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Coupled Plastic Wave
Propagation and Column Buckling
The plastic buckling of columns is explored in a regime where plastic wave propagation
and lateral buckling are nonlinearly coupled. Underlying the work is the motivation to
understand and quantify the dynamic crushing resistance of truss cores of all-metal sand-
wich plates where each truss member is a clamped column. Members are typically fairly
stocky such that they buckle plastically and their load carrying capacity decreases gradu-
ally as they buckle, even at slow loading rates. In the range of elevated loading rates of
interest here, the columns are significantly stabilized by lateral inertia, resisting lateral
motion and delaying buckling and loss of load carrying capacity to relatively large over-
all plastic strains. The time scale associated with dynamic axial behavior, wherein defor-
mation spreads along the column as a plastic wave, is comparable to the time scale
associated with lateral buckling such that the two phenomena are coupled. Several rel-
evant problems are analyzed using a combination of analytical and numerical procedures.
Material strain-rate dependence is also taken into account. Detailed finite element analy-
ses are performed for axially loaded columns with initial imperfections, as well as for
inclined columns in a truss core of a sandwich plate, with the aim of determining the
resistance of the column to deformation as dependent on the loading rate and the relevant
material and geometric parameters. In the range of loading rates of interest, dynamic
effects result in substantial increases in the reaction forces exerted by core members on
the faces of the sandwich plate with significant elevation in energy absorption.
�DOI: 10.1115/1.1825437�

1 Introduction
Pursued extensively for over 50 years, the dynamic axial load-

ing of columns is still an important subject because of its rel-
evance to a wide range of engineering applications. Much inter-
esting mechanics underlies qualitative and quantitative
understanding of dynamic column buckling, and the subject has
not been without controversy. Here, columnar truss members of
all metal truss core sandwich plates motivate the study as these
sandwich plates have the potential for replacing solid plate con-
struction for a range of applications including ship hulls, armored
vehicles, and chemical plants �1� where impulsive loads are of
concern. For applications involving high intensity dynamic crush-
ing loads, cores can experience nominal strain rates greater than
103 s�1. Column members in truss cores are usually sufficiently
stocky such that buckling occurs well into the plastic range, espe-
cially when the columns are stabilized by lateral inertia at elevated
loading rates. The basic cellular unit of a tetragonal truss core is
shown in Fig. 1. Although the columns in the core are inclined
with respect to the crushing direction, they nevertheless behave in
a manner similar to an axially compressed column due to the fact
that their end displacements are constrained by the face sheets in
the direction parallel to the sheets. Of primary interest is the re-
sistance of the columns to deformation, the forces they exert on
the face sheets during dynamic crushing, and the energy they ab-
sorb. Most of the emphasis in this paper will be on axially com-
pressed columns, but the direct relevance of results for axially
compressed columns to inclined columns will be demonstrated in
the second half of the paper.

There is a large literature on dynamic plastic buckling of col-
umns �2–5� and perhaps a rationale for further study is warranted.

In the applications motivating this study, a representative column
would be relatively stocky, typically 0.1 m in length, and subject
to a suddenly imposed velocity on the order of 100 ms�1 at one
end corresponding to an overall strain rate of 103 s�1. The load-
ing rates of interest are such that the initial stages of the deforma-
tion are dominated by the propagation of a plastic axial wave
down the column. Buckling is resisted by lateral inertia. Overall
compressive strains of 20% or more can be achieved before ap-
preciable buckling deflections occur. Buckling deflections, which
depend on initial imperfection amplitudes, develop in the later
stages of the crushing. Thus, during the initial stage of deforma-
tion, the forces exerted on the face sheets are similar to those
exerted by a straight rod undergoing dynamic axial deformation.
As buckling deformations develop, the forces depend in a compli-
cated way on coupled plastic wave propagation and lateral buck-
ling.

The early study of Abrahamson and Goodier �3� on column
impact has aspects in common with the problem and loading rates
of interest here. Specifically, their experiments involved impact
velocities in the range of interest here, and overall compressive
strains on the order of 20% due primarily to axial straining were
observed. However, the primary motivation underlying the work
in �3� was buckling and not the forces exerted during the impact.
In addition, the theoretical approach of these authors was to de-
couple the axial deformation from the buckling deformation by
assuming the axial stress state was established prior to the growth
of buckling deformations. Calladine and English �5� also decou-
pled axial deformations from bucking deformations in their study
of the various influences of inertia on dynamic buckling. As will
be seen in the body of the paper, this decoupling is justified since
their work focused on a range of relatively low impact velocities;
the maximum impact velocity in their experiments did not exceed
10 ms�1. These authors make the important observation that in-
ertial stabilization effects scale differently with column size than
material strain-rate effects, a point that will be discussed in the
present paper as well.

The problem that couples plastic wave propagation and lateral
buckling has only recently received attention �6–8�, with analyti-
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cal and numerical approaches with primary emphasis on the
buckle shape. Here, the coupled nonlinear problem is analyzed
using a numerical approach, accounting for both imperfections
and material strain rate dependence, with emphasis on the forces
required to deform the column and the energy dissipated by the
column. However, to shed light on the initial stages of the defor-
mation history, the next section of the paper presents results for
the propagation of plastic axial waves down a rod following the
classic treatments of von Karman and Duwez �9� and Taylor �10�.
An important dimensionless loading rate parameter tied to the
dynamic effects emerges from this analysis. The fully coupled
problem is analyzed for a wide range of loading rates utilizing the
commercially available codes ABAQUS/Standard and ABAQUS/
Explicit. Reaction forces and energy dissipation are determined as
a function of geometric, material and loading parameters. With the
aid of numerical analysis, it is also demonstrated that the forces
exerted on the face sheets by inclined columns in a truss core can
be well approximated using results for the axially compressed
column.

2 Uniaxial Waves in a Rod

2.1 Wave Equation for Rate-Independent Material. Tay-
lor �10� and von Karman and Duwez �9� considered a one-
dimensional plastic wave propagating down a rod. Taylor’s ap-
proach was conducted within a finite strain setting, and a similar
approach will be followed here, but with a different choice of
variables. �Several authors have remarked to the effect that von
Karman and Duwez also use a finite strain approach in their
analysis, but their treatment of finite strain aspects is not nearly as
transparent as that of Taylor.� Consider a semi-infinite bar extend-
ing from x�0 to x�� at t�0, with a material point at x at t
�0 located at X�x�u(x ,t) at t . The logarithmic �true� strain is
related to the displacement gradient by ��ln(1��u/�x). Analyti-
cal solutions are restricted to rods made of rate-independent ma-
terials such that the true stress �force per current area� can be
regarded as a function of true strain, ����. Material rate-
dependence is taken into account in Sec. 2.3. In this subsection
and the next, attention is limited to problems with monotonic
straining such as a compression wave with no elastic unloading.
Following the earlier work of Taylor and von Karman and Duwez,
the rod is assumed to be incompressible and the effect of radial
inertia is neglected. With A as the cross-sectional area of the rod
in the deformed state and F��A as the force carried by the rod,
equilibrium requires �F/�X�	A�2u/�t2, where 	 is the density
of the material. Incompressibility implies dA/d���A . When ex-
pressed in terms of u(x ,t), the equilibrium equation can be writ-
ten as

�2u

�x2 �
1

c���2

�2u

�t2 (1)

where the strain-dependent wave speed is

c�����Et��

	
e�� (2)

and Et�d�/d� is the tangent modulus of the true stress-log strain
curve. The wave speed, Et , �, and � all depend on u through the
expressions listed above.

Three limiting cases of �1� and �2� are worth identifying. When
yielding occurs with small strains and Et����, c��Et /	 , which
is often referred to as the plastic wave speed. The finite strain
formulation gives c���Y /	 for a plastic compression wave
propagating along an elastic-perfectly plastic rod (Et�0) where
�Y is the yield stress. The wave speed of a tensile wave ap-
proaches zero when ��Et , corresponding to the Considere con-
dition for necking localization.

2.2 Compression Wave in an Infinitely Long Bar Subject
to Constant Velocity at Its End. The solution produced inde-
pendently during World War II by von Karman and Duwez �9� and
Taylor �10� for uniaxial impact loading of a long rod provides
insight to the column problems of interest in this paper. Specifi-
cally, at the higher rates of loading of interest, the column remains
nearly straight in the early stage of deformation and behavior is
dominated by an axial plastic compression wave.

For the case of a semi-infinitely long bar (0
x��) at rest at
t�0 and subject to a uniform velocity, u̇(0,t)�V�0, at its left
end, a similarity solution to �2� exists �9,10� with dependence on a
single dimensionless variable ��x/(c0t) where c0�c(0)
��E/	 is the elastic wave speed with E as Young’s modulus. The
solution is simple but highly nonlinear and implicit. Only the
details of interest will be presented here. The solution depends on
the relation between � and � defined by c(�)/c0�� and the in-
verse of this relation denoted by ��g(�). The regime ��1 lies
ahead of the disturbance; the regime �U���1 has the strain de-
pendence ��g(�); and the regime 0����U has uniform strain
with ���U�g(�U) and uniform velocity u̇�V . The front of the
section of the rod having uniform strain �U and velocity V propa-
gates down the rod with speed c(�U). The transition value �U
depends on the imposed velocity V according to the highly im-
plicit equation

�1�eg(�U)��U��
�U

1

�1�eg(�)�d��
V

c0
(3)

The solution is illustrated for a Ramberg–Osgood stress–strain
relation

�

�Y
�

�

�Y
�� �

�Y
� n

(4)

with yield stress �Y , yield strain �Y��Y /E , strain hardening
exponent N�1/n (0�N�1) and tangent modulus

E

Et
�1�n� �

�Y
� n�1

(5)

Details of the solution, which must be obtained numerically using
�3�, are plotted in Fig. 2. Both the strain and the nominal
compressive stress �compressive force per original area,
�N���e��) in the uniformly strained region are displayed.

An analytical approximation is obtained by assuming the strains
are small and neglecting � compared to Et in �2� such that c(�)
��Et /	 . Then, neglecting the linear stress contribution to the
strain in �4�, it is readily shown that g(�)���Y(�/�N)�2/(1�N)

with

�U

�Y
���1�N

2�N
� V

c0�Y
� � 2/(N�1)

(6)

Fig. 1 Tetragonal Truss Core
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�Y
��1�N

2�N
� V

c0�Y
� � 2N/(N�1)

(7)

c��U�

c0
��N�1�N

2�N
� V

c0�Y
� ��(1�N)/(1�N)

(8)

The small strain solution depends on the imposed velocity, V , and
initial yield strain through the single parameter, V/c0�Y , which
will be seen to be the most important dimensionless parameter
governing dynamic effects in the present study. The small strain
approximation is also plotted in Fig. 2, where it is seen that it is
indeed captures the essential trends for V/c0�Y as large as about
20. The front of the uniformly strained section of the rod propa-
gates at a small fraction of the elastic wave speed when V/c0�Y

10, corresponding to imposed velocities V that are typically
several percent of the elastic wave speed. Since an initial yield
strain usually lies within the range from 0.001 to 0.01, it follows

that for structural metals plastic wave propagation effects become
dominantly important for impact velocities V typically in the
range from 10 to 100 ms�1.

2.3 Dynamic Compression of Finite Length Rods. In this
section the study of dynamic compressive behavior of the straight
column, or rod, is continued accounting the effect of finite length.
As in the previous section, the rod is initially at rest. At t�0, a
uniform velocity, V�0, is imposed at its left end while the right
end at x�L is fixed. In the study in this subsection the material is
taken to be the rate-independent limit of a structural stainless
steel, Al6XN, currently being considered as a possible candidate
for truss cores. This material has substantial strain hardening that
is nearly linear and moderate strain-rate sensitivity. The full rate-
dependent specification of the material is given below in anticipa-
tion of its use in subsequent sections. In tension, the relation be-
tween true stress and true strain is taken to be strictly bilinear for
each value of plastic strain-rate:

��� E� , �
�Y�1�� �̇p / �̇0�m�

�Y�1�� �̇p / �̇0�m��Et�p , ���Y�1�� �̇p / �̇0�m�
(9)

with E�190 GPa, �Y�400 MPa, Et�2.4 GPa, �̇0�4920 s�1,
m�0.154, 	�7920 kg m�3, and Poisson’s ratio ��0.3. The
strain-rate dependence results in a 57% elevation of the stress for
�̇�1000 s�1 versus the stress at �̇�0.01 s�1 at the same �p . The
rate-independent limit used in this section is obtained by setting
m�0. Comparisons will be made between predictions with and
without rate-sensitivity in the following sections.

