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A critical examination is made of two classes
of strain gradient plasticity theories currently
available for studying micrometre-scale plasticity.
One class is characterized by certain stress quantities
expressed in terms of increments of strains and
their gradients, whereas the other class employs
incremental relationships between all stress quantities
and the increments of strains and their gradients. The
specific versions of the theories examined coincide for
proportional straining. Implications stemming from
the differences in formulation of the two classes of
theories are explored for two basic examples having
non-proportional loading: (i) a layer deformed into
the plastic range by tensile stretch with no constraint
on plastic flow at the surfaces followed by further
stretch with plastic flow constrained at the surfaces
and (ii) a layer deformed into the plastic range by
tensile stretch followed by bending. The marked
difference in predictions by the two theories suggests
that critical experiments will be able to distinguish
between them.

1. Introduction

The first strain gradient theories of plasticity were
proposed over two decades ago [1,2]. An early objective
was to extend the classical isotropic hardening theory of
plasticity, J2 flow theory, by incorporating a dependence
on gradients of plastic strain. This has turned out
to be more difficult than was first anticipated. An
otherwise attractive formulation by Fleck & Hutchinson
[3] was found, under some non-proportional straining
histories, to violate the thermodynamic requirement that
plastic dissipation must be positive. Gudmundson [4]
and Gurtin & Anand [5], who noted this violation,
proposed alternative formulations which ensured that
the thermodynamic dissipation requirement was always
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met. The manner in which these authors circumvented the problem was unusual for a rate-
independent solid—they proposed a constitutive relation in which certain stress quantities are
expressed in terms of increments of strain. This class of formulations admits the possibility of
finite stress changes due to infinitesimal changes in strain under non-proportional straining.
By contrast, the constitutive relation proposed by Fleck & Hutchinson [3] was incremental in
nature with increments of all stress quantities expressed in terms of increments of strain. This
constitutive relation has been modified so that it now satisfies the thermodynamic requirements
[6]. The consequences of the two classes of formulations for problems involving distinctly
non-proportional loading histories will be investigated in this paper. Here, in the interest of
brevity and for lack of a better terminology, a constitutive construction in the class proposed
by Gudmundson [4] and Gurtin & Anand [5] will be referred to as non-incremental, whereas that
proposed by Fleck and Hutchinson will be termed incremental.

To bring out the differences in predictions for the two classes of theories, it is essential to
consider problems with non-proportional loading, yet to the best of our knowledge no such
studies have been made. Non-proportional loading has played a central role in the history
of plasticity not only because it arises in applications, but also by serving to clarify critical
aspects of constitutive behaviour. Under nearly proportional histories, the predictions of the two
theories differ only slightly. Indeed, the two formulations employed in this paper coincide with
the prediction of a deformation theory of strain gradient plasticity under strictly proportional
straining histories. The deformation theory is a nonlinear elasticity theory devised to mimic
elastic–plastic behaviour under monotonic loading for problems with little or no departure
from proportional straining. Almost all investigations in the literature employing strain gradient
plasticity, whether based on the incremental or the non-incremental formulation, have focused on
problems with loads applied proportionally. Here, two basic non-proportional loading problems
are studied. The first is a layer of material stretched uniformly in plane strain tension into the
plastic range with no constraint on plastic flow at its surfaces. Then, at a prescribed stretch,
plastic flow is constrained such that no further plastic strain occurs at the surfaces as the layer
undergoes further stretch. The constraint models passivation of the surfaces at the prescribed
stretch whereby a very thin layer is deposited on the surface blocking dislocations from passing
out of the surface. The second problem is again a layer stretched uniformly in plane strain tension
into the plastic range to a prescribed stretch at which point bending is imposed on the layer with
no additional average stretch. In the first problem, non-proportionality arises due to the abrupt
change in the distribution of the strain rate caused by passivation, whereas in the second problem
by the switch from stretching to bending.

For each example, the most important aspects of the predictions of the two theories are
illustrated and contrasted. The calculations involved in these examples expose some interesting
and unusual mathematical aspects of the non-incremental theories; these are identified and
analysed. The paper is organized as follows. Section 2 introduces specific versions of the two
classes of theories together with the deformation theory with which they coincide for proportional
straining. Section 3 deals with the two plane strain problems: stretch passivation and stretch–
bend. Section 4 presents a detailed analysis of mathematical aspects of the non-incremental
theory for the stretch-passivation problem with further details given in appendix A. Finally, in
§5, an overview summary is presented for both the mathematical and physical findings from this
study. Differences in the predictions of the two classes of theories that have significant physical
implications are highlighted.

2. The two classes of strain gradient plasticity

The established small strain framework for strain gradient plasticity will be adopted [7–9].
Equality of the internal and external virtual work is

∫
V
{σijδε

e
ij + qijδε

P
ij + τijkδε

P
ij,k}dV =

∫
S
(Tiδui + tijδε

P
ij )dS, (2.1)
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with volume of the solid V, surface S, displacements ui, total strains εij = (ui,j + uj,i)/2, plastic
strains εP

ij (εP
kk = 0) and elastic strains εe

ij = εij − εP
ij . The symmetric Cauchy stress is σij, and the

stress quantities work conjugate to increments of εP
ij and εP

ij,k are qij (qij = qji and qkk = 0) and
τijk (τijk = τjik and τjjk = 0). The surface tractions are Ti = σijnj and tij = τijknk with ni as the outward
unit normal to S. The equilibrium equations are

σij,j = 0 and − sij + qij − τijk,k = 0, (2.2)

with sij = σij − σkkδij/3.
Isotropic elastic behaviour will be assumed with elastic moduli Le

ijkl, such that σij = Le
ijklε

e
kl.

A generalized effective plastic strain is defined as

P =
√

ε2
P + �2ε∗2

P with εP =
√

2εP
ijε

P
ij

3
and ε∗

P =
√

2εP
ij,kε

P
ij,k

3
, (2.3)

with � as the single material length parameter. This definition is a special case of a family of
isotropic measures of the plastic strain gradients defined by Fleck & Hutchinson [3,8], and it
adequately serves the purpose of this study. For the two theories introduced in this paper, the
only other input characterizing the material is the relationship between the stress and the effective
plastic strain in uniaxial tension, σ0(εP), which is assumed to be monotonically increasing with
σY = σ0(0) as the initial tensile yield stress.

