a
small fraction of the total work, it has been shown to play a criti-
cal role in establishing the macroscopic behavior. The present
cropping study parallels earlier efforts to predict the macroscopic
mode I fracture toughness of ductile metal alloys in terms of more
fundamental microscopic material properties [6]. In so doing, the
present study advances the case made by Atkins [1–4] that crop-
ping should be viewed as a fracture problem. In the terminology
of nonlinear fracture mechanics, cropping is a large scale yielding
fracture problem. Cropping presents its own special challenges
owing to the large plastic strains that inevitably accompany the
process and the fact that shear localization and shear fracture are
less well understood in terms of fundamental material mecha-
nisms than the tensile fracture of ductile metals under high stress
triaxiality. The challenges are both computational and physical.

As mentioned in connection with the introduction of the refer-
ence case, the choices of the peak shear strength and work of

fracture characterizing the cohesive zone have not been directly
calibrated with experiments. For example, it is possible that the
microscopic parameters of the steel DH36 lie outside the range
covered by the simulations in this paper. The fact that the plunger
displacement at failure D=h ffi 0:5 for the DH36 test in Fig. 1(b)
is larger than any of the values found in the present simulations
suggests this might be the case. The main purpose of the present
paper has been to expose trends in the roles of the parameters
controlling cropping. Future efforts will be undertaken to make
direct comparisons with cropping experiments. Finally, it
must be reemphasized that important factors could be added to the
present model which have not be taken into account, such as tool
deformation, friction, and material temperature and rate
dependence.
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