The finite strain version of ABAQUS Explicit �11� has been
used to compute the responses. The right face of the column is
attached to a fixed rigid plate and left face of the column is at-
tached to a rigid plate with prescribed uniform velocity V for t
�0. The column model is comprised of eight-noded linear hexa-
hedral elements. The model accounts for radial inertia. In the
computations, the initial length of the rod is L�0.122 m and its
radius R is taken to be L/13. An undeformed mesh and a repre-
sentative deformed mesh at an overall compressive strain of 20%
are shown in Fig. 3 for two values of V Further mesh refinement
does not appreciably alter the results discussed below. The range
of imposed velocities of relevance to the applications described in
the Introduction is V/(c0�Y)
20.

Fig. 2 Plastic compression wave propagating along a rod for
both the small strain approximation and the finite strain solu-
tion. „a… Strain �U in the region of uniform deformation behind
the propagating front. „b… Nominal compressive stress at the
left end of the rod and in the adjacent region of uniform strain.
The normalizations for the small strain approximation are valid
for all yield strains; the results for the finite strain solution are
computed with �YÄ0.003.

Fig. 3 Undeformed and deformed meshes for a rod subject to
velocities VÄ140 msÀ1 and VÄ200 msÀ1 †VÕ„c0�Y…Ä13.3 and
19‡ at its left end and fixed at its right end. The deformed rods
have been deformed to an overall strain of 20%. No material
rate dependence.
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The response of the column to a constant velocity V
�140 m/s �V/(c0�Y)�13.3� is shown in Fig. 4. The forces on the
left and right plates are shown. Oscillations in the force on the left
plate at early times in the history are due to numerical effects
associated with the abrupt increase of the applied velocity. To
reduce these oscillations, the applied velocity on the left plate is
increased from zero to V in a more gradual manner according to
V(1�e�t/t0). The oscillations are largely smoothed out and be-
havior for Vt/L�0.05 is virtually unaffected by the choice of t0
as long as V0t0 /L�0.02. Oscillatory effects are much smaller on
the right face since there is no response until the arrival of the
compression wave.

Aside from oscillations at early times, the force on the left plate
is fairly constant throughout the deformation and well above with
the yield stress, consistent with the results for the infinitely long
rod discussed in the previous section. The force on the left face
remains level to a nominal overall strain of 20% (Vt/L�0.2), at
which point the computation was terminated. Thus, due to inertial
effects there is a significant difference between the force a core
element will exert on the face sheet towards a blast loading and on
the face sheet away from the blast. The deformed mesh in Fig. 3
shows the rod at 20% strain (Vt/L�0.2) where the thicker, uni-
formly compressed region has just reached the far end in the case
V�140 m/s, while for the rod subject to the higher end velocity
V�200 m/s the compressed region has only spread over two-
thirds the length of the rod at the same overall strain.

Results such as those shown in Fig. 4 have been computed for
20 m/s
V
200 m/s. For V�20 m/s �V/(c0�Y)�1.9� , dynamic
effects are not nearly so pronounced with plastic deformation oc-
curring more uniformly along the rod and end forces that are
nearly equal.

3 Coupled Plastic Wave Propagation and Lateral
Buckling for Axially Compressed Columns

In this section, results for the straight, finite length column ana-
lyzed in the previous section are determined under circumstances
where the column is permitted to buckle. The material comprising
the column is described by �9� which includes rate-dependence,
however, results will be presented to highlight the roles of both
strain hardening and strain-rate dependence. As in the study of the

previous section, the ends of the column are ‘‘welded’’ to rigid
plates and thus effectively clamped against rotation at each end.
The left plate experiences an imposed uniform velocity V starting
at t�0, while the right end is fixed. The dynamic calculations are
carried out using a three-dimensional meshing using hexahedral
elements with ABAQUS Explicit; quasi-static calculations use the
Standard version. A geometric imperfection is introduced to pro-
mote lateral buckling motion in the form of an initial transverse
deflection

w�x ��
�R

2 �1�cos� 2�x

L � � (10)

where � is the normalized imperfection amplitude. As will be
shown later, an axially compressed column with imperfection am-
plitude ��1/4 provides a reasonable approximation to the re-
sponse of the tetragonal truss core construction where the mem-
bers are inclined but have no initial imperfection. Under dynamic
conditions, a perfectly straight column that is not inclined does
not buckle, assuming no other imperfections due either to loading
or material asymmetry. The nature of the governing equations is
such that solution bifurcations do not occur. Dynamic buckling
requires an initial asymmetric imperfection of some type, and,
moreover, the development of the lateral buckling motion depends
on the imperfection amplitude. For relatively stocky columns of
interest here, an imperfection with ��1/4 can be regarded as re-
alistic, and later it will be shown that the buckling response is not
a strong function of � in this range.

The role of inertia in altering the column response is illustrated
in Fig. 5 where deformed columns at a nominal strain of 20% are

Fig. 4 Nominal stress exerted by a rod on the plates at its two
ends, where the left plate impacts the rod at VÄ140 msÀ1

†VÕ„c0�Y…Ä13.3‡ and the right plate is fixed.

Fig. 5 Undeformed and deformed meshes of column with ini-
tial imperfection for quasistatic, VÄ20 mÕs, and VÄ200 mÕs
†VÕ„c0�Y…Ä1.9‡ and high †VÕ„c0�Y…Ä19‡. No material rate de-
pendence.
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shown for very slow �quasistatic loading� and two other imposed
velocities, V�20 m/s and 200 m/s. The buckled shapes of the
quasistatically loaded column and that with V�20 m/s are similar
and representative of the classical mode of a clamped beam. By
contrast, the column loaded with V�200 m/s (V/�Yc0�19.4) has
undergone relatively little lateral displacement even at an overall
strain of 20% and it is evident from the deformed shape that the
majority of compression has occurred within the left half of the
column. The plastic wave traveling from the left end has not yet
spread over the entire column at the instant of the deformation in
Fig. 5, and lateral buckling is just beginning to develop.

There are important consequences of the dynamic stabilization
of the columns against lateral buckling seen in Fig. 5. In applica-
tions of all-metal sandwich construction for blast resistant plate
structures, energy absorption in the core is an important compo-
nent of superior performance. Any delay of buckling of a truss
core member due to inertial stabilization translates into greater
plastic energy dissipation. The column in Fig. 5 loaded at V
�200 m/s has absorbed the energy equivalent of the material
strained to 20% under uniaxial compression, albeit nonuniformly
along its length. The energy absorbed by the column loaded qua-
sistatically to 20% overall strain is considerably less since it un-
dergoes significant lateral buckling and loss of load carrying ca-
pacity. Under uniaxial compression, energy absorption scales with
�Y �̄�R2L , where �̄�Vt/L is the overall strain, and Fig. 6 dis-
plays the plastic energy dissipation in the column at �̄�0.1 nor-
malized by this factor as a function of V/(�Yc0), with and without
material strain-rate dependence. This plot brings out the excep-
tionally strong influence of dynamic loading on plastic dissipation
as measured by the parameter V/(�Yc0); energy absorption can be
enhanced by a factor of 2 or more in the range V/(�Yc0)�10.

AL6XN has moderately high strain hardening. To separate out
the influence of strain hardening on inertial stabilization and its
related effects, columns of elastic-perfectly plastic material are
investigated with the same initial yield stress as AL6XN in �9�.
The overall load-end shortening responses under quasistatic load-
ing with and without strain hardening �both materials have m

�0) are plotted in Fig. 7, where each of the two columns have an
initial imperfection with ��1/4. High strain hardening leads to
significantly more postbuckling load carrying capacity. The sub-
stantial quasistatic postbuckling capacity for both columns is a
consequence of their relative stockiness (L/R�13) and the fact
that they are clamped on both ends.

Fig. 8 Nominal stress acting by the column on the left plate as
a function of the normalized imposed velocity V at three levels
of overall strain for both an elastic-perfectly plastic material
†„9… with EtÄ0 and mÄ0‡ and a material with high strain hard-
ening †„9… with EtÄ2.4 GPa, mÄ0‡. The imperfection amplitude
is �Ä1Õ4.

Fig. 6 Plastic energy dissipation as a function of VÕ„c0�Y…
†and VÕ„L�̇0…‡, with and without strain-rate dependence at an
overall strain �̄Ä0.1 for the material specified by „9… and
c0�Y Õ„L�̇0…Ä0.0175.

Fig. 7 Quasistatic nominal stress-end shortening behavior
with and without strain hardening. The material is specified by
„9… with EtÄ0 and mÄ0 for the elastic-perfectly plastic case
and EtÄ2.4 GPa and mÄ0 for the hardening material. The
stockiness ratio is RÕLÄ0.077 and the imperfection amplitude
is �Ä1Õ4.
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Computed values of the normalized force exerted by the col-
umn on the plate on the left end as a function of imposed velocity
are given in Fig. 8 for a column of elastic-perfectly plastic mate-
rial and of strain hardening typical of AL6XN in �9�, both with no
rate-dependence (m�0). With F as the force, the normalization
is �̄/�Y , where �̄�F/A0 is the nominal stress and A0 is the
initial cross-sectional area of the column. It can be seen that the
force is nearly independent of strain, consistent with the responses
discussed earlier in Fig. 4, except for the elastic-perfectly plastic
column at low levels of imposed velocity. The most striking fea-
ture of the results in Fig. 8 is the large amplification of the force
exerted by the column on the left plate as V is increased. Force
amplification arises from two sources: �1� inertial stabilization of
the column against buckling and �2� the momentum imparted to
the column by the left plate. The component associated with iner-
tial stabilization gives rise to the increased plastic dissipation of
Fig. 6.

The effect of material strain-rate dependence on the reaction
force on the left plate is shown in Fig. 9. The lower curve is that
discussed for AL6XN with strain-rate dependence suppressed
�m�0 in �9�� while the upper curve incorporates the strain-rate
dependence of this material. When material rate-dependence is
taken into account, additional dimensionless parameters arise: m
and V/(L �̇0). The results in Fig. 9 include the values of V/(L �̇0)
on the abscissa. The elevation of the reaction force due to material
strain-rate dependence over the corresponding force for the rate-
dependent material is what would be expected for the overall
strain rate of 103 s�1 �corresponding to the impact velocity with
V/(�Yc0)�11.6 in Fig. 9�; the influence is similar to that seen in
Fig. 6 on the energy dissipation.

Based on dimensional considerations, the normalized reaction
force depends on a relatively large dimensionless parameter set
according to

�̄

�Y
� f � V

�Yc0
,N ,

�Y

E
,
R

L
,
Vt

L
,

V

L �̇0
,m � (11)

with c0��E/	 . Equation �11� brings out the point emphasized by
Calladine and English �5� that inertial effects and material rate-
dependence effects scale differently with respect to column
length. In the range of behavior in which inertial effects are domi-
nated by axial deformation, the controlling parameter is
V/(�Yc0). The dimensionless parameter controlling the influence
of material rate-dependence is V/L �̇0 . The results presented
above suggest that the dependence of end forces and energy dis-
sipation on material strain-rate dependence through m and V/L �̇0
is more-or-less what would be expected at the overall strain-rate,

Fig. 9 Nominal stress acting by the column on the left plate as
a function of the normalized imposed velocity V for a strain
hardening material „9… with „mÄ0.154… and without „mÄ0…
strain-rate dependence at an overall strain of 10%. The imper-
fection amplitude is �Ä1Õ4 and c0�Y Õ„L�̇0…Ä0.0175.

Fig. 10 „a… Effect of the stockiness, RÕL, on the nominal
stress acting by the column on the left plate as a function of the
normalized imposed velocity V for a strain hardening material
with no strain-rate dependence †„9… with EtÄ2.4 GPa, mÄ0‡.
The imperfection amplitude is �Ä1Õ4. „b… Effect of the yield
strain, �YÄ�Y ÕE, on the nominal stress acting by the column
on the left plate as a function of the normalized imposed veloc-
ity V for a strain hardening material with no strain-rate depen-
dence †„9… with EtÄ2.4 GPa, mÄ0‡. The imperfection ampli-
tude is �Ä1Õ4.
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given its effect in elevating the flow stress in �9�. In the range of
overall strain Vt/L from 0.05 to more than 0.2, the normalized
reaction force is essentially independent of strain for relatively
stocky columns, except for small strain hardening at low imposed
velocities.

The effect of the slenderness ratio, R/L , and the initial yield
strain, �Y��Y /E , on the normalized reaction force at an overall
strain of 10% are shown in Figs. 10�a�, 10�b�. The slenderness
ratio has a significant effect at small V/(�Yc0) but almost no
effect at higher values of this parameter, consistent with the fact
that the buckling deflections remain small until overall strains in
excess of 20%. Similarly, for the normalizations used in Fig.
10�b�, there is little dependence on the initial yield strain.

In summary, for a specific material in the range of imposed
velocities satisfying V/(�Yc0)�5 and for overall strains from
roughly 5% to 20%, the single most important dimensionless pa-
rameter in �11� is V/(�Yc0), with V/L �̇0 playing a secondary role,
such that the nominal reaction stress resisting the motion of the
plate imposing its velocity on the column has the form

�̄

�y
� f � V

�Yc0
,

V

L �̇0
� . (12)

4 The Dynamic Response of Tetragonal Truss Core
Finite element calculations have been performed on the tetrag-

onal truss core unit of Fig. 1 under conditions where the rigid
bottom plate is held fixed and the rigid top plate to which the core
faces are welded is suddenly accelerated towards the bottom plate
with velocity V . The emphasis here is on the reaction force ex-
erted by the core element on the top plate, and it will be shown
that this resistance can be successfully modeled using the results
for the axially loaded columns of the previous section. Each mem-
ber of the unit of the regular tetrahedron in Fig. 1 is a column of
length L and solid circular cross-section of radius R with R/L
�0.077. The precise geometry is shown in Fig. 1. The height, H
of the core is specified by H/L��2/3. The material is that speci-
fied in �9� with no strain rate dependence (m�0). Results are
computed for various imposed velocities for overall strains up to
20% ( �̄�Vt/H�0.2). The average reaction stress, �̄ , acting on
the top plate and plotted in Fig. 11 is the net vertical force divided
by the area of the tetragonal unit. The results of the simulations
for the tetragonal core are plotted as solid points. As in the case of
the axially loaded columns, there is relatively weak dependence
on overall strain for strains in the range from 5% to 20%.

The insert in Fig. 11 compares the deformed shape of a member
of the tetragonal unit for a case with quasistatic loading with one
subject to high velocity loading, both at an overall strain of about
20%. The deformation of the dynamically loaded member is pri-
marily confined to its upper third while the lower portion of the
member remains almost straight. By contrast, the member de-
formed quasistatically undergoes bending deformations due to
buckling over its entire length.

Included in Fig. 11 are predictions of the average reaction stress
based on the results obtained in the previous section for the axi-
ally loaded clamped column with three levels of initial imperfec-
tion. To plot the results based on the axially loaded column, the
length and aspect ratio of the column are identified with those of
the inclined member. Furthermore, the axial velocity applied to
the upper end of the column is the component of the approach
velocity of the two plates resolved in the direction parallel to the
column, i.e. �2/3V , and, as before, the lower end is fixed. Simi-
larly, the vertical component of the reaction force acting on the
upper plate is taken to be 3�2/3 times the axial force in the col-
umn and converted to the stress averaged over the unit cell in Fig.
11. Since the results for the axial column are almost independent
of the overall strain in the range from 5% to 20% �cf. Fig. 8�, only
the average over the strain range is plotted in Fig. 11 for the
column approximation. The effect of the initial imperfection level
is not large for the three levels shown and ��1/4 seems to be a

realistic choice. Finally, it is noted that the results based on those
for the axially compressed column provide a reasonable approxi-
mation to the reaction force exerted by the tetragonal core.

5 Summary
The dimensionless parameter V/(�Yc0) can be used to gauge

whether coupled plastic wave propagation and lateral buckling
occurs in columns whose ends experience a relative velocity V ,
and relatively strong dynamics occur when V/(�Yc0)�5. For rela-
tively stocky columns, overall end-shortening corresponding to
compressive strains of 20% or more can be achieved before ap-
preciable bucking deformation occurs. The reaction force at the
end of the column resisting the imposed motion is amplified by a
factor of 2 or more above that for a quasistatically loaded column.
Similarly, the energy dissipated in plastic deformation by the col-
umn at a given overall imposed strain is significantly increased
due to the inertial stabilization of the column. The roles of the
various geometric and material parameters are detailed in the pa-
per for the case of constant velocity loading. These results provide
insight into how columns can be expected to behave under other
types of dynamic axial loading. The present paper reveals the
importance of dynamic effects in the performance of truss cores of
all-metal sandwich plates under high intensity dynamic loads.
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