We begin by defining the deformation theory version of strain gradient plasticity. The deformation
theory will be used as the template for the two theories used in this paper by defining them
such that they each coincide with the deformation theory for proportional plastic straining.
The deformation theory is a version of small strain, nonlinear elasticity, with energy density
dependent on εij and εP

ij . Specifically, following Fleck & Hutchinson [3,8], take as the energy
density

ψ(εij, ε
P
ij ) = 1

2
Le

ijkl(εij − εP
ij )(εkl − εP

kl) + UP( P) with UP( P) =
∫

P

0
σ0(εP)dεP. (2.4)

The stresses generated are

σij = ∂ψ

∂εe
ij

= Le
ijklε

e
kl,

qij = ∂ψ

∂εP
ij

= 2
3
σ0( P)

εP
ij

P
and τijk = ∂ψ

∂εP
ij,k

= 2
3
�2σ0( P)

εP
ij,k

P
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

The stress–strain behaviour input, σ0(εP), is reproduced when (2.5) is specialized to uniaxial
tension. The potential energy of a body is

F(ui, ε
P
ij ) =

∫
V

ψ(εij, ε
P
ij )dV −

∫
ST

{Tiui + tijε
P
ij }dS, (2.6)

with prescribed Ti and tij on portions of the surface, ST, and with ui and εP
ij prescribed on the

remaining surface SU. The solution to the boundary value problem minimizes the potential
energy among all admissible ui and εP

ij .
The notion of proportional plastic straining will be important in the sequel. Within the context of

strain gradient plasticity, proportional straining histories are the limited set for which the plastic
strains and their gradients increase in proportion according to

(εP
ij , ε

P
ij,k) = λ((εP

ij )
0, (εP

ij,k)0), (2.7)

with λ increasing monotonically, and quantities with superscript ‘0’ independent of λ.
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(a) Non-incremental theories with certain stresses expressed in terms of strain increments

The Cauchy stress continues to be given by σij = Le
ijklε

e
kl. The prescription for defining the higher

order stresses, qij and τijk, follows the idea proposed by Gudmundson [4] and Gurtin & Anand
[5], who were motivated to ensure that the dissipative plastic work rate is never negative.
Gudmundson considered both rate-dependent and -independent materials, whereas Gurtin
and Anand worked within the framework of rate-dependent materials with well-defined rate-
independent limits. For the purposes of this paper, it will suffice to construct a version of this
class of theories with unrecoverable plastic work—the notation qUR

ij and τUR
ijk will be employed to

indicate this. In the terminology of Gurtin & Anand [5,9], these higher order stresses are entirely
dissipative. To this end, define generalized stress and plastic strain-rate vectors according to

Σ =
√

3
2 (qUR

ij , �−1τUR
ijk ) and ĖP =

√
2
3 (ε̇P

ij , �ε̇
P
ij,k) (2.8)

such that the plastic work rate is

qUR
ij ε̇P

ij + τUR
ijk ε̇P

ij,k = Σ · ĖP. (2.9)

The vector magnitudes are

Σ = |Σ | =
√

3
2

qUR
ij qUR

ij + 3
2
�−2τUR

ijk τUR
ijk and ĖP = |ĖP| =

√
2
3
ε̇P

ij ε̇
P
ij + 2

3
�2ε̇P

ij,kε̇
P
ij,k.

Let EP = ∫
ĖPdt, where t is time, and note that this monotonically increasing measure of the

effective plastic strain is defined differently from P in (2.3). The latter is not monotonic and is
zero when the plastic strain and its gradient vanish. The two measures coincide for proportional
plastic straining. In the absence of plastic strain gradients, or if � = 0, EP reduces to the effective

plastic strain used in conventional J2 flow theory, eP = ∫√ 2
3 ε̇P

ij ε̇
P
ij . In this paper, the distinction

between eP, which is non-decreasing, and εP defined in (2.3), which can increase or decrease, is
important and analogous to the distinction between EP and P.

The construction of Gudmundson [4] and Gurtin & Anand [5,9] specifies Σ to be co-directional
to ĖP such that, by (2.9), the plastic dissipation rate is never negative. Here, the specific choice
adopted by Fleck & Willis [10,11] in their study of this class of theories will be used

Σ = σ0(EP)
ĖP

ĖP
,

or qUR
ij = 2

3
σ0(EP)

ε̇P
ij

ĖP
and τUR

ijk = 2
3
�2σ0(EP)

ε̇P
ij,k

ĖP
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.10)

This choice coincides with the deformation theory (2.5) for proportional straining and reduces
to J2 flow theory when � = 0. A change in the direction of loading can lead to a finite change in
the distribution ε̇P

ij and its gradient. When this occurs, by (2.10), Σ can undergo finite changes.
In other words, an infinitesimal change in loads on the boundary of the solid can produce finite
changes in qUR

ij and τUR
ijk . The stretch-passivation problem analysed later provides an example of

such behaviour. It is largely the potential consequences of the constitutive assumption for the
unrecoverable contributions embodied in (2.10) which motivates this study. The incorporation of
recoverable contributions in this class of formulations is not at issue and, therefore, has not been
considered in this paper. The findings in this study also have implications for strain gradient
theories of single crystals where the same constitutive construction has been invoked.

Using the definitions in (2.8) and (2.10), one finds Σ = σ0(EP). In the class of theories introduced
above, normality exists in the sense that ĖP is normal to the surface in the generalized stress space
specified by Σ = σ0(EP) [10,11]. However, the correct interpretation is that Σ locates itself on this
surface depending on ĖP, because Σ is defined in terms of ĖP and not vice versa. As Fleck and
Willis have emphasized, the components of Σ are not fixed in the current state. They depend on
the current strain rates, which in turn depend on the prescribed incremental boundary conditions.
This is analogous to conventional stresses in the theory of a rigid-plastic solid for which Σ remains
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on the yield surface but its components undergo finite changes when directional changes in ĖP
occur.

Fleck & Willis [10,11] derived two coupled minimum principles governing the incremental
boundary value problem for this class of theories. In the current state, EP and σij are known but
Σ is not known. Minimum principle I is used to determine the spatial distribution of ε̇P

ij (and Σ),
whereas principle II determines u̇i and the amplitude of the plastic strain-rate field if it has not
been determined by principle I. The following statements suffice for the examples considered in
this paper for which the tractions, tij, when prescribed on a surface, are taken to be zero and ε̇P

ij ,
when prescribed on a surface, are also taken to be zero. For other sets of boundary conditions
and for full details, the reader is referred to the Fleck–Willis papers. Consider all admissible
distributions ε̇P

ij satisfying ε̇P
ij = 0 on portions of the surface where it is prescribed. Apart from

a possible amplitude factor, the actual distribution minimizes

ΦI =
∫

V
(σ0(EP)ĖP − sijε̇

P
ij )dV with (ΦI)MIN = 0, (2.11)

where, on the portions of the surface on which ε̇P
ij is unconstrained, tij = 0. Under these

conditions, the amplitude of the distribution is undetermined and a normalizing constraint on
the distribution of ε̇P

ij must be added. Minimum principle II states that

ΦII = 1
2

∫
V

(
Le

ijkl(ε̇ij − ε̇P
ij )(ε̇ij − ε̇P

ij ) + dσ0(EP)
dEP

Ė2
P

)
dV −

∫
ST

Ṫiu̇i dS (2.12)

is minimized by the solution u̇i and the amplitude of the plastic strain-rate field. A thorough
study of existence and uniqueness of solutions for theories in this class has been presented by
Reddy [12].

Rate-dependent versions of this class of theories have proved to be relatively straightforward
to implement in numerical codes and widely adopted. To illustrate the influence of the rate
dependence on the issue of non-proportional loading, we will present some results based on the
following standard incorporation of time dependence following Fleck & Willis [10,11]. Let ε̇R be
a reference strain rate. Introduce the following potential of the plastic strain rates:

ϕ(ĖP) = σ0(EP)ε̇R

1 + m

(
ĖP

ε̇R

)1+m

, (2.13)

where m is the strain-rate exponent which delivers the rate-independent limit when m → 0. The
associated stress quantities are

qij = ∂ϕ

∂ε̇P
ij

= 2
3
σ0(EP)

(
ĖP

ε̇R

)m
ε̇P

ij

ĖP
and τijk = ∂ϕ

∂ε̇P
ij,k

= 2
3
�2σ0(EP)

(
ĖP

ε̇R

)m
ε̇P

ij,k

ĖP
. (2.14)

These expressions are identical to the rate-independent expressions in (2.10) apart from the factor
(ĖP/ε̇R)m. For rate-dependent problems, the only change to minimum principle I in (2.11) is
that σ0(EP)ĖP is replaced by ϕ(ĖP). For rate-dependent problems, the plastic strain rate is fully
determined by minimizing ΦI. The rate-dependent form of principle II will not be needed in the
examples considered in this paper.

(b) Incremental theories with stress increments expressed in terms of strain increments

In this class of theories, the Cauchy stress is known in the current state and continues to
be given by the isotropic relation, σij = Le

ijklε
e
kl. Normality of the plastic strain rate to the

conventional J2 yield surface is retained with ε̇P
ij = ėPmij, where mij = 3sij/2σe, σe =

√
3sijsij/2

and ėP =
√

2ε̇P
ij ε̇

P
ij/3 ≥ 0. The normality constraint implies ε̇P

ij,k = ėP,kmij + ėPmij,k such that the
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incremental version of (2.1) is∫
V

{σ̇ijδε
e
ij + (q̇ijmij + τ̇ijkmij,k)δeP + τ̇ijkmijδeP,k}dV =

∫
S

(Ṫiδui + ṫijmijδeP)dS

or ∫
V

{σ̇ijδε
e
ij + Q̇δeP + τ̇kδeP,k}dV =

∫
S

(Ṫiδui + ṫδeP)dS, (2.15)

with Q̇ = q̇ijmij + τ̇ijkmij,k, τ̇k = τ̇ijkmij and ṫ = ṫijmij. Variations with respect to δeP give a
single constrained equilibrium equation Q̇ − τ̇k,k − σ̇e = 0 or (q̇ij − τ̇ijk,k − ṡij)mij = 0. Thus, the
incremental equilibrium equation resulting from the normality constraint is the projection onto
mij of the three incremental equilibrium equations from (2.2) of the unconstrained theory.

The specification adopted is a modification of the Fleck–Hutchinson [3] theory outlined in
Hutchinson [6], such that the dissipative contribution is always non-negative. In this paper,

the measure of the plastic strain gradients in (2.3) is
√

2εP
ij,kε

P
ij,k/3, whereas the more restrictive

measure
√

2εp,kεp,k/3 was employed in Hutchinson [6]. Recoverable contributions are derived

from the free energy function

ψ(εij, ε
P
ij ) = 1

2 Le
ijkl(εij − εP

ij )(εkl − εP
kl) + UP( P) − UP(εP), (2.16)

with P and εP defined in (2.3) and UP in (2.4). The contribution of the plastic strains and their
gradients to the free energy, ψP = UP( P) − UP(εP), vanishes when the gradients vanish and is
otherwise non-negative. The recoverable stresses generated from (2.7) are

σij = ∂ψ

∂εe
ij

= Le
ijklε

e
kl, qR

ij = ∂ψ

∂εP
ij

= 2
3
σ0( P)

εP
ij

P
− 2

3
σ0(εP)

εP
ij

εP

and τR
ijk = ∂ψ

∂εP
ij,k

= 2
3
�2σ0( P)

εP
ij,k

P
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.17)

The unrecoverable plastic work is taken to be the same as in conventional J2 flow theory

UP(eP) =
∫ eP

0
σ0(eP)deP with eP =

∫
ėp. (2.18)

By (2.15), UP(eP) is non-decreasing. The unrecoverable stress components are taken to be qUR
ij =

(2/3)σ0(eP)mij with τUR
ijk = 0 such that the dissipative plastic work rate is non-negative: qUR

ij ε̇P
ij = σ0

(eP)ėP ≥ 0. The complete set of stresses is σij, qij = qR
ij + qUR

ij and τijk = τR
ijk. Under proportional

plastic straining, σ0(eP)mij = σ0(εP)εP
ij/εP, such that qij and τijk coincide with those in (2.5) for

deformation theory. In addition, the theory reduces to conventional J2 flow theory in the limit
� → 0. Thus, both classes of theories introduced and used in this paper coincide with the
deformation theory for proportional plastic straining and both reduce to J2 flow theory when
� → 0. If gradient effects are important, significant differences between the two theories arise
under distinctly non-proportional straining, as illustrated in this paper.

The minimum principle for the incremental boundary value problem for this theory is similar
in structure to that for conventional J2 flow theory except that it brings in gradients of the plastic
strain rate. The principle requires the quadratic functional F to be minimized with respect to u̇i
and ėp where

F(u̇i, ėP) =
∫

V
ϕ(ε̇ij, ėP)dV −

∫
ST

(Ṫiu̇i + ṫėP)dS with ϕ = 1
2

(σ̇ijε̇
e
ij + q̇ijε̇

P
ij + τ̇ijkε̇

P
ij,k), (2.19)

with ėP ≥ 0, (Ṫi, ṫ) prescribed on ST, and (u̇i,ėp) prescribed on SU. A direct calculation gives

2ϕ(ε̇ij, ėP) = Le
ijkl(ε̇ij − ε̇P

ij )(ε̇ij − ε̇P
ij ) + S( P)

2
P − S(εP)ε̇2

P

+ σ0( P)

P
Ė2

P − σ0(εP)
εP

ė2
P + dσ0(eP)

deP
ė2

P, (2.20)

 on August 13, 2014rspa.royalsocietypublishing.orgDownloaded from 



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140267

...................................................

where S(ε) ≡ dσ0(ε)/dε − σ0(ε)/ε. Because ε̇P
ij = ėPmij, it follows that ε̇P = 2ėPmijε

P
ij/3εP, Ė2

P = ė2
P(1 +

2�2mij,kmij,k/3) + �2ėP,kėP,k and P = 2{ėP(mijε
P
ij + �2mij,kε

P
ij,k) + ėP,k�

2mijε
P
ij,k}/3 P. These permit

(2.20) to be re-assembled as a positive definite function of (ε̇ij, ėP, ėP,i),

2ϕ(ε̇ij, ėP) = Le
ijkl(ε̇ij − ε̇P

ij )(ε̇ij − ε̇P
ij ) + Cė2

P + CiėPėP,i + CijėP,iėP,j, (2.21)

where the C’s depend on the current distribution of plastic strain, mij and �2. A rate-dependent
version of this theory can also be introduced, but it is not needed in this paper.

The yield condition for this theory [6] is based on the Cauchy stress: σe ≡
√

3sijsij/2 = Y. Prior

to plastic straining, Y = σ0(0). During plastic straining, Y is updated by Ẏ = σ̇e. This is similar
to the conventional J2 flow theory yielding condition, but it differs in that Ẏ can be positive or
negative depending on the strain-rate gradient. The choice of yield condition is consistent with
the normality condition previously introduced, i.e. ε̇P

ij = ėPmij.
An alternative, but completely equivalent, statement of the yield condition is as follows. When

loading occurs, the unrecoverable stress quantities have been defined as qUR
ij = (2/3)σ0(eP)mij such

that qUR
ij lies on the surface,

√
3
2 qUR

ij qUR
ij = σ0(eP). During elastic increments, define changes in

these stresses by q̇UR
ij = (σ0(eP)/Y) ṡij, such that elastic increments occur with qUR

ij lying within
the surface. Moreover, it is readily shown that reloading, which occurs when sij returns to√

3
2 sijsij = σY, also coincides with qUR

ij returning to the surface,
√

3
2 qUR

ij qUR
ij = σ0(eP). The yield

surface for qUR
ij undergoes isotropic expansion depending on the accumulated plastic strain eP

in the same manner as the yield surface expressed in terms of sij in conventional J2 flow theory.
The examples in this paper take the elastic response to be isotropic and incompressible with

Young’s modulus E. For both theories, the input tensile curve is σ0(εP) = σY(1 + kεN
P ), with initial

yield stress σY = σ0(0) and yield strain εY = σY/E. In dimensionless form

σ0(εP)
σY

=
(

1 + p
(

εP

εY

)N
)

with p = kεN
Y . (2.22)

3. Two plane strain problems for an infinite layer

Non-proportional conditions in this section are created for an initially uniform layer of thickness
2 h undergoing plane strain tension by abruptly changing the constraint on plastic flow at the
top and bottom surfaces of the layer or by abruptly switching from stretching to bending.
By constraining the plastic strain rate to vanish at the surfaces, one can model the effect of
surface passivation which blocks dislocation motion across the surfaces. In the first example, it is
imagined that surface passivation is done under load following unconstrained plastic straining.
Passivation blocks additional plastic flow at the surfaces. This relatively simple example provides
insights into basic aspects of the behaviour predicted by the two classes of models. Even though
plane strain conditions prevail throughout, non-proportionality arises due to the abrupt change
in plastic strain-rate distribution across the layer, altering the ratio of the gradient of plastic
strain rate to the plastic strain rate itself. In the second example, the layer is stretched uniformly
into the plastic range and then, with no further overall stretch, is subject to pure bending. The
surfaces are unconstrained throughout the entire history such that gradients of plastic flow and
non-proportionality arise owing to the switch from stretch to bending.

The layer occupies −h ≤ x2 ≤ h and is stretched along the x1-direction and is subject to u3 = 0.
Under these conditions, the total strains are uniform if there is no bending or vary linearly if
bending occurs, with only two non-zero components: ε22 = −ε11. The non-zero plastic strain
components are εP

22(x2) = −εP
11(x2), with εP = 2|εP

11|/
√

3, ε∗
P = |dεP/dx2| and ėP = 2|ε̇P

11|/
√

3. The
non-zero stress quantities are σ33 = σ11/2, s22 = −s11 = −σ11/2, σe = √

3|σ11|/2, q22 = −q11 and
τ222 = −τ112. The stresses are functions only of x2 and the equilibrium equations in (2.2) are
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satisfied except for −s11 + q11 − τ112,2 = 0. In addition, m11 = −m22 = √
3/2 when σ11 > 0 and

m11,2 = 0.
The boundary conditions on the top and bottom surfaces will have Ti = 0 in all cases and either

constrained plastic flow, ε̇P
11 = 0 (with τ̇112 �= 0), or unconstrained plastic flow, τ̇112 = 0 (with ε̇P

11 �= 0).
Thus, for all the problems considered in this section, there is no traction work done on the layer at
its surfaces. The load will be applied by imposing overall stretch, ε0

11, and/or bending curvature,
κ , such that the strain in the layer is ε11 = ε0

11 + κx2. Results will be presented for the average
tensile stress in the layer, and for the bending moment/depth in the second problem. For the
surface conditions assumed, these are given for both theories by

σ̄11 = 1
2h

∫ h

−h
σ11dx2 = 2E

3h

∫ h

−h
(ε11 − εP

11)dx2 and M = 4E
3

∫ h

−h
(ε11 − εP

11)x2 dx2. (3.1)

Minimum principles for the theories introduced in §2 follow directly. Because ε11 will be
prescribed, only the distribution of εP

11(x2) is unknown subject to either full constraint, εP
11 = 0,

or no constraint at the surfaces. For the non-incremental theory, the Fleck–Willis minimum
principles, (2.11) and (2.12), reduce to (for a unit length of layer)

ΦI =
∫ h

−h
(σ0(EP)ĖP − σ11ε̇

P
11)dx2 with (ΦI)MIN = 0 (3.2)

and

ΦII = 1
2

∫ h

−h

(
4E
3

(ε̇11 − ε̇P
11)2 + dσ0(EP)

dEP
Ė2

P

)
dx2, (3.3)

where σ0(EP) = σY(1 + kEN
P ), ĖP =

√
ė2

P + (�dėP/dx2)2 with ėP = 2|ε̇P
11|/

√
3. Conversion for the rate-

dependent version is immediate following the prescription discussed in connection with (2.13),
i.e. replacing σ0(EP)ĖP by ϕ(ĖP) in (3.2).

The minimum principle (2.19) for the incremental theory becomes, for a unit length of layer,

F(ε̇11, ėP) = 1
2

∫ h

−h

(
4E
3

(ε̇11 − ėPm11)2 + Cė2
P + C2ėP

dėP

dx2
+ C22

(
dėP

dx2

)2
)

dx2. (3.4)

The C’s are obtained using expression (2.20).

(a) The stretch-passivation problem

The first example considers stretch of the layer into the plastic range with no constraint on plastic
flow at the surfaces until ε11 = εT when constraint at the surfaces is switched on (for example,
by passivating the surfaces under load) for the subsequent increments of stretch. The boundary
conditions in this problem are ones which a strain gradient plasticity theory must be able to
handle. The problem has the additional advantage that its mathematical formulation is relatively
simple. With no constraint at the surfaces, ε̇P

11 is unconstrained in the minimum principles (3.2)
and (3.4), while ε̇P

11 = 0 at x2 = ±h if constraint is active. Uniform plane strain tension holds for
both theories for ε11 ≤ εT. With εY = σY/E plastic yield occurs at σ11 = 2σY/

√
3 or ε11 = √

3εY/2,
such that for

√
3εY/2 ≤ ε11 ≤ εT

εP
11
εY

=
√

3

2kεN
Y

(√
3σ11

2σY
− 1

)1/N

,
σ11

σY
= 4

3

(
ε11

εY
− εP

11
εY

)
and

(
q11 = s11 = σ11

2
, τ112 = 0

)
.

(3.5)

(i) Consider first the non-incremental theory

For the first increment after passivation at ε11 = εT, ΦI = √
3(σ11/2)

∫h
−h (ĖP − ėP)dx2 by (3.2). It

is easily seen that the minimum of ΦI, among all ėP ≥ 0 subject to ėP = 0 at x2 = ±h, is ėP = 0.
Thus, this theory predicts that no plasticity occurs in the first increment of stretch following the
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Figure 1. (a) Plot of RC = σ C
11/σ

T
11 versus �/h at resumption of plastic flow. (b) Associated eigenfunctions for three values

of �/h.

imposition of surface constraint. The layer undergoes a uniform incremental elastic response for
a finite interval of stretch beyond εT. As long as no additional plastic strain occurs, principle I
minimizes

ΦI =
(√

3
2

) ∫ h

−h
(σT

11ĖP − σ11ėP)dx2 with ėP ≥ 0 and ėP(±h) = 0, (3.6)

where σ11 is uniform and σT
11 denotes the value of σ11 at ε11 = εT. Plastic straining resumes when

the stress σ11 becomes large enough such that a non-zero solution ėP exists minimizing (3.6) with
ΦI = 0. This is an eigenvalue problem for σ11 ≡ σC

11. Let R = σ11/σ
T
11 be the normalized eigenvalue,

divide (3.6) by
√

3σT
11/2, and let y(x2) = ėP(x2) and ()′ = d()/dx2 to obtain

Φ̄I(y) =
∫ h

−h

(√
(�y′)2 + y2 − Ry

)
dx2 with y(x2) ≥ 0 and y(±h) = 0. (3.7)

There are interesting and fundamental mathematical issues associated with this eigenvalue
problem. Section 4 is devoted to the analysis of the eigenvalue problem along with other
mathematical issues related to the early stages after the resumption of plastic flow. There is only
one possible candidate eigenvalue, R = RC > 1, plotted in figure 1a. The associated solution y(x2)
(with y(0) = 1) is plotted in figure 1. It has the undesirable property that y(±h) �= 0. Thus, strictly,
the only acceptable solution is y(x2) = 0. Computations with admission of small rate dependence
(figure 2) nevertheless strongly suggest that plastic flow resumes at R = RC. The eigenvalue
problem will be discussed fully in §4.

The implication of the results in figure 1a is that the class of theories with non-incremental
stresses predicts a significant delay in the resumption of plastic flow following passivation.
This delay is also evident in the predictions from the rate-dependent version of the theory, as
seen in the example in figure 2. For the lowest strain-rate sensitivity (m = 0.01) and �/h = 0.2,
approximately a 10% increase of stress above the stress at passivation is predicted to occur with
essentially no plastic straining. This elastic gap is similar to that predicted by the eigenvalue
problem for the rate-independent limit for �/h = 0.2. Care has been taken to establish that the
results presented in figure 2 are insensitive to the increment in the time step.

The incremental theory predicts no elastic gap in plastic straining following passivation, only
reduced plastic straining. Specifically, for the first increment following passivation, the solution
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Figure 2. Rate-dependent predictions for the non-incremental theory showing (a) average stress and (b) normalized average
plastic strain rate following application of passivation at σ T

11/σY = 2 (ε11/εY = 7.32). The rate sensitivity exponent is m,
�/h= 0.2, N = 0.2 and p≡ kεNY = 0.5. For low rate sensitivity, i.e. m= 0.01, the stress at the resumption of plastic flow

following passivation is nearly 10% above the stress at passivation in agreementwith the eigenvalue prediction in figure 1a. The
time lapsed in these simulations is tε̇R = 1.

to minimum principle (3.4) can be obtained analytically with the result

ε̇P
11(x2)
ε̇11

= K
(

1 − cosh(βx2/�)
cosh(βh/�)

)

with K = E
E + (dσ0/dεP)εT

P

and β =
√

E
K

(
εP

σ0(εP)

)
εT

P

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.8)

Had no passivation occurred, ε̇P
11 = Kε̇11, and thus the reduction in the plastic strain increment

and the non-uniformity due to passivation is reflected by the hyperbolic cosine dependence in
(3.8). The plot in figure 3 shows the full response following passivation for the same problem
considered for the non-incremental theory, but generated by solving sequentially, increment by
increment, minimum principle (3.4) for the rate-independent problem. The distinctly different
behaviour following passivation is evident in figure 4, where results for the two theories are
directly compared. This difference will be revisited at the end of paper.

(b) Stretch–bend with no constraint of plastic flow at the surfaces

The problem considered has no constraint on plastic flow at the surfaces at any stage of the history.
Uniform stretch in plane strain tension to a strain, ε11 = εT, is followed by plane strain bending
with no further overall stretch. That is, for 0 < ε0

11 ≤ εT, κ = 0 and ε11 = ε0
11, while, subsequently,

the middle surface strain is fixed at ε0
11 = εT and ε̇11 = κ̇x2 with κ̇ > 0.

For the rate-independent non-incremental theory, the first increment following the onset of
bending, minimum principle I is still given by (3.6) and (3.7), except that there is no constraint on
the plastic strain rate at the surfaces. Principle I says that the plastic strain-rate distribution must
be uniform. Application of principle II then says that the amplitude of this uniform plastic strain-
rate distribution must be zero. Thus, according to this theory, ε̇P

11(x2) = 0 at the onset of bending.
(This is true also for the stretch-passivation problem at R = RC.) Predictions based on the rate-
dependent version of the theory in figure 5a are consistent with the behaviour described above.
In the example shown, the layer is stretched well into the plastic range (σ11/σY = 2, εT/εY = 7.32)
and then subject to bending. The slope of the moment–curvature relation governing elastic
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Figure 3. Rate-independent predictions for the incremental theory showing average stress in (a) and normalized average
plastic strain rate in (b) following passivation at σ T

11/σY = 2 and εT11/εY = 7.32 for three values of �/h, N = 0.2 and

p≡ kεNY = 0.5. In (a), both the elastic slope and the slope in the absence of any gradient effect, �/h= 0, are shown.

1.5

2.0

2.5

3.0
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e11/eY
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non-incremental

incremental

/h = 0.4

/h = 0.2s_ 11
/s

Y

Figure 4. Comparison of the predictions of the two theories following application of passivation at σ T
11/σY = 2 (εT11/εY =

7.32) for �/h= 0.2 and 0.4, N = 0.2 and p= kεNY = 0.5. The results for the non-incremental theory were computed with

m= 0.025.

incremental behaviour, Ṁ/(Eh3κ̇) = (8/9), is shown in figure 5a. The early stage of the bending
response is nearly elastic and relatively insensitive to the values of the strain-rate sensitivity
exponent chosen. After the onset of bending, there is no elastic gap but additional plasticity
develops slowly.

For the incremental theory, the boundary value problem (3.4) for the first increment following
the imposition of bending can be solved analytically with the result

ε̇P
11

κ̇h
= K

(
x2

h
− sinh(βx2/�)

(βh/�) cosh(βh/�)

)
, x2 ≥ 0;

ε̇P
11

κ̇h
= 0, x2 < 0 (3.9)
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Figure 5. A layer in plane strain subjected to stretch followed by bending with no constraint on plastic flow at the surfaces.

In this example, the layer is first stretched uniformly to σ11/σY = 2 and then subjected to bending with no further stretch,

i.e. κ̇ > 0 with ε̇011 = 0. The moment–curvature response following the onset of bending: (a) based on the non-incremental
theory; (b) based on the incremental theory. In these examples, N = 0.2, p= kεNY = 0.5. The rate-dependent simulations in

(a) have a rate sensitivity indexm= 0.025 and attainκh/εY = 1 at time ε̇Rt ∼= 1. The simulations in (b) are rate independent.

and
Ṁ

Eh3κ̇
= Ṁ/σYh2

κ̇h/εY
= 8

9

{
1 − K

2

[
1 − 3

(βh/�)2

(
1 − tanh(βh/�)

(βh/�)

)]}
, (3.10)

where K and β are given in (3.8). The limit � → 0, Ṁ/(Eh3κ̇) = (8/9)(1 − K/2), applies to a layer
of material without dependence on strain gradients. This initial slope and the elastic slope,
Ṁ/(Eh3κ̇) = (8/9), are included with the full moment–curvature response following the onset
of bending in figure 5b. The full response is generated by solving the minimum principle (3.4)
sequentially, increment by increment. No reversed plastic straining occurs on the compressive
side of the layer over the range of curvature imposed in figure 5b, 0 ≤ κh/εY ≤ 1. The bending
moment increases almost linearly over this range and is in close agreement with (3.10).

The incremental theory predicts that the moment–curvature relation following initial uniform
stretch is increased above the classical plasticity prediction (� = 0), depending on �/h. The
response is significantly reduced below the initial elastic response predicted by the non-
incremental theory. From a physical standpoint, there is a significant difference between the
predictions from the two types of theories for both this stretch–bend problem and the earlier
passivation problem.

4. Detailed analysis of the re-emergence of plastic strain following passivation

for the stretch problem for the formulation based on non-incremental

stresses

As revealed in §3.1, the non-incremental theory suggests that plastic flow is interrupted when a
layer which has been stretched uniformly into the plastic range to a stress σT

11 experiences surface
passivation with subsequent plastic straining blocked at its surfaces. Following passivation, the
layer undergoes uniform incremental elastic behaviour until plastic straining resumes at σC

11.
Figure 1a presents the dependence of RC = σC

11/σ
T
11 on � /h based on the solution to the problem

posed by (3.7). The resumption of plastic flow after the gap of elastic deformation gives rise to
some challenging and interesting mathematical issues which will be addressed in this section.
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The starting point is the solution to the eigenvalue problem (3.7), which is valid in this form
as long as σ11 remains uniform. Denote the integrand of (3.7) by f (y′, y) with dependence on
�/h and R implicit. Because the integrand has no explicit x2-dependence, a first integral of the
Euler–Lagrange equation is f − y′∂f/∂y′ = c. By symmetry, y′(0) = 0, and because the equation is
homogeneous, one can require y(0) = 1, such that the first integral is

y2√
((�/h)y′)2 + y2

= 1 − R + Ry. (4.1)

The solution to (4.1) can be expressed in the form

x2

�
=

∫ 1

y(x2)

[1 − R(1 − y)]dy
y{y2 − [1 − R(1 − y)]2}1/2 , (4.2)

or, with the variable transformation

1 − R(1 − y)
y

= cos θ ⇔ y = R − 1
R − cos θ

, (4.3)

in the form

x2

�
=

∫ θ(x2)

0

cos θdθ

R − cos θ
= 2R

(R2 − 1)1/2 tan−1

[(
R + 1
R − 1

)1/2
tan

(
θ

2

)]
− θ . (4.4)

The largest possible value of x2 is achieved when θ (x2) = π/2 for which the corresponding value
of y(x2) is y∗ = (R − 1)/R. Thus,

h
�

≤ 2R
(R2 − 1)1/2 tan−1

[(
R + 1
R − 1

)1/2
]

− π

2
, (4.5a)

and the smallest value of R, R = RC, for which this is true satisfies the equation

h
�

= 2RC

(R2
C − 1)1/2

tan−1

[(
RC + 1
RC − 1

)1/2
]

− π

2
. (4.5b)

Equations (4.3), (4.4) and (4.5b) provide the plots of figure 1.
To facilitate discussion of the problem after the resumption of plastic flow, it is convenient to

define R̄ = σ̄11/σ
T
11. The non-zero components of the Cauchy stress are σ11 and σ33 = σ11/2, and

the non-zero components of plastic strain are εP
11 and εP

22 = −εP
11, all functions of x2 only, whereas

ε11 is uniform and prescribed. Then,

σ11 = 4
3 E(ε11 − εP

11). (4.6)

During plastic flow,

qUR
11 = 2

3
σ0(EP)

ε̇P
11

ĖP
and τUR

112 = 2
3
�2σ0(EP)

ε̇P
11,2

ĖP
, (4.7)

where, expressed in terms of ε̇P
11,

ĖP = 2√
3

[(ε̇P
11)2 + �2(ε̇P

11,2)2]1/2. (4.8)

With

ΣUR =
√

3

[
(qUR

11 )2 + (τUR
112 )2

�2

]1/2

, (4.9)

plastic flow does not occur when ΣUR < σ0(EP). Since qR
ij = τR

ijk = 0 in this example, ε̇P
11 is

determined from the equilibrium equation

qUR
11 − τUR

112.2 = s11 ≡ 1
2
σ11 =

(
2
3

)
E(ε11 − εP

11). (4.10)
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Strictly speaking, although study of minimum principle I suggests that plastic flow will resume as
R̄ passes through RC, it only permits the firm conclusion that ε̇P

ij = 0 at R̄ = RC and does not help
in continuing the solution beyond RC. The remainder of this section is devoted to a resolution of
this dilemma.

It is assumed that ε11 is prescribed as a monotone increasing function of time. Since rate-
independent behaviour is considered, ε11 itself can be taken as the time-like variable; passivation
commenced at εT

11 and plastic flow resumes at εC
11. Henceforth, the suffixes 11 and 112 will be dropped.

(a) Direct derivation of RC
Consider first the range εT < ε < εC (the latter to be determined). By hypothesis, no plastic
deformation has occurred since passivation so εP remains at the value εPT, and the stress σT

corresponding to strain εT has the value σT = (2/
√

3)σT
0 , where σT

0 = σ0(2εPT/
√

3). The Cauchy
stress σ exceeds σT but still the yield criterion is not met. Thus, it must be possible to construct
(qUR, τUR) satisfying equation (4.10), for which ΣUR < (

√
3/2)σT. We now demonstrate that this

is the case. Let

qUR = ρ cos θ and
τUR

�
= −ρ sin θ , (4.11)

where ρ is a constant and θ depends on x2. The yield criterion will not be violated so long as

ρ <
σT

2
. (4.12)

Substituting expressions (4.11) into (4.10) gives

ρ cos θ (1 + �θ ′) = σ

2
, (4.13)

with solution

x2 = �

∫ θ

0

cos udu
σ/(2ρ) − cos u

(4.14)

(choosing the constant so that θ is an odd function of x2). Note that this integral is identical to the
one developed in (4.4) with R replaced by R̂ = σ/(2ρ). Reasoning similar to that following (4.4)
implies that the solution is defined for all x2 provided R < RC, as defined in (4.5b). This, together
with inequality (4.12), implies

σ

RC
< 2ρ < σT, (4.15)

and such values of ρ exist so long as R < RC.

(b) Solution beyond RC
The system of equations comprising (4.5) and (4.8), together with the boundary conditions
ε̇P(±h) = 0 and initial condition εP = εPT can be approached by discretizing the time-like variable
ε into finite steps of magnitude �ε. A scheme for doing this is outlined in appendix A. The main
point of this section is to investigate the first development of the plastic deformation close to the
resumption of yield. This requires study of the first increment, k = 0, as defined in appendix A,
where a variational principle for individual time steps is derived. This can be treated analytically
because εP

0 = (
√

3/2)(EP)0 = εPT is independent of x2 at ε = εT. The variational principle (A 8) with
k = 0 implies

Φ0 − (εP
1 )′

∂Φ0

∂(εP
1 )′

= c, (4.16)

where εP
1 is the plastic strain at the total strain level ε1 = εC + �ε. The constant c is obtained below.

It will be convenient to drop the reference to k = 0 and to write

y(x2) = εP
1 (x2) − εP

0 ≡ εP
1 (x2) − εPT, (4.17)
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so that

Y =
√

y2 + �2(y′)2. (4.18)

Since the main interest is in the asymptotic response as �ε → 0, (σ0)1/2 will be approximated and
replaced by

(σ0) 1
2
= σT

0 +
(

α√
3

)
Y, (4.19)

where α denotes the rate of hardening dσ0/dEP evaluated at ET
P = (2/

√
3)εP

0 .
Equation (4.16) can then be written in the form

α

6
(2y2 − Y2) + σT

0 y2
√

3Y
+ E

6

(
y2 − 4(εC + 1

2
�ε − εPT)y

)
= c, (4.20)

and since, by symmetry, y′(0) = 0,

c = αy(0)2

6
+ σT

0 y(0)√
3

+ E
6

(
y(0)2 − 4

(
εC + 1

2
�ε − εPT

)
y(0)

)
. (4.21)

The solution of the differential equation (4.18), with Y related to y via (4.20) and (4.21), and the
boundary condition y(h) = 0 now satisfied, can be expressed as

x2 = h − �

∫ y

0

du√
Y(u)2 − u2

. (4.22)

The still-unknown constant y0 ≡ y(0) follows from the requirement for consistency that

h = �

∫ y0

0

du√
Y(u)2 − u2

, (4.23)

or, writing ū = u/y0 and Ȳ(ū) = Y(u)/y0,

h
�

=
∫ 1

0

dū√
Ȳ(ū)2 − ū2

. (4.24)

Equations (4.20) and (4.21) for Ȳ = Y/y0 as a function of ȳ = y/y0 can be re-expressed as the cubic
equation

X3 − aX − 1 = 0, (4.25)

by making the change of variable

X =
[

3σTȳ2

αy0

]−1/3

Ȳ, (4.26)

with

a =
(

3σT

αy0ȳ4

)1/3 {(
σC + (2E/3)�ε

σT

)
(1 − ȳ) − 1 + 2αy0

3σT

(
ȳ2 − 1

2

)
− Ey0

3σT (1 − ȳ2)

}
. (4.27)

Let X = F(a) be the (unique) positive real solution of (4.26) such that

Ȳ =
(

3σTȳ2

αy0

)1/3

F(a). (4.28)

The numerical solution of the identity (4.24) for y0 at selected values of �ε can be obtained by
straightforward numerical iteration. At each value of ū, Ȳ(ū) is given by (4.28) with F(a) obtained
numerically. A convenient normalization uses y0/εY, �ε/εY, RC = σC/σT and σT/σY such that
y0α/σT = (y0/εY)(α/E)/(σT/σY) and, by (2.22), α/E = pN(εPT/εY)N−1. The other terms in (4.27)
and (4.28) can be expressed similarly such that the problem is completely specified by the set
of parameters: N, p, �/h and σT/σY. Results for a specific example are plotted in figure 6. It is
seen that y0/εY varies quadratically for small �ε/εY and then linearly at larger values. Plots of the
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Figure 6. An example based on the non-incremental theory illustrating the relationship between the amplitude of the
normalized plastic strain increment at the centre of the layer, y0/εY , as a function of the normalized overall strain increment
at the end of the first increment,�ε/εY , after plastic straining resumes following passivation. (a) Nearly linear relationship
except for very small first increments. (b) Relationship for a very small first increment showing quadratic dependence on
�ε/εY approaching the asymptotic result (4.37). These results have been computed with N = 0.2, p= 0.5, �/h= 0.5 and

σ T
11/σY = 2.
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Figure 7. An example based on the non-incremental theory displaying the normalized distribution of the plastic strain at the
end of the first increment of plastic straining following passivation for three values of prescribed�ε/εY . At the scale in (a), the
curves essentially overlay one another approaching the eigenmode (4.2), except in the boundary layer. Clear distinctions appear

in the boundary layer in (b). The steep boundary layer is captured by the asymptotic formula (4.38). These results have been
computed with N = 0.2, p= 0.5, �/h= 0.5 andσ T

11/σY = 2. The relationship between y0 and�ε is plotted in figure 6.

distribution of the plastic strain increment, y(x), normalized by y0 = y(0) are presented in figure 7.
The asymptotic results in these figures are derived below.

Since plastic flow re-initiates at ε = εC, it follows that y0 → 0 as �ε → 0. This motivates
consideration of equation (4.25) as y0 → 0. With a slight departure from earlier notation, let

R = σC + (2E/3)�ε

σT ≡ RC + 1
2

r, (4.29)
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where r = (4E/(3σT))�ε. Also, define y∗ so that a = 0 when ȳ = y∗. Then, for any ȳ ∈ (0, y ∗
−δ], a → +∞ as y0 → 0, and for any ȳ ∈ [y∗ + δ, 1], a → −∞ as y0 → 0 for any fixed δ > 0.
Note that

y∗ → R − 1
R

as y0 → 0, (4.30)

and R → RC as �ε → 0.
Since

F(a) ∼
{

a1/2 as a → +∞
−1/a as a → −∞,

(4.31)

it follows that, as y0 → 0,

Ȳ ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
3σT

αy0

)1/2

[R(1 − ȳ) − 1]1/2 for 0 < ȳ ≤ y∗ − δ

ȳ2

1 − R(1 − ȳ)
for y∗ + δ ≤ ȳ ≤ 1.

(4.32)

Now from equation (4.24), necessarily,

h
�

>

∫ 1

y∗+δ

dȳ√
Ȳ2 − ȳ2

, (4.33)

and so, letting y0 → 0,
h
�

≥
∫ 1

y∗+δ

[1 − R(1 − ū)]dū
ū{ū2 − [1 − R(1 − ū)]2}1/2 , (4.34)

for any δ > 0 (but δ < 1 − y∗) and �ε sufficiently small. This inequality remains true when δ = 0.
Note that (4.2) contains the same integral, evaluated in (4.4). Thus, R ≥ RC.

(c) Asymptotic solution for small�ε

The asymptotic relationship between y0 and �ε as �ε → 0 can be obtained from the asymptotic
approximations (4.32). By direct integration,

∫ y∗

0

dū√
Ȳ2 − ū2

∼
∫ y∗

0

dū

Ȳ
∼
(

αy0

3σT

)1/2 2(R − 1)1/2

R
, (4.35)

while, by expanding the right-hand side of (4.34) with R = RC + r/2,

∫ 1

y∗

dȳ√
Ȳ2 − ȳ2

∼ h
l

−
(

h/l + π/2 + RC

RC(R2
C − 1)

)
r
2

. (4.36)

The two expressions above sum to the required value h/� if

y0 = (h/� + π/2 + RC)2

(16α/(3σT))(RC − 1)(R2
C − 1)2

r2. (4.37)

Figure 6b shows an example plot of y0/εY against �ε/εY computed from the exact form of Ȳ
compared with the asymptotic result (4.37). As has been noted earlier, and as seen in figure 6a,
the relationship between these two quantities is essentially linear for �ε/εY > 0.001. However, for
�ε/εY < 0.0001 the relationship approaches the quadratic dependence on �ε implied by (4.37).
Note the fact that the asymptotic result gