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Energy and Momentum Transfer
in Air Shocks
A series of one-dimensional studies is presented to reveal basic aspects of momentum and
energy transfer to plates in air blasts. Intense air waves are initiated as either an isolated
propagating wave or by the sudden release of a highly compressed air layer. Wave
momentum is determined in terms of the energy characterizing the compressed layer. The
interaction of intense waves with freestanding plates is computed with emphasis on the
momentum and/or energy transferred to the plate. A simple conjecture, backed by nu-
merical simulations, is put forward related to the momentum transmitted to massive
plates. The role of the standoff distance between the compressed air layer and the plate
is elucidated. Throughout, dimensionless parameters are selected to highlight the most
important groups of parameters and to reduce parametric dependencies to the extent
possible. �DOI: 10.1115/1.3129773�
Introduction
Numerical analysis codes such as LS-DYNA, DYSMAS, and

BAQUS have been used for some time to model specific fluid-
tructure interactions �FSI� involving structures subject to blast
oads generated in water and air environments. These powerful
ools permit engineers to pose and solve complicated practical
roblems. In part, because of the availability of these codes, there
as been little inclination in recent years to investigate some of
he most elementary aspects of fluid-structure interaction relevant
o structural design. Fundamental understanding of the role of
ntense blast loads on structures in water, which provided the mo-

entum transferred to a plate struck by a planar wave, is
rounded in results obtained years ago, such as those of Taylor �1�
nd Cole �2�. Recently, a significant advancement in basic knowl-
dge became available through an extension of these results to
ntense air shocks by Kambouchev et al. �3,4�, which will subse-
uently be referred to as the KNR theory. The study of basic
ne-dimensional fluid-structure interaction problems for air blasts
s continued in this paper to elucidate behavior and to add to the
tore of relatively simple fundamental results.

Section 2 introduces some of the properties of intense planar
aves. A standard device for bypassing detailed modeling of an

xplosive charge employing the sudden release of a highly com-
ressed layer is introduced, and the connection between the source
nergy and wave momentum is established. The results of Taylor
or a plate struck by an isolated planar wave are reviewed briefly
n Sec. 3 with additional results for fluid-structure interactions in
ir supplementing those of KNR. The role of proximity of the
ompressed layer to the plate is studied in Sec. 4. The results for
nergy and momentum transfer to the plate are given as a function
f the standoff distance between the plate and the compressed
ayer.

Isolated One-Dimensional Blast Waves

2.1 Linear Compression Waves in Water. Nonlinear com-
ressibility effects of blast waves propagating in water are rela-
ively small unless the peak pressures are in excess of 100 MPa,
ut they do give rise to a shocklike front and followed by expo-
entially decaying intensity. Valuable fluid-structure interaction
esults for water blast waves can be obtained using linear wave
echanics with cavitation modeled when the pressure in the water

Contributed by the Applied Mechanics Division of ASME for publication in the
OURNAL OF APPLIED MECHANICS. Manuscript received July 28, 2008; final manuscript
eceived January 27, 2009; published online June 15, 2009. Review conducted by

shkan Vaziri.

ournal of Applied Mechanics Copyright © 20

ded 18 Jun 2009 to 128.103.149.52. Redistribution subject to ASM
becomes negative. The result of Taylor �1� and Cole �2� for mo-
mentum transfer to a plate struck by a blast wave is such an
example. An isolated planar wave propagating in the positive
x-direction through water is modeled as being exponential in form
with particle velocity v=v0f��� and overpressure �p=�p0f���,
where �=x−ct and

f��� = 0, � � 0
�1�

f��� = e�/�, � � 0

The peak overpressure and particle velocity are related by �p0

=�cv0 with � as the ground state density, c=�B /� as the wave
speed, and B as the compressibility modulus. The decay time as-
sociated with the exponential shape is t0=c /�. Generally, the am-
bient pressure in the water is very small compared with �p0, and
it is neglected in the Taylor analysis. In this case, the total wave
energy/area �E0 is equally partitioned between the energy associ-
ated with the overpressure ��p2 / �2B�dx and the kinetic energy
��v2 /2dx for isolated planar waves of any shape f���. The
momentum/area is I0=��vdx. For the exponential wave, these are

