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Crush dynamics of square honeycomb sandwich cores

Zhenyu Xue and John W. Hutchinson∗,†
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SUMMARY

Square honeycombs are effective as cores for all-metal sandwich plates in that they combine excellent
crushing strength and energy absorption with good stiffness and strength in out-of-plane shear and
in-plane stretch. In applications where sandwich plates must absorb significant energy in crushing
under intense impulsive loads, dynamic effects play a significant role in the behaviour of the core.
Three distinct dynamic effects can be identified: (i) inertial resistance, (ii) inertial stabilization of webs
against buckling, and (iii) material strain-rate dependence. Each contributes to dynamic strengthening
of the core. These effects are illustrated and quantified with the aid of detailed numerical calcula-
tions for rates of deformation characteristic of shock loads in air and water. A continuum model for
high rate deformation of square honeycomb cores is introduced that can be used to simulate core
behaviour in large structural calculations when it is not feasible to mesh the detailed core geome-
try. The performance of the continuum model is demonstrated for crushing deformations. Copyright
� 2005 John Wiley & Sons, Ltd.

KEY WORDS: honeycomb cores; sandwich plates; dynamic loads; material rate dependence; dynamic
buckling; plastic buckling

1. INTRODUCTION

All-metal sandwich plates have distinct advantages over monolithic plates of equal mass in
applications to structures designed to withstand intense short-duration pressure pulses, especially
in water environments [1, 2]. To be effective under intense impulsive loads, a sandwich plate
must be able to dissipate in core crushing a significant fraction of the kinetic energy initially
acquired [1, 2]. Consequently, if a plate is to retain its integrity with only limited crushing,
its core must have ample crushing strength and energy-absorbing capacity. Square honeycomb
cores have been shown to be one of the best choices from this point of view. In addition, they
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have in-plane strength that contributes to dissipation in overall stretching of the plate and they
provide good transverse shear strength.

Strong dynamic effects come into play in the behaviour of the core when sandwich plates
are subject to intense pressure pulses. An important dimensionless parameter governing inertial
effects is V0/(c0�Y), where V0 is the relative velocity of the sandwich faces, c0 = √

E/� is the
elastic wave speed of the web material, and E, � and �Y are the Young’s modulus, density and
initial yield strain of the metal [3]. To motivate the study in this paper, consider a full-scale
plate with core thickness, H = 0.1 m, whose front face towards the shock is set in motion
with velocity in the range 20 m s−1<V0<200 m s−1, where the upper limit of this range is
representative for strong water shocks. The time scale of the pressure pulse is often sufficiently
short such that the back face and much of the core remain nearly motionless while the front
face acquires its initial velocity. Much of core crushing takes place in the period after the front
face has been set in motion and before the back face accelerates to the same velocity as the
front face. The associated average strain-rate range in the core is 200 s−1< ˙̄�<2000 s−1. Material
strain-rate dependence is clearly important. Two other dynamic effects also significantly affect
core behaviour even more than material rate dependence in the range of relative velocities
relevant here that satisfy V0/(c0�Y)>5. The most obvious is simply the inertial resistance of
the core to the motion of the front face sheet and the consequent plastic wave propagation
induced in the core webs. Less obvious is the inertial stabilization of the webs that delays the
onset of web buckling thereby maintaining the effective strength of the core to much larger
crushing strains than under quasi-static crushing. Web stabilization also significantly increases
the energy-absorbing capacity of the webs. These two inertial effects combine together in a
complex way.

Considerable effort has addressed the crushing behaviour of hexagonal honeycombs for
applications where energy absorption is important [4–6]. Most of these studies differ from the
present one in several respects. The honeycomb thickness to hexagonal cell size is usually large,
while the sandwich plates of interest here have a core thickness to cell size typically on the
order of unity (Figure 1). More importantly, the relative velocity imposed on the honeycomb
is usually lower (e.g. V0/(c0�Y)<5) and not sufficient to activate the strong inertial effects
that occur under blast loads. Relatively few studies of dynamic plastic crushing have addressed
problems in the range of interest here (V0/(c0�Y)>5), where plastic wave propagation and
plastic buckling are tightly coupled. The speed at which a plastic wave front propagates along
a straight bar or web can be expressed in terms of quantities behind the front according to

cP = e−�
√

(Et − �)/� ∼=
√

Et/� (1)

where � and � are the true stress and strain and Et is the tangent modulus of the true stress–
strain curve [3, 7, 8]. For convenience, the small strain expression approximation, cP = √

Et/�,
is used for discussion purposes in this paper.

The roles of inertial and material strain-rate in energy absorption under dynamic compression
have been elucidated in Reference [9] for two distinct types of structures: those that undergo
relatively gradual buckling such as columns and those that tend to be more imperfection-
sensitive and catastrophic such as shells. The structural members of interest here fall into
the first category, but the loading rates discussed in Reference [9] are considerably slower
than will be considered here. To gain further appreciation of the time scales involved in the
problems of interest here, consider a flat steel core web of a sandwich plate having a core
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Figure 1. Sandwich plate with a square honeycomb core and unit cell used for computing the crushing
behaviour of the square honeycomb core with representative finite-element mesh.

thickness H = 0.1 m whose front face abruptly accelerated to a velocity V0 = 100 m s−1 and
whose back face is held fixed (loading #2 in Figure 2). For typical elastic and plastic wave
speeds, c0 = 5000 m s−1 and cP = 500 m s−1, the elastic and plastic wave fronts reach the back
face at times t = 0.2 × 10−4 s and 0.2 × 10−3 s, respectively. Note that by the time the plastic
wave reaches the back face, the overall strain experienced by the core is relatively large:
�̄ ≡ V0t/H = 0.2. It will be seen later that these estimates are realistic. Inertia can stabilize
the webs such that they remain unbuckled before the plastic wave front reaches the back face
with the results that the webs exert much greater force on the front face and absorb more
energy than they would under quasi-static loading. For this example, V0/(c0�Y) = 10 (assuming
�Y = 0.002) and the overall strain-rate is ˙̄� = V0/H = 103 s−1. The feature that distinguishes
crushing in the range of applied velocities of interest here is the fact that substantial core
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Figure 2. Two compressive constant crushing-rate loadings on unit cell of square honeycomb:
(a) loading #1; and (b) loading #2.

straining occurs during the period while the plastic wave is propagating through the core web
and prior to web buckling.

In addition to detailing the dynamic phenomena noted above, a continuum model for multi-
axial stressing of metallic sandwich cores will be proposed that is capable of approximately
replicating the three aspects of dynamic core behaviour just cited. The continuum model is
intended for use in finite-element analyses of sandwich plate structures that are too large to
allow detailed meshing of the actual core geometry. Results specific to crushing of square
honeycomb cores will be presented to demonstrate the effectiveness of the continuum model.

2. DYNAMIC CRUSHING UNDER CONSTANT RATE

Three-dimensional finite-element calculations have been performed to simulate the dynamic
crushing response of unit cell of square honeycomb core. The unit cell of the square honeycomb
core is configured as shown in Figure 1 along with the co-ordinate system used to define the
orthotropic anisotropy. The height of the core unit is H, and the wall thickness of the core
webs is tc. The width of the core unit is B. The relative density of the square honeycomb
core, �̄c, defined as the ratio of average density of the core to the density of material, �c/�,
(or, equivalently, as the volume of material in the core to the volume of the core) is

�̄c = 2
tc

B
−
(

tc

B

)2

(2)

The junctions of the core webs with each other and with the face sheets are taken as welded,
i.e. clamped. In the present paper the face sheets are assumed to be rigid.

The materials used in the numerical examples will be taken to be representative of stainless
steels with relatively high strain hardening and moderate rate dependence. The true stress–strain
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Figure 3. Stress–strain curves for various strain-rates representative of a ductile
stainless steel. Computations based on these curves are presented both with and

without the strain-rate dependence.

behaviour is represented by the rate-dependent bilinear relation

� =

⎧⎪⎪⎨
⎪⎪⎩

E�, � � k�Y

E

k�Y + Et

(
� − k�Y

E

)
, �>

k�Y

E

(3)

Here, E is Young’s modulus, Et is the constant tangent modulus, and �Y is the quasi-static yield
stress. Rate dependence is tied to the plastic strain-rate, �̇P, through the factor elevating the flow
stress: k = 1+(�̇P/�̇0)

m, where �̇0 and m are material parameters determined by experiment. The
rate-independent, quasi-static limit has �̇P/�̇0 → 0, or, equivalently, k = 1. Stress–strain curves
are plotted in Figure 3 for the following choice of material parameters used in all the com-
putations in this paper: E = 200 GPa, �Y = 350 MPa, Et = 2.4 GPa, �̇0 = 4916 s−1, m = 0.154,
� = 8000 kg m−3, and Poisson’s ratio � = 0.3. Multi-axial yield in the core webs is governed by
the flow theory of plasticity based on the Mises yield surface. The geometry in all the compu-
tations has Hc = 0.1 m, B = 0.1 m and tc ≈ 2.02 mm, corresponding to �̄c = 0.04, representative
of the relative density of sandwich plates of width 2 m with near-optimal design [1, 10].

To reveal dynamic aspects of core crushing, two compressive constant crushing-rate loadings
will first be considered (Figure 2): (i) equal and opposite uniform velocities applied to the
top and bottom faces, and (ii) rigidly fixed bottom face with a uniform velocity applied to
the top face. The centre of mass of the core is stationary in the first loading. In the second
loading, the centre of mass of the core is accelerated giving rise to different reaction stresses
exerted by the core on the top and bottom faces. Of the two loadings, the second most closely
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mimics a blast-loaded sandwich plate. In each case, the core webs are at rest at the start.
In (i), a constant overall crushing rate is imposed by setting the top and bottom plates in
motion abruptly at t = 0 with equal and opposite constant velocities of magnitude V0/2. The
overall crushing strain-rate of the core, ˙̄�, and the overall (engineering) strain, �̄, are defined as
˙̄� = V0/H and �̄ = V0t/H , respectively. In (ii), the same overall crushing strain-rate, ˙̄� = V0/H ,
will be imposed by fixing the bottom face and setting the rigid top plate in motion abruptly
with a constant downward velocity V0. Periodic boundary conditions are imposed on the edges
of the web in the cell in the 1- and 2-directions.‡

2.1. Geometric imperfections and their role in crush behaviour—equal and opposite applied
velocities applied to the faces

The finite strain version of ABAQUS Explicit [11] has been used to carry out the dynamic
computations in this paper based on the response of the unit periodic cell in Figure 1. Eight
node brick elements with reduced integration are used in the calculations.§ A representative
mesh is shown in Figure 1; four elements are taken through the web thickness. The emphasis in
this sub-section is on the role of imperfection amplitude and shape, the modes of deformation,
and the average stress exerted by the core on the faces.

Imperfections of some form must be introduced to promote buckling of uniformly compressed
plates under dynamic loading. Unperturbed, perfectly flat webs having uniform material prop-
erties will remain flat. Here, imperfections are introduced as perturbations in the geometry of
the web. Since the shape of an imperfection is never known precisely, a range of imperfec-
tion shapes has been considered. It is important to include imperfection shapes with relatively
short wavelengths that promote localized buckling since such modes are observed under high-
velocity impact [12]. A series of possible imperfection shapes can be obtained by performing a
quasi-static buckling eigenvalue analysis with ABAQUS/Standard [13] on the perfect structure.
Eigenmodes generated by this analysis can be used to perturb the perfect geometry. If the
same mesh is used for the eigenvalue analysis as for the dynamic analysis, the geometry shape
change is readily transported from one code to the other.

Figure 4 presents the three imperfection shapes generated by the eigenvalue analysis (on
the left) that will be employed in this study, along with the buckling modes they induce in
the full dynamic analysis (on the right). The top part (Figure 4(a)) is imperfection-free such
that dynamically deformed webs remain flat, at least until very small perturbations most likely
due to meshing asymmetry or numerical round-off trigger the onset of buckling. The lower
parts (Figures 4(b)–(d)) display imperfection shapes with greatly exaggerated amplitudes; the
amplitudes used in the dynamic simulations are such that the maximum out-of-plane initial
deflection of the web normalized by the web thickness, �, is 1

5 . The three imperfection shapes
will be denoted by A, B and C, as labelled in the figure. Shape A is the lowest eigenmode.
Modes B and C are not the lowest successive modes. Shape B was chosen because it has
two nodal lines in the crushing direction, while Shape C has three. Shapes B and C promote

‡If the solution to problem (i) is strictly symmetric about the mid-plane, then it can be used to generate a
solution to problem (ii) with the mid-plane stress in (i) as the stress at the bottom face in (ii), but with
imposed velocity V0/2 and core thickness H/2. Here, the solution to problem (ii) was generated using the
boundary conditions stated above.

§Alternatively, shell elements can also be adopted in the simulations, which could save some modelling and
computation time.
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Figure 4. Deformation of square honeycomb web with various initial imperfection shapes subjected to
constant equal and opposite velocities V0 = 50 m s−1 (V0/c0�Y = 5.7 and ˙̄� = 1000 s−1) applied to the
faces. Except for the perfect case, the normalized imperfection amplitude is � = 1

5 . The imperfection
shape is shown on the left and the resulting buckling mode shape at �̄ = 0.5 is shown on the right:
(a) no initial imperfection; (b) initial imperfection shape A; (c) initial imperfection shape B; and

(d) initial imperfection shape C.
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Figure 5. The influence of imperfection shape on the compressive stress exerted on the faces versus
overall strain for the square honeycomb core subject to an equal and opposite constant velocity,
V0 = 50 m s−1, applied to the top and bottom faces (V0/c0�Y = 5.7 and ˙̄� = 1000 s−1). Except for
the curve for the perfect case, the normalized imperfection amplitude is � = 1

5 . Material strain-rate
dependence is neglected (k = 1 in (3)). The core geometry is given in the text.

buckling modes with shorter crushing wavelengths. Further details of the dynamic buckling
behaviour will now be discussed.

The time-dependence of the average compressive stress, �̄, exerted on the top face by
the core is plotted in Figure 5 for V0 = ∓ 50 m s−1 applied to the top and bottom faces,
respectively, corresponding to V0/c0�Y = 5.7 and ˙̄� = 1000 s−1. Each of the imperfect webs in
Figure 5 has normalized imperfection amplitude � = 1

5 . Even though the deformation mode that
develops is not strictly symmetric (or anti-symmetric) with respect to the mid-plane of the
core, the average stress on the bottom face is essentially identical to that on the top face.
Material strain-rate has not been considered in these computations (by taking k = 1 in (3)).
The average stress is normalized by �̄c�Y, which is approximately the quasi-static initial yield
stress for a square honeycomb core with webs that do not buckle. The elevation of �̄/�̄c�Y
above unity is due both to strain hardening and to dynamic effects. The sharp up-turn in the
stress for the imperfection-free core and the core with shape A occurs when the plastic wave
front hits the top face after being reflected at the centre of the core by the wave travelling
in the opposite direction. This sudden increase in the compressive stress promotes buckling
such that the stress then falls abruptly as buckling develops with further overall straining. The
core with no imperfection begins to undergo buckling at an overall strain of about 0.17,
almost certainly triggered by very small numerical ‘imperfections’ such as round off error or
meshing asymmetry.

For overall crushing strains less than about 10–15%, depending on the imperfection shape
and amplitude, there is little difference between the responses of the imperfect cores and the
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Figure 6. The effect of the normalized imperfection amplitude � on the compressive stress exerted
on the faces versus overall strain for the square honeycomb core subject to an equal and opposite
constant velocity, V0 = 50 m s−1, applied to the top and bottom faces (V0/c0�Y = 5.7 and ˙̄� = 1000 s−1).
Imperfect shape A is assumed. Material strain-rate dependence is neglected (k = 1 in (3)). The

core geometry is given in the text.

perfect core. In this range of strain, which is deep into the plastic range and far in excess of
the strain that the webs would buckle quasi-statically, the webs have been stabilized by their
lateral inertia. The webs exert stresses on the faces as if they were nearly flat. As further
crushing takes place, web buckles develop, and the stress exerted on the face by the imperfect
cores drop below that of the perfect core. The behaviour of the core with perfect webs prior to
any buckling establishes the baseline for the dynamic response at high strain-rates. Imperfection
Shape C, which has the shortest wavelength of those considered, gives rise to the most rapid
erosion of the stresses below those of the perfect core. At overall crushing strains of 50% the
buckling shapes are fully developed (cf. Figure 4).

The effect of the imperfection amplitude � on the stresses exerted on the faces is shown
in Figure 6 for the imperfections with shape A and V0/c0�Y = 5.7 ( ˙̄� = 1000 s−1). For overall
crushing strains less than 15% the imperfection has very little effect because the webs are
dynamically stabilized against buckling and resist compression as if they were flat. At larger
strains, buckling deflections become significant—the larger the imperfection amplitude, the
earlier buckling starts and the greater the reduction in the stresses. The behaviour displayed
in Figures 5 and 6 is characteristic of problems where the loading rate is sufficiently high
that axial plastic wave propagation and lateral buckling are coupled. For axial compression
of columns and plates, imperfections play a more important role in dynamic buckling than in
quasi-static buckling. Both amplitude and wavelength have an influence. The numerical results
which follow take imperfection A with amplitude � = 1

5 . However, as is evident in Figure 5,
this is not necessarily either the most realistic imperfection or the critical imperfection. Further
work on the roles of imperfections in dynamic crushing of square honeycombs is required.
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Figure 7. The effect of overall strain-rate on the compressive stress exerted on the faces
versus overall strain for the square honeycomb core subject to equal and opposite constant
velocities of magnitude, V0, applied to the top and bottom faces. Imperfection shape A
with normalized amplitude � = 1

5 is assumed. Material strain-rate dependence is neglected
(k = 1 in (3)). The core geometry is given in the text.

Figure 7 reveals the role of the overall imposed velocity, as measured by V0/c0�Y, on
the stress exerted on the faces for cores with a shape A imperfection and � = 1

5 . As already
mentioned, the range of imposed velocities selected in this plot is relevant to shock loaded
metal sandwich panels. At each velocity, the initial response represents the behaviour of a flat
web. Once buckling starts, the stress exerted on the faces falls. The delay in the onset of
buckling is roughly proportional to V0/c0�Y. For this imperfection, buckling does not occur for
strains less than about 20% if V0/c0�Y>10. The delay in buckling elevates the effective core
strength and enhances energy absorption.

Crushing strains in the range from 15 to 25% are representative of those expected for
a square honeycomb core of a clamped sandwich plate designed to withstand large shock
loads with overall deflections constrained to be no more than about one-tenth the width of
the plate [10]. Thus, core crushing strains as large as 40 or 50% are generally in excess of
expected levels for a well-designed sandwich plate. For crushing strains of 20% or less, the
examples in Figures 5–7 suggest the following tentative conclusions: (i) the response of the
unbuckled perfect core provides a relevant baseline for high-velocity crushing; (ii) the higher
the velocity, the larger overall strain at which buckling sets in; and (iii) imperfection shape
and amplitude are important with roles that are not entirely understood, but probably not the
dominant factors determining the stresses exerted by the core on the faces at high-velocity
loadings. These notions will be developed more fully in the sequel.
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2.2. Crushing behaviour—bottom face fixed, top face subject to imposed velocity

The centre of mass of the core was stationary in the cases considered in the previous sub-
section. In this section, the bottom face is rigidly fixed and the top face is abruptly moved
downward with velocity V0 (Figure 2b). Average stresses on the top and bottom faces for several
overall strain-rates are plotted in Figure 8, again for no material rate dependence (k = 1) and
for imperfection shape A with amplitude � = 1

5 . The significant difference between the stresses
on the top and bottom faces is due to the asymmetry in application of the imposed velocity
and the acceleration of the centre of mass of the core. At a given overall strain-rate, the
inertial contribution to the stress acting on the top face is larger than the corresponding stress
for previous case due to the fact that V0/c0�Y is twice as large. A small initial jump in the
stress acting on the bottom face occurs when the elastic wave hits that face. The stress on the
bottom face then remains nearly at the compressive yield stress until the plastic wave front
hits that face, at which point the compressive stress increases abruptly to about twice the stress
experienced by the top face, as would be expected for a wave reflected at a rigid support when
the tangent modulus is constant. It is readily verified that the strain at which this occurs is
given by �̄ ∼= V0/cP, where cP is the plastic wave speed (1).

Prior to the point where the plastic wave reaches the bottom face the stress exerted on the
top face is unaffected by the thickness H of the core. If the webs are flat and do not buckle,
one-dimensional elastic–plastic wave theory can be used to obtain an analytical estimate of the
stress exerted on the top face associated with abruptly moving it at velocity V0 [3, 7, 8]. Based
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Figure 8. Compressive stresses exerted on the top (a) and bottom (b) faces by the core as a function
of strain for square honeycomb core held rigidly on the bottom face and subject to a constant velocity,
V0, on the top face for several overall strain-rates. Imperfect shape A is assumed with normalized
amplitude � = 1

5 . Material strain-rate dependence is neglected (k = 1 in (3)). The dashed lines in (a)
are the predictions from (4) applicable to a perfect core prior to buckling and prior to arrival of the

reflected plastic wave from the bottom face. The core geometry is given in the text.
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Figure 9. Buckled configurations at �̄ = 0.5 for cores held rigidly on the bottom face and subject
to a constant velocity on the top face: (a) quasi-static loading with ˙̄� ≈ 0 s−1; and (b) ˙̄� = 2000 s−1.
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Figure 10. Comparison of the average of the stresses acting on the top and bottom faces when the
bottom face is fixed and the top face is subject to an imposed velocity (from Figure 7) with the
stress on the top (or bottom) face for a core subject to equal and opposite velocity of its faces

(from Figure 6). Imperfection shape A is assumed with normalized amplitude � = 1
5 .

on small strain theory for the rate-independent limit of the bilinear material (3), the result is

�̄

�̄c�Y

∼= 1 +
√

Et

E

(
V0

c0�Y
− 1

)
(4)
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V0/c0�Y = 22.8. Results with (solid curves) and without (dashed curves) material rate dependence are
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5 .

where V0/(c0�Y)>1 for the stress to exceed yield. This estimate is plotted in Figure 8(a),
revealing that it indeed provides a good approximation to the reaction stress until the plastic
wave returns from the bottom plate.

At high impact velocities, buckling does not have a pronounced effect on the stress exerted
on the faces before the plastic wave hits the bottom face. The large jump in compressive
stress then promotes buckling near the bottom plate. Shortly thereafter, buckling gives rise to
the rapid drop in the stress acting on the bottom face. The drop in stress on the top face
occurs when the plastic wave returns from the bottom plate. Pictorial evidence for this scenario
is seen in Figure 9, where the buckled deflections at �̄ = 0.5 are shown for both quasi-static
loading and the high-velocity case with V0/(c0�Y) = 22.8 and ˙̄� = 2000 s−1. While the buckling
deflection varies smoothly through the core under quasi-static loading, it tends to be localized
near the bottom face under high-velocity loading.

An unusual correlation between behaviours for the loading case considered in this section
with that in the last section is evident in Figure 10. In Figure 10, the average of the compressive
stresses exerted on the top and bottom faces in Figure 8 is compared with the stress exerted
on the top (or bottom) face from Figure 7. To a surprising degree of accuracy, the two sets of
results are nearly the same. We are unaware of any general principle underlying this correlation,
but it can be shown that the two sets of results are exactly equal for the solutions to the two
corresponding problems for the linear one-dimensional wave equation.
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Figure 12. Compressive stress exerted on the top face by square honeycomb core at several overall
crushing strains as a function of V0/(c0�Y) for cores held rigidly on the bottom face and subject to
velocity V0 on the top face. Imperfection shape A is assumed with normalized amplitude � = 1

5 . The
dashed line is the prediction from (4) applicable to a perfect core of rate-independent material prior

to buckling and prior to arrival of the reflected plastic wave from the bottom face.

2.3. Material rate dependence—bottom face fixed, top face subject to imposed velocity

The role of material rate dependence on the stresses exerted on the top and bottom faces
is brought out in Figure 11 where results with and without rate dependence are displayed
for a core subject to V0/(c0�Y) = 22.8 ( ˙̄� = 2000 s−1) with a shape A imperfection and � = 1

5 .
Before the plastic wave hits the bottom face, the elevation of the front face stress due to
material rate dependence relative to that without rate dependence is in accord with what one
would expect from the elevation in the flow stress (cf. Figure 3) for a strain-rate ˙̄� = 2000 s−1.
When the plastic wave hits the bottom face, the material rate dependence smoothes out the
jump in the stress and tends to make the stress drop less precipitous when buckling dominates
the behaviour.

A cross-plot of the normalized stress acting on the top face as a function of the dimensionless
parameter, V0/(c0�Y), at three overall strain levels is presented in Figure 12. Results have been
computed with and without material rate dependence. The dynamic strengthening of the core
displayed in Figure 12 is similar to that found for coupled plastic wave propagation and
dynamic column buckling [3] over the same range of V0/(c0�Y). The trends are approximately
captured by (4) based on the small strain, rate-independent limit. During the period while the
plastic wave is progressing through the core, V0/(c0�Y) is the most important dimensionless
group governing the dynamic response. As emphasized earlier, the range of V0/(c0�Y) plotted
in Figure 12 is relevant to blast-loaded metal sandwich plates.
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3. A CONTINUUM MODEL OF THE CORE

For large structures built up from sandwich plates, it may not be feasible or even sensible to
mesh the complete three-dimensional details of the core in a finite-element analysis. Instead,
one would employ a continuum description of the core that smears out its geometric details but
approximately reproduces its effective stress–strain behaviour under the deformation histories
of interest. Buckling deformations of the core, whether under crush or shear, generally extend
from one face to the other, and, therefore, they can only be represented in an approximate way
by a continuum model that embeds the effect of buckling as if it were a local phenomenon.
In other words, the separation of scales usually invoked to justify the formal averaging process
leading to a continuum representation of a medium does not hold for the core. The continuum
representation of the core is inherently approximate in this sense.

In this section, a continuum model is laid out describing the elastic–plastic response of
orthotropic sandwich core materials under multi-axial stressing. The model accounts for hard-
ening or softening behaviour that can differ for stressing in each of the six fundamental stressing
histories in orthotropic axes. Mass is distributed uniformly throughout the thickness of the core
in the model such that overall inertial resistance is replicated. Material rate dependence is
included and the effect of the strain-rate on strengthening the core via the mechanism of core
web stabilization against buckling is also modelled.

Let the xi-axes be aligned with the orthotropic core axes. Introduce overall, or average,
stress, strain and plastic strain vectors in the usual way with

� = (�1, �2, �3, �4, �5, �6) ≡ (�11, �22, �33, �13, �23, �12)

� = (�1, �2, �3, �4, �5, �6) ≡ (�11, �22, �33, 2�13, 2�23, 2�12)

�P = (�P
1 , �P

2 , �P
3 , �P

4 , �P
5 , �P

6 , ) ≡ (�P
11, �

P
22, �

P
33, 2�P

13, 2�P
23, 2�P

12)

(5)

Let the 6 × 6 symmetric matrices of overall elastic moduli and compliances representing the
elastic response of the core in the unbuckled state be such that

� = L�

� = M�
(6)

The basic inputs to the model prescribed below are the six rate-dependent stress–strain curves
that characterize the plastic response of the continuum core under conditions when each of
the above six (positive) stress components acts singly. Specifically, when �i is the only non-
zero stress component, let �̂i (�P

i , �̇P
i ) denote the hardening (or softening) function specifying the

dependence of �i on the associated plastic strain component, �P
i , when the plastic strain-rate, �̇P

i ,
is positive and constant. Thus, for example, �̂1(�P

1 , �̇P
1) is the stress–plastic strain response when

the continuum core is deformed under uniaxial tension in the 1-direction at constant strain-rate
�̇P

1 . Note that, by definition, the input functions, �̂i (�P
i , �̇P

i ), are positive. When compression is
relevant in a particular application, as in the case of core crush, input data for compression can
be substituted in place of tension data for any of the three uniaxial stress component, as will
be obvious later. The two versions of the multi-axial constitutive model, independent hardening
and coupled hardening, are formulated such that they reproduce the input stress–strain data
when each of the six stress components acts singly.
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Specific forms for the input functions �̂i (�P
i , �̇P

i ) are now suggested for the square honeycomb
core with emphasis on crushing, illustrating the process for other cores as well. The objective
is to come up with a simple description of each of the input functions that captures the most
important features of the non-linear core behaviour associated with plastic buckling, necking or
even fracture. It is important to distinguish between the constitutive response of the continuum
core, as measured for example by �̂3(�P

3 , �̇P
3) for core crushing, and the relation such as those

plotted in Section 2 between the stress exerted on the sandwich faces and the overall strain.
The stress on the faces involves plastic wave propagation, acceleration of core mass and other
influences in addition to the purely constitutive response. Section 4.1 addresses the identification
of �̂3(�P

3 , �̇P
3) such that it reproduces (approximately) the stresses exerted on the faces for selected

loading cases when a continuum simulation is made with the constitutive model.
Denote the tensile true stress–strain behaviour of the material comprising the core webs

under constant plastic strain-rate by �(�P, �̇P). Take the 3-direction perpendicular to the face
sheets as in Figure 1. For tension (compression) in the 3-direction prior to buckling or neck-
ing of the webs, �̂3(�P

3 , �̇P
3) = (2/

√
3)�̄c�(�P, �̇P), where the factor (2/

√
3) (for web materi-

als having a Mises yield surface) reflects the constraint of the faces such that the webs
undergo plane strain tension (compression). In the 1-direction, prior to buckling or neck-
ing, �̂1(�P

1 , �̇P
1) = (�̄c/2)�(�P

1 , �̇P
1), with a similar expression for the 2-direction. With �(�P, �̇P)

as the stress–strain behaviour of the base material in shear, the out-of-plane shear stress–
strain behaviour of the core in the (1, 3) axes prior to buckling can be approximated by
�̂4(�P

4 , �̇P
4) = (�̄c/2)�(�P

4 , �̇P
4), with a similar expression for �̂5 in the (2, 3) axes. In-plane shear

behaviour in the (1, 2) axes is of little consequence as long as �̂6 is taken to be small because
the core is very weak in this mode.

We illustrate how buckling can be modelled in making a choice for the input function �̂3
which incorporates the strong rate dependence of the onset of plastic buckling noted in the
numerical examples. In what follows, it is assumed that yielding precedes buckling, as will
usually be the case except for cores with unusually low density. Were that not the case, another
choice for the form of �̂3 might be necessary. Assume the compressive branch of the stress–
strain behaviour is used (taking �̂3 and �P

3 as positive in compression for this purpose) and
consider the prescription pictured in Figure 13. A form for �̂3 with features similar to those in
Figure 13 has been proposed and implemented in Reference [14] for cores with truss members
in an alternative approach to core modelling based on homogenization methods. Specifically,
�̂3 is taken to be

�̂3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k�̄Y + E′
t�

P
3 , 0 � �P

3 � �
� P

3

(k�̄Y + E′
t

�
� P

3 ) − 2E′
t(�

P
3 − �

� P
3 ),

�
� P

3 <�P
3 � (0.25k�̄Y/E′

t + 1.5
�
� P

3 )

0.5k�̄Y, (0.25k�̄Y/E′
t + 1.5

�
� P

3 )<�P
3 � 1

0.5k�̄Y + 2E′
t(�

P
3 − 1), 1<�P

3

(7)

expressed in true stress and logarithmic strain. Here, the factor k incorporates the material
strain-rate dependence included in (3), �̄Y is the overall quasi-static yield stress
defined as �̄Y = (2/

√
3)�̄c�Y, and the overall Young’s modulus is E′ = (2/

√
3)�̄cE. The core

response is elastic with �3 = E′�3 for �3 � k�̄Y/E, while �P
3 = �3 − �3/E

′ for �3 � k�̄Y/E. The
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Figure 13. Form of the input function assumed for crushing of square honeycomb core.
The full specification is given by (7).

overall tangent modulus, E′
t , is given in terms of the material tangent modulus in (3) by

E′
t = (2/

√
3)�̄cEEt/(E −Et). The plasic strain parameter associated with the onset of buckling

in the constitutive model is denoted by
�
� P

3 ; it is primarily a function of the strain-rate �̇P
3 but

it also depends on the material rate dependence and details of the core geometry. It must be
identified by calibration either with experimental data or with selected numerical simulations
(Section 4.1). The slope, 2E′

t , governing softening and compaction hardening in (7) was chosen
after several trial and error iterations such as those described in Section 4.1, as was the stress,
0.5k�̄Y, and strain range of the flat minimum. These parameters had much less influence on
dynamic crushing predictions from the continuum model than

�
� P

3 .
An ellipsoidal yield surface is invoked that generalizes Hill’s surface for orthotropic plasti-

cally incompressible materials. Ellipticity of the surface is allowed to change to account for
differential hardening or softening. Associated plastic flow is also invoked such that plastic
strain-rates are normal to the yield surface. Due to their highly open, porous structure, many
core structures undergo relatively little transverse plastic strain when they are stressed uniax-
ially in any of the three directions of orthotropy. The plastic strain-rate ratios (analogous to
Poisson ratios in the elastic range) are then well approximated as being zero. The relations
given below are special cases of the more general constitutive law proposed in Reference [15]
where transverse strains are not zero.

When the transverse plastic strains under uniaxial stressing parallel to the axes of orthotropy
are zero, the ellipsoidal yield surface for orthotropic compressible materials can be written in
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the form

f ≡ �eff − �0 = 0 (8)

where the effective stress �eff is defined by

(
�eff

�0

)2

=
(

�11

�̂11

)2

+
(

�22

�̂22

)2

+
(

�33

�̂33

)2

+
(

�12

�̂12

)2

+
(

�13

�̂13

)2

+
(

�23

�̂23

)2

=∑
i

(
�i

�̂i

)2

(9)

The stress quantity �0 is a fixed reference stress that can be chosen arbitrarily (e.g. �0 = 1 MPa);
it is simply a scaling factor. Normality is assumed such that �̇P

i = �̇�f/��i . The effective plastic
strain-rate, �̇P

eff , defined such that the plastic work is given by �ij �̇P
ij = �eff �̇P

eff , turns out to be

�̇P2
eff =∑

i

(
�̂i

�0
�̇P
i

)2

(10)

The plastic strain-rate components are given by

�̇P
i = �2

0�i

�eff �̂
2
i

�̇P
eff (11)

There are well-known limitations to ellipsoidal yield surfaces. Some cellular materials (e.g.
truss lattice materials [16]) have yield surfaces that are more polyhedral-like than ellipsoidal.
Under combined crushing and out-of-plane shear, conventional hexagonal honeycomb has a yield
surface with nearly a linear interaction between the compressive stress and shear stress [5] when
the honeycomb is buckled. The present ellipsoidal surface would overestimate the honeycomb
strength under combinations of these two stress components. On the other hand, for plastic
deformation prior to buckling of the square honeycomb web, the ellipsoid surface correctly
reproduces the behaviour expected for combinations of crush and out-of-plane shear parallel
to the axes of orthotropy assuming that the Mises yield surface controls local yield in the
webs. The same is true for combinations of in-plane stretch and out-of-plane shear parallel to
the axes of orthotropy. When buckling occurs, these assertions can no longer be made. The
advantage of the present model is the flexibility it affords in reproducing the six fundamental
stress histories. For some materials under certain combinations of stress, the ellipsoidal yield
surface represents a compromise of accuracy whose consequences must be judged within the
context of the application.

Two hardening laws for multi-axial stressing are proposed: independent hardening and
coupled hardening. Both reproduce the six input stress–strain curves, �̂i (�P

i , �̇P
i ), precisely when

�i acts singly such that �̇P
i is positive and constant.

Independent hardening: This is the simplest recipe. Under multi-axial stressing, assume that
each of the six hardening functions, �̂i , is affected only by the associated plastic strain com-
ponent, �P

i , and its rate. Let 	̇P
i = |�̇P

i | and take each of the hardening functions as �̂i (	P
i , 	̇P

i ).
For stressing with �i>0 as the only component, this reduces to the input function when �̇P

i
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is constant. This hardening law is akin to that used in conjunction with yield surfaces that
are polyhedral in shape with no interaction between the individual stress components in either
the yield condition or the hardening relation. The code DYNA has a constitutive module of
this class that has been used to model sandwich cores. It employs a ‘rectangular’ polyhedral
yield surface in orthotropic axes comprised of planes specified by constant values of each
of the stress components, and it invokes independent hardening. This constitutive model has
been systematically studied in Reference [17]. The present ellipsoidal surface with indepen-
dent hardening lies within the rectangular surface coinciding only at the intercepts with the
stress axes.

Coupled hardening: As before, assume the six independent hardening laws, �̂i (�P
i , �̇P

i ), as
input. Under multi-axial stressing, this recipe ties the changes of each of these hardening
functions to straining in each component through the effective plastic strain-rate in a manner
that is analogous to what is known as Taylor hardening in single crystal theory. Specifically,
take the ith hardening function to be �̂i (	P

i , 	̇P
i ), where

	̇P
i = (�0/�̂i )�̇

P
eff (12)

Note that this recipe reduces to 	̇P
i = �̇P

i when �i>0 is the only non-zero stress component.
Thus, this prescription has each of the six hardening functions depending on �P

eff in such a way
that the model replicates the input stress–strain data when any of the six stress components
acts singly and the associated plastic strain-rate is constant. For the special case when the six
hardening functions change in direct proportion to one another (called uniform hardening), cou-
pled hardening reduces to the hardening assumption made in conventional isotropic hardening.
For uniform hardening with no rate dependence, only one input stress–strain curve is required
to specify the hardening behaviour under multiaxial stressing and the model reduces to that
proposed in Reference [18].

The two versions of the model are fully specified. It only remains to obtain the incremental
relations among the stresses, strains and plastic strains. Plastic straining at constant strain-rates
requires ḟ = �̇eff = 0, or

∑
i

(
�i �̇i

�̂2
i

− �2
i

�̂3
i

��̂i

�	P
i

	̇P
i

)
= 0 (13)

Here, 	̇P
i = �P

i �̇P
i /	P

i (no summation) for independent hardening, and 	̇P
i is given by (12) for

coupled hardening. The stress increments satisfy

�̇i =∑
j

Lij (�̇j − �̇P
j ) (14)

Changes in the elastic moduli due to deformation of the core are not taken into account. Using
(13), it is readily shown that

�̇P
eff =

[
� + �2

0

�eff

∑
i

∑
j

Lij

�i�j

�̂2
i �̂2

j

]−1∑
i

∑
j

Lij

�i

�̂2
i

�̇j (15)
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where for independent hardening

� = �2
0

�eff

∑
i

|�i |3
�̂5
i

��̂i

�	P
i

(16)

while for coupled hardening

� = �0
∑
i

�2
i

�̂4
i

��̂i

�	P
i

(17)

Equations (11), (14) and (15) provide the tangent moduli relating the stress and strain
increments: �̇ = L̄�̇. If L̄ is non-singular, �̇ = M̄�̇ where M̄ = L̄−1. The plastic strain-rate, �̇P,
was assumed constant in deriving the above constitutive equations. As is customary in gener-
alizing constant strain-rate data to plasticity applications were the strain-rate itself varies, the
accelerations of the plastic strains are ignored in the equations, if for no other reason that the
stress–strain data under varying strain-rates is generally not available. Thus, the above equations
are proposed as the core constitutive model under general conditions of stressing and straining.

4. CALIBRATION OF THE CONTINUUM MODEL AND COMPARISON WITH
THREE-DIMENSIONAL SIMULATIONS FOR UNIAXIAL CRUSHING

The focus in this section will be on dynamic crushing deformations. The three-dimensional
simulations in Section 2, wherein the faces are subject to equal and opposite velocities are used
to calibrate a candidate input function �̂3(�P

3 , �̇P
3). Initial imperfection shape A with normalized

amplitude � = 1
5 is assumed for core in all three-dimensional calculations involved in this section.

Then, to see how successfully the continuum model can simulate other cases, predictions based
on this input function will be compared with three-dimensional simulations for (i) the case
when the bottom face is fixed and (ii) the case of free flight of the sandwich where the top
face is subject to an initial velocity with the core and bottom face unconstrained and initially
at rest.

4.1. A candidate input function, �̂3, and its calibration

As described in Section 3, for compression of the square honeycomb in the 3-direction prior to
buckling, we have �̂3(�P

3 , �̇P
3) = (2/

√
3)�̄c�(�P, �̇P), neglecting the small influence of imperfec-

tions prior to buckling, where �(�P, �̇P) is the stress–strain behaviour of the base material. In
the approach adopted here, the remaining parameters characterizing �̂3 in Figure 13, and most
importantly,

�
� P

3 , are chosen to give a good fit to the three-dimensional results such as those in
Figure 7 for the case where the faces are subject to equal and opposite uniform velocities. The
process of identifying the parameters characterizing �̂3 is necessarily an iterative one. Various
schemes are possible. The following approach was used here.

For a given set of the parameters, a simulation is carried out using the continuum model for a
specific overall compressive strain-rate, ˙̄�. In each such simulation,

�
� P

3 is taken to be independent
of �̇P

3 and fixed at the value chosen for ˙̄�. The calibration problem for crushing of the continuum
core can be simplified as a plane strain problem. Four-node bilinear elements with reduced
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Figure 14. Dependence of
�
� P

3 on strain-rate and on whether material rate dependence is taken into
account. This parameter controls the onset of plastic buckling in the continuum model.

integration and hourglass control are used in the calculations. Eight elements are taken through
the thickness of the core. Additional studies showed that more elements did not significantly
change the overall response, except that it did produce more high-frequency oscillatory ‘noise’
of the type seen in Figure 8. The computations are carried out using ABAQUS Explicit. The
overall stress–strain response so computed for the continuum representation of the core is then
compared with the corresponding unit cell prediction for the same crushing deforming from the
full three-dimensional simulation. This process is repeated with a different choice of continuum
model parameters, based largely on trial and error, until satisfactory agreement between the two
simulations is obtained for various ˙̄� over the range of interest. The most important parameter,
�
� P

3 , in the continuum representation depends strongly on the overall strain-rate and somewhat
less strongly on material rate sensitivity (Figure 14).

Figure 14 emphasizes the large effect played by the strain-rate in delaying the onset of
plastic buckling. Because it elevates the compressive stress, material rate dependence decreases
the parameter

�
� P

3 controlling the onset of buckling in the continuum model. As mentioned
earlier, neither the slope of the softening response nor the final slope governing compaction
has nearly as large an influence as

�
� P

3 . The overall responses from the continuum simulations
described above based on the final choice of parameters are compared with the three-dimensional
crushing results in Figure 15 for ˙̄� = 200 and 2000 s−1, both with and without material strain-
rate dependence. The essential features of the dynamic response of the three-dimensional core
are reproduced by the continuum model. Moreover, the quantitative agreement between the
two sets of simulations is also reasonably good, especially considering that the core response
involves coupled plastic wave propagation and plastic buckling. The elevations in stress exerted
by the core on the faces due to the delay in buckling and material rate dependence are both
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Figure 15. Comparison of simulations based on the continuum core model with those based on full
three-dimensional meshing of the core at two overall strain-rates: (a) ˙̄� = 200 s−1; and (b) ˙̄� = 2000 s−1.

Equal and opposite velocities are applied to the top and bottom faces.

captured, as is the dramatic rise in stress just prior to buckling when the plastic wave reflected
from the core mid-plane reaches the face.

4.2. Comparisons for the case where the bottom face is fixed

In the calibration step, for simplicity in evaluating the constitutive response, the strain-rate at
every point in the core is taken to be the overall rate, ˙̄�. In applications of the continuum
constitutive model, the local strain-rate at each point in the core, �̇P

3 , is used in evaluating
�̂3(�P

3 , �̇P
3). Thus, in the calculations carried out in this sub-section and the next, the point-wise

rate dependence of
�
� P

3 on �̇P
3 in Figure 14 is taken into account.

With the parameters of �̂3 specified according to the calibration carried out above, simulations
are made using the continuum model for the case where the top face is subject to uniform
velocity V0 and the bottom face is fixed. This case brings in the effect of acceleration of
the centre of mass of the core resulting in a stress difference between the top and bottom
faces. The two sets of predictions for the stresses, computed with and without material strain-
rate dependence, are compared in Figure 16 for V0/c0�Y = 22.8 ( ˙̄� = 2000 s−1). The continuum
model approximately captures the three contributions to dynamic strengthening of the core at
high strain-rates that have been highlighted earlier in the paper. In particular, it can be seen that
the significant difference between the stresses exerted on the top and bottom faces is correctly
replicated. Coupling of plastic wave propagation and buckling is also captured through the input
function �̂3. Thus, even though the input function has been calibrated at fixed values of strain-
rate, it successfully reproduces responses in applications where the strain-rate varies through
the thickness of the core. The largest error occurs after buckling occurs when the stresses drop.
Given the sensitivity of the buckling pattern in the core webs to the overall strain-rate, it is
not surprising that this aspect is not with high fidelity by the continuum model.
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Figure 16. Comparison of simulations based on the continuum core model with those based on
full three-dimensional meshing of the core at an overall strain-rate ˙̄� = 2000 s−1. The bottom face
is fixed and the top face is moved at constant velocity. Compressive stresses exerted on the

top face and bottom face are shown.

4.3. Comparisons for free flight

The following case illustrates application of the continuum model to a problem where the overall
strain-rate is initially high and then decreases with time. Consider free flight of a sandwich plate
initially at rest where motion is initiated by abruptly imposing an initial velocity V0 = 200 m s−1

on the top face. The top face flies into the core, compressing it such that it, in turn, exerts
stress on the back face. After a period of non-uniform motion and crushing, the entire assembly
moves with common velocity. In the example considered here, each of the faces is assigned
the same mass/area as the core. Other details of the core are the same as those used in the
examples throughout the paper, and the parameters characterizing �̂3 are those determined in
Section 4.1. Conservation of momentum gives the final common velocity as V0/3, and two-
thirds of the initial kinetic energy imparted to the top face is dissipated in core crushing in
this example.

A comparison of simulations based on the continuum model and those from three-dimensional
simulations that fully mesh the core webs is given in Figure 17 in the form of curves of overall
crushing strain, �̄, as a function of time. The curves are terminated when the assembly has
achieved the maximum crushing strain and the common velocity. A slight oscillation of the
overall strain continues beyond this point due to elastic vibrations of the system as it undergoes
free flight. Material rate dependence reduces the crushing strain. The free flight case is relevant
to intense shock loadings, and it is evident that the continuum model is successful in simulating
core crushing.

5. CONCLUSIONS

Three effects enhancing the effective strength of honeycomb metal sandwich cores under
dynamic crushing have been highlighted in this paper: material rate dependence, inertial
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Figure 17. Comparison between simulations of the evolution of the overall crushing strain based on
the continuum core model and those based on three-dimensional meshing of the core for crushing
under free flight conditions where the sandwich plate is unconstrained. The core and bottom face are
initially at rest and the top face is set in motion abruptly with velocity V0 = 200 m s−1. Details of

the sandwich plate are given in the text.

resistance and inertial buckling stabilization. Of the three, buckling stabilization is the most
significant and the most difficult to characterize and model. Buckling stabilization is important
in the range of relative velocities of the faces produced by shock loadings; it becomes signifi-
cant when the relative crushing velocity of the faces satisfies V0/c0�Y>5, where c0 and �Y are
the elastic wave speed and yield strain of the base material. For loadings at these rates, axial
plastic wave propagation and plastic buckling occur over comparable time scales and substan-
tial plastic straining takes place prior to buckling. The critical role of initial imperfections in
triggering buckling requires further investigation.

A continuum constitutive model of the core has been proposed that incorporates the three
strengthening effects in crushing and which is capable of representing the core under multi-axial
stressing, including combinations of crush, shear and stretch. The purpose of the constitutive
relation is to replace detailed meshing of core members in sandwich structures in large finite-
element models, thereby reducing the size of the numerical computation. A decision to invoke a
continuum model of the core necessarily involves a tradeoff between loss of fidelity associated
with the continuum model and the difficulty and computational cost of full core meshing.

It has been emphasized that a continuum representation of the core is inherently approximate
in the sense that under most circumstances buckling does not occur on a scale smaller than the
core thickness. On the other hand, the continuum representation is able to approximately capture
most of the complexities of dynamic crushing behaviour, including plastic wave propagation
through the core prior to buckling, delayed buckling and the erosion of strength as buckling
develops. A critical step in application of the continuum model is identification of the input
functions, �̂i (�P

i , �̇P
i ), that specify the constitutive model. The process requires a functional form
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for �̂i (�P
i , �̇P

i ) be assumed; then the parameters specifying the form must be determined by
fitting predictions to either experimental data or to computations based on fully meshed core
geometries. An approach for the input function for crushing using results based on unit cells
with fully meshed cores has been illustrated here for a specific core. The parameters of the
input function must be determined for each core in terms of its specific set of geometric and
material parameters. Identification procedures are also addressed in Reference [14]. Further work
to develop the identification of the input functions is needed both for the square honeycomb
subject to the other stress components and for other core geometries [15].

Finally, we note that the rate-dependent constitutive model proposed in this paper has been
implemented as a VUMAT subroutine in the finite-element code ABAQUS Explicit.
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