I0 = �p0t0 = �v0�, �E0 = ��p0
2�/B�/2 = �v0

2�/2 �2�

2.2 Nonlinear Compression Waves in Air. The nonlinear
compressibility of air plays an essential role in the evolving shape
changes experienced by intense planar waves. An intense wave
propagating into quiescent ambient air develops a shock front
with a shape that evolves as the wave advances. Because the wave
speed increases with pressure due to nonlinear compressibility, the
front of the wave propagates faster than rear portions of the wave
such that as the wave propagates its width increases and its peak
pressure decreases. Here, selected analytic results from the non-
linear theory of one-dimensional planar waves propagating in air
�5� will be used along with numerical methods �6,7,3� to establish
the results, which follow in the paper. Throughout, air is treated as
an ideal gas with gas constant R and �=1.4 as the ratio of the
specific heats. Artificial viscosity will be introduced in the numeri-
cal simulations.

Let patm, �atm, and catm=��patm /�atm be the pressure, density,
and wave speed in air under ambient atmospheric conditions, re-
spectively. Consider adiabatic propagation of a rightward moving
isolated planar wave with smooth velocity v= f�x� at t=0. For t
�0, prior to shock formation, the distributions of the velocity,
pressure, density and wave speed are governed by the following
nonlinear implicit equations �5�:
v = f�x − �c + v�t�
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patm
= � �

�atm
��

= � c

catm
�2�/��−1�

= 	1 +
� − 1

2

v
catm


2�/��−1�

�3�

his result will be used as an initial condition to initiate rightward
oving waves with specified momentum and in some of the nu-
erical simulations.
These results can also be used to establish the momentum and

otal wave energy for specific waves and the kinetic and internal
nergies at a given instant of time prior to shock formation. The
omentum/area of the wave I0 is independent of time as follows:

I0 = �atmcatm�
−�

� � �

�atm

v
catm

�dx �4�

he kinetic energy/area varies with time such that

KE�t� =
1

2
�patm�

−�

�
�

�atm
� v

catm
�2

dx �5�

he total wave energy/area is also independent of time; it is the
um of the kinetic energy and excess internal energy �the internal
nergy minus the ambient energy�.

�E0 = KE�t� +
patm

� − 1�
−�

� 	 p

patm
− � p

patm
�1/�
dx �6�

hich is only valid prior to shock formation and with no dissipa-
ion. For example, for a wave with the velocity distribution at t
0,

v = v0e−�x/w�2
�7�

umerical integration provides the plots of momentum and total
ave energy as a function of p0 / patm in Fig. 1, where p0 is the
aximum pressure at t=0 related to v0 by Eq. �3�. The ratio of the

inetic energy to total wave energy at t=0 is plotted as a function
f p0 / patm in Fig. 2. The more intense the wave, the larger is the
inetic energy as a fraction of the total wave energy. These results
epend on the details of the velocity distribution, but the trends
xpressed in term of peak pressure are representative. In Fig. 2,
E�0� /�E0 does not approach 1

2 for low intensity waves, as seen
or water blasts, because the ambient air pressure cannot be ne-
lected for low intensity air waves.

The numerical method employed to analyze the series of one-
imensional problems presented below is based on the widely
sed von Neumann–Richtmyer algorithm �6�, which incorporates
rtificial viscosity in the model of the gas to smoothen the shock
iscontinuities and to stabilize the solution procedure. The viscous
ontributions are added in a manner, which preserves energy con-

ig. 1 Normalized wave energy/area and momentum/area for a
solated right-ward moving planar wave with an initial peak
ressure p0 in air and a prescribed velocity distribution
ervation. The present formulation follows that are used in the
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KNR studies �3� and are detailed in the text �7�. The equations
governing the constitutive behavior of the air are as follows. Let
p, �, and T be the pressure, mass density, and temperature in the
current state, respectively. The internal energy/mass is given by
e=RT / ��−1�. Denote the normal stress contribution due to vis-
cosity by Q such that the ideal gas law is modified as

p = �RT − Q �8�
Following Refs. �3,7�, the artificial viscosity contribution is taken
as Q=0 for �̇�0 and

Q = − �i��b1�̇��2 + b2c��̇���, �̇ � 0 �9�

where �̇ is the strain-rate, �i is the initial density, � is a measure of
the smeared shock thickness related to the current mesh size, c
=����−1�e is the current sound speed, and b1 and b2 are the
dimensionless viscosity coefficients. The time rate of the internal
energy is taken to be consistent with energy conservation �−p�̇

=�ė� as

ė = 	− �� − 1�e +
Q

�

�̇ �10�

The regions on the x-axis occupied by the air at t=0 are divided
into a uniform mesh. The plate is represented as a freestanding
plane with mass/area mp. The description is Lagrangian with the
positions of the material points as independent variables. The
equations for the nonlinear behavior of an ideal gas are discretized
in a manner that conserves momentum and energy. The results
presented in the paper have been computed with between 2000
and 5000 mesh points, depending on the problem, with time steps
set in accord with the stability requirements of the algorithm �3,7�.
The viscosity coefficients were set at b1=2 and b2=1.

2.3 Waves Generated by a Sudden Release of Highly Pres-
surized Air. In numerical simulations, a useful device to simulate
blast waves is to suddenly release a “container” of adiabatically
compressed air that is initially at rest and that then pushes into
quiescent ambient air. To this aim, consider a one-dimensional
layer of air under ambient conditions of width hatm, which is com-
pressed adiabatically with no dissipation to thickness h. The ex-
cess energy/area in air in the compressed layer �E0, excluding the
energy of the air in its ambient state, is

�E0 =
1

� − 1
�p0h − patmhatm� =

patmh

� − 1
	 p0

patm
− � p0

patm
�1/�


�11�

with p0 / patm= �hatm /h��. For example, a layer with hatm=0.27 m
that is squeezed to h=0.01 m produces p0 / patm=100 and �E0

2

Fig. 2 Ratio of kinetic energy/area at t=0 to total wave energy/
area as a function of initial peak pressure for a wave with a
prescribed initial velocity distribution
=0.19 MJ /m .
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Let I�t� be the momentum/area of the rightward moving wave
enerated by the sudden release of the compressed air at t=0. The
esult will apply to a compressed layer of thickness h and excess
nergy/area �E0 bounded by quiescent ambient air on its right and
rigid wall on the left or, equally, by symmetry, to a symmetri-

ally placed compressed layer of thickness 2h and excess energy/
rea 2�E0 bounded by quiescent air on both sides. As the wave
ropagates to the right, a shocklike front forms whose steepness is
ontrolled by the artificial viscosity. The shape of the wave slowly
volves as described earlier. At any instant the wave energy is

�E =� 	1

2
�v2 + ��e − eatm�
dx �12�

ith integration in the current state for 0	x�� and eatm
patm / ���−1��atm�. The wave energy is constant with �E=�E0
iven by Eq. �11�, a feature that is preserved by the numerical
cheme.

With x=0 at the edge of the rigid wall �or at the symmetry
lane�, I=�0

��vdx is the momentum/area of all the air occupying

0. By dimensional analysis, one can show that the entire para-
etric dependence for air modeled as an ideal gas is captured by

he dimensionless form

I
��E0m0

= F� p0

patm
,

t

�E0/�p0catm�� �13�

ith a dependence on both � and the viscosity coefficients being
mplicit. Here, m0=�0h=�atmhatm is the mass/area of the com-
ressed air layer. Initially at t=0 when the compressed layer is
eleased, I=0, but in a very short period of time
t / ��E0 / �p0catm��
1� an isolated compression wave forms and
ropagates to the right. Thereafter, I is nearly constant as can be
een in Fig. 3�a�. The momentum in the air occupying x
0 is not
trictly constant because of interaction with the wall. After reach-
ng a maximum, I decreases slightly as the pressure at the wall
rops below patm and, subsequently, I increases slightly when the
all pressure rises again above patm. However, to a very good

pproximation, I is constant once an isolated wave emerges, and
he normalized momentum of the wave I /��E0m0 depends essen-
ially only on p0 / patm. This dependence is plotted in Fig. 3�b� with
evaluated at its minimum value following the first maximum.
he success of the particular normalization is evident in that
�

Fig. 3 Normalized momentum/area of righ
compressed air layer with excess energy/a
Momentum/area versus time for two initial p
wave.
/ �E0m0
1 for intense “explosions.” Included in this figure is
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the result obtained by a linearized analysis in which p0 / patm is
perturbed about unity as follows:

I
��E0m0

=�1

2
� p0

patm
− 1� �14�

These results are not new, although the normalization given
above seems to be particularly useful for the present objectives.
The power of dimensional analysis to reduce the parametric de-
pendencies is laid out in texts such as Ref. �8�, and related results
have been presented in various sources including Refs. �9,10�.

3 Interaction Between Intense Isolated Waves and a
Freestanding Plate

Kambouchev et al. �3� extended Taylor’s linear theory of fluid-
structure interaction in water to intense planar air blasts. Formulas
for the momentum transfer to a freestanding plate were developed
and calibrated by accurate numerical simulations. These authors
generated a rightward moving wave by releasing a highly com-
pressed layer well to the left of the plate. The wave propagates,
forms a shock, and evolves in shape before striking the plate. The
authors fit an exponential pressure distribution to the wave p
= p0e−t/t0 with peak pressure p0 and decay time t0, in the period of
time when the wave passes the plate �simulated with the plate
removed�. The interaction of the wave with the plate is computed
with emphasis on the maximum momentum/area I transmitted to
the plate as a function of the wave characteristics at the instant the
plate is impacted.

Here, the KNR approach is modified in several ways. �1� The
initial condition is taken as a rightward moving isolated wave �3�
with precisely defined momentum/area I0 and wave energy/area
�E0. �2� The momentum/area transmitted to the plate I is normal-
ized by the incident momentum I0 and it is conjectured based on
numerical simulations that the limit for a massive plate is I=2I0
for all incident blast waves. �3� The results are presented in di-
mensionless form using invariant measures I0 and �E0 of the
wave intensity. �4� The plate interacts with ambient air on the side
opposite the blast, which KNR neglects.

3.1 Wave Impinging on a Massive Plate. For massive plates
�mp→��, many computations have been performed for different
initial wave shapes �3� launched at a wide range of distances from
the plate for initial pressure peaks p0 ranging from several times

rd traveling wave produced by an initially
�E0, mass/area m0, and pressure p0. „a…

sures. „b… Momentum/area of the emerged
twa
rea
res
patm to 1000patm. In all cases, it has been found that to within a
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ew tenths of a percent the momentum/area transferred to the
late, or equivalently, the impulse/area acting on the plate is I
2I0 with I0 as the momentum/area of the incident wave �4�.
oncomitantly, within the same precision the momentum/area of

he reflected wave is −I0. As is well known, linear theory �e.g.,
aylor’s theory� gives precisely I=2I0 for the limit of massive
lates. Based on the above findings, it seems reasonable to con-
ecture that I=2I0 holds for compressible air waves as well. The
ery small difference between the numerical results determined
ere and I=2I0 is likely due to errors associated with the numeri-
al method, but this has not been established.

To our knowledge there is no proof of this result for nonlinear
ompressible waves, nor does it appear to have been remarked
pon in the literature. The fact that the reflected wave has
omentum/area −I0 is obviously consistent with equal and oppo-

ite propagating waves colliding subject to conservation of mo-
entum and energy. By symmetry, this problem is the same as the
ave impacting a massive plate. Moreover, the simple result I
2I0 would be expected from a statistical mechanical model of an

deal gas with molecules represented as hard spheres that undergo
erfectly elastic collisions. The constitutive equations of the con-
inuum model of an ideal gas are derived from such a model.
evertheless, it is not obvious that the solution to the full set of

ontinuum equations governing the ideal gas preserves this simple
esult, especially with inclusion of artificial viscosity.

3.2 Wave Impinging Upon a Plate of Finite Mass/Area mp.
rightward propagating wave prescribed by Eq. �7� is launched at

=0 in the direction of a plate whose surface directed toward the
last is initially located at x=d, with d /w sufficiently large such
hat there is no interaction between the plate and the wave at t
0. Ambient air exists on both sides of the plate. The region of the
-axis is taken to be sufficiently large such that no reflected waves
mpact the plate from either the left or the right. The plate accel-
rates upon impact of the blast wave, attaining a maximum veloc-
ty, and then begins a slow deceleration due to the fall-off in
ressure on the blast side and the buildup of pressure on the back
ide of the plate as it plows into the air on that side. The objective
s to determine the maximum momentum/area I transmitted to the
late as related to the incident momentum I0.
One set of independent parameters determining I are mp, v0, w,

, patm, and �atm, along with � and the viscosity coefficients,
hich will be regarded as fixed. While catm=��patm /�atm is not

ndependent, it can be used when convenient. The momentum/
rea I0 and wave energy/area �E0 of the incident wave defined in
qs. �4� and �6� can be used in place of v0 and w. These variables
ave the advantage that they are invariant measures of the incident
ave intensity in the sense that they remain constant as the wave
ropagates and, moreover, they are less tied to the specificity of
he initial launching conditions. Based on the set of independent
ariables—mp, I0, �E0, d, patm and �atm—it follows from dimen-
ional analysis that the general functional dependence of the
aximum momentum/area imparted to the plate I depends on

hree dimensionless parameters as

I

I0
= F��,

�E0

catmI0
,
patmd

catmI0
� �15�

ith

� =
1

2

I0
2

�E0mp
�16�

The parameter � has been defined in terms of the wave invari-
nts such that it coincides with Taylor’s �1� fluid-structure inter-
ction parameter for linear exponential waves �1� using the ex-
ressions in Eq. �2�, i.e., �=�� /mp or, equivalently, �= t0 / tp with

p�mp / ��c�. Taylor’s result for the maximum momentum im-

arted to the plate in a water blast is
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I

I0
= 2��/�1−�� �17�

which is included in Fig. 4. In Taylor’s water blast model, there is
no restraint of water or air on the back side of the plate. The
maximum momentum of the plate is attained when the pressure on
the front side of the plate becomes negative, interpreted as the
onset of cavitation.

Plots of I / I0 as a function of the generalized � are presented in
Fig. 4 for a range of initial conditions specified by the other two
dimensionless parameters. An illustration in dimensional terms is
included in the figure caption. It is seen that the fraction of the
incident wave momentum transferred to the plate is primarily de-
pendent on � with importance dependence on the other two pa-
rameters as well. Relatively small changes in �E0 / �catmI0� are
associated with large changes in p0 / patm. In spite of the differ-
ences in modeling, the trends in Fig. 4 are similar to the more
extensive results presented by KNR �3�, who used other measures
of the incident wave intensity evaluated at the moment of impact
and who also developed formulas that accurately reproduce their
numerical results. Specifically, KNR generalized the Taylor pa-
rameter to intensify air blasts according to �= t0 / tp

� where tp
�

�mp / ��sUs� with �s as the density directly behind the shock front
and Us as the velocity of the shock front, both measured at the
instant just before the wave hits the plate.

Figure 4 provides a unified way to view fluid-structure interac-
tion between blast waves in water and air and a freestanding plate.
Substantial reductions in momentum transfer due to fluid-structure
interaction will only be achieved if I0

2 /�E0 is comparable to mp.
For relatively thick metallic plates, this will only occur for very
intense air blasts. In air blasts, most plates acquire the maximum
possible momentum/area 2I0.

An advantage of using � as defined in Eq. �16� to describe the
fluid-structure interaction behavior is that this dimensionless vari-
able is defined using invariants of the incident wave, whereas, for
example, the choice �= t0 / tp

� favored by KNR must be determined
in some manner �computation or test measurements� at the instant
the wave strikes the plate. For a wave launched with specific
momentum/area and excess energy/area, �= t0 / tp

� depends on the
distance the wave travels to reach the plate. Conversely, a disad-
vantage of the present choice of � in Eq. �16�, as opposed to that
of KNR, is that the present choice does not reflect the fact that the
intensity of the traveling wave diminishes with distance traveled.
This deficiency is due to the fact that the wave energy �E0 defined

Fig. 4 Ratio of momentum/area transmitted to a plate to the
momentum/area of the incident wave in terms of the general-
ized Taylor FSI parameter � in Eq. „16… and the two dimension-
less parameters characterizing the wave. The values
�E0 / I0catm=1 and 1.1 correspond to a wave „7… released with
w=0.05 m with p0 /patm=16 and 127, respectively, at three dis-
tances from the plate „d=0.4 m, 0.7 m and 1.2 m.
initially by Eq. �6� and subsequently by Eq. �12�, includes internal
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nergy �heat� in the “quiescent” air left behind the propagating
ave. In the computational model, the remnant internal energy is

et by the viscosity coefficients. In the absence of viscosity, the
emnant energy is set by jump conditions across the shock. Thus,
hile the wave energy �E0 is conserved, it does not faithfully
easure the intensity available to accelerate the plate after the
ave has traveled distances sufficient to leave behind an appre-

iable fraction of its initial energy as heat. These trends are made
xplicit in Fig. 4 through the dependence on patmd / �catmI0�.

In conclusion, it has been noted that there are several ways to
eneralize Taylor’s fluid-structure interaction parameter � for in-
ense air blasts. The choice identified by KNR has the distinct
dvantage that it provides a measure of the relevant wave intensity
t the instant the wave strikes the plate. As a consequence, it
ppears to reduce the dependence of I / I0 on only one dimension-
ess parameter in addition to �, assuming wave has propagated far
nough to have evolved into an exponential shape.

Energy and Momentum Imparted to a Plate by a
ighly Compressed Layer of Air

4.1 The Role of Backing to the Compressed Air Layer for
lates With Zero Standoff. Consider the initial configurations in
ig. 5 wherein an adiabatically compressed air layer such as that

ntroduced in Sec. 2.3 is released at t=0 and accelerates a plate in
irect contact with the layer to the right. Two cases are consid-
red: �a� no backing on the left of the layer other than ambient air
nd �b� rigid backing on the left. The plate flies into ambient air
n its right. A specific example for the case of rigid backing in
ig. 6 shows the time evolution of the kinetic energy/area of the
late until the point that it attains its maximum velocity. In this
xample, almost 80% of the initial excess energy �11� in the com-
ressed layer �E0 is transferred to the plate. The figure also shows
he evolution of the excess energy in the air to the left and right of
he plate �E, defined as the sum of the kinetic energy and the
xcess internal energy in Eq. �12�. The maximum velocity is at-
ained after the plate has plowed into ambient air on its backside
reating a pressure wave to the right of the plate.

It is no surprise that the role of the backing is enormous, as seen
n Fig. 7. In this figure, the maximum kinetic energy/area trans-
erred to the plate KE is normalized by the initial excess energy in
he compressed layer �E0 and plotted against mp /m0. As in Sec.
.3, m0=hatm�atm=h�0 is the mass/area of the air in the com-
ressed layer. The only other dimensionless parameter in this
roblem �other than � and the viscosity coefficients� is p0 / patm
�hatm /h��. When the compressed layer has rigid backing, the
late acquires a significant fraction of the energy of the com-
ressed layer, depending in detail on mp /m0 and p0 / patm as plotted

Fig. 5 Configuration and notation fo
layer at t=0 with no standoff dista
pressed layer. „b… Rigid backing to c
n Fig. 7�b�. With backing, highly compressed initial layers
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�p0 / patm�100� acting on relatively massive plates �mp /m0�10�
transmit 80% or more of their energy to the plate. The maximum
momentum/area transmitted to the plate can be obtained from I
=�2mpKE. By contrast, a plate launched by a compressed layer
with no backing acquires a small fraction of �E0 �Fig. 7�a��.

4.2 Finite Standoff d With Rigid Backing. The effect of a
finite standoff distance d between the plate and the compressed
layer is now considered, as depicted in Fig. 8. The compressed air
layer has rigid backing. At t=0, ambient air exists between the
compressed layer and the plate and also to the right of the plate.
The normalized maximum kinetic energy acquired by the plate
KE /�E0 is computed as a function of the standoff distance. In
addition to the two dimensionless parameters introduced for the
case of zero standoff p0 / patm and mp /m0, one new dimensionless
standoff parameter comes into play. One possibility is d /hatm and
another is patmd /�E0; these parameters can be expressed in terms
of one another using the other two dimensionless parameters. The
choice d /hatm is preferred because hatm reflects the distance over
which the highest pressures in the compressed layer will still per-
sist as it expands. The results for one set of parameters p0 / patm

imulations releasing compressed air
to plate. „a… No backing to com-

pressed layer.

Fig. 6 An example for the case of the compressed layer with
rigid backing and a plate with zero standoff distance. The evo-
lution of the several components of the energy of the system
with time is plotted until the time when the plate acquires its
maximum velocity. The energy/area �E in the air to the left and
right of the plate is the sum of the kinetic energy and the ex-
cess internal energy as defined in Eq. „12…. As noted from the
top curve, the numerical method conserves energy to a high
degree of accuracy. In this example, value for mp is equivalent
to a 1 cm thick steel plate; the maximum velocity attained by
r s
nce
the plate is 120 m/s.
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100 and mp /m0=100 are plotted as a function d /hatm in Fig. 9.
he exceptionally strong effect of the standoff distance is evident,
s will now be discussed.

The kinetic energy transferred to the plate drops dramatically as
he standoff distance increases. For the example given in the cap-
ion of Fig. 9 with a specific choice of dimensions, the kinetic
nergy transferred to the plate is already reduced substantially at
he standoff d�hatm=0.33 m. The limit for large standoff labeled
n Fig. 9 is readily understood using the result in Sec. 2.3 for the

omentum of a wave generated by the release of the compressed

Fig. 7 Ratio of the maximum kinetic energ
energy/area in the compressed layer for the c
layer. „a… No backing to the compressed lay

ig. 8 Configuration for simulations of energy transferred to
late with standoff d. The compressed air layer has rigid
acking.

ig. 9 The maximum kinetic energy/area transmitted to plate
s a function of the standoff distance between the plate and the
ompressed air layer plotted for a specific set of dimensionless
arameters. For reference, a set of dimensional parameters
hat corresponds to these results is: hatm=0.33 m, h=0.012 m,
E0=0.24 MJ/m2, mp=40 kg/m2, m0=0.4 kg/m2 and p0

10.5 MPa. The limit for large standoff is discussed in the text.
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air layer in a semi-infinite region in conjunction with the fluid-
structure interaction results in Fig. 4. With reference to Fig. 3�b�,
note that the momentum/area of the rightward moving wave gen-
erated by a compressed layer with p0 / patm=100 is I
�1.05��E0m0, assuming the wave has been propagated suffi-
ciently far to be fully developed with a well defined momentum.
Assuming this is the case, identify I with the momentum/area I0 of
the wave hitting the plate and �E0 as the wave energy/area. By
Eq. �16�, ��0.55�m0 /mp�=0.0055 and, thus, from Fig. 4, the
momentum/area transferred to the plate is nearly 2I0

�2.1��E0m0. Then, because the kinetic energy/area of the plate
is

KE = �2I0�2/�2mp� � 2.2�E0�m0/mp�
the large standoff limit is

KE

�E0
� 2.2

m0

mp
�18�

For the set of parameters in Fig. 9 this limit is 0.022. The example
in Fig. 9 is representative for any relatively massive plate �i.e.,
mp /m0�10� in any intense air blast.

The standoff effect illustrated in Fig. 9 is one-dimensional. It is
quite distinct from the more easily understood effect of standoff in
two and three dimensions wherein the blast wave intensity, as
measured by the momentum/area and/or energy/area, diminishes
inversely as a function of distance as the wave propagates away
from the source. In the one-dimensional situation considered here
with backing and no standoff, a large fraction of the air layer
energy is converted directly into the kinetic energy of the plate as
the layer expands against the plate �c.f., Fig. 7�b��. At the other
extreme, for large standoff, the energy in the compressed air layer
is first converted into the energy of the propagating wave. When
this wave hits the plate, a very small fraction of the wave energy
is transferred to the plate because the wave bounces off the plate
retaining much of its energy. In other words, with sufficient stand-
off �e.g., d /hatm�1� for intense waves �p0 / patm�10� and rela-
tively massive plates �mp /m0�10�, most of the energy of the
initial compressed layer remains trapped between the wall and the
plate in the form of kinetic and internal energies of the air with
waves reverberating back and forth between the wall and the
plate.

5 Concluding Remarks
The study focused on one-dimensional waves in air modeled as

an ideal gas. The main findings are as follows.

�a� For intense waves in air initiated by the sudden release of

ea transmitted to plate to the initial excess
e with no standoff between the plate and the
„b… Rigid backing to the compressed layer.
y/ar
as

er.
an adiabatically compressed layer, a relatively simple re-
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lation exists between the energy in the compressed layer
and the momentum of the ensuing wave as presented in
Fig. 3.

�b� A massive plate struck by an isolated wave acquires
twice the momentum of the incident wave. It remains to
establish this result theoretically—it has been verified to
a high degree of numerical accuracy in this paper.

�c� A presentation is given of fluid-interaction curves for the
fraction of the momentum transferred to a freestanding
plate in intense air blasts using invariants of the impact-
ing wave �Fig. 4�. While more comprehensive results
have been presented by KNR �3� using other variables to
describe the incident wave, the results given here provide
additional insights to the interaction and have certain ad-
vantages stemming from the invariance of the param-
eters.

�d� The enormous effect of backing to the compressed layer
on the energy transmitted to a plate in direct contact with
the layer is quantified.

�e� Standoff between the plate and the compressed layer also
has a very large effect in a one-dimensional setting. If the
standoff is sufficiently large such that a well developed
wave forms prior to impacting the plate, relatively little
of the initial energy in the compressed layer is transmit-

ted to the plate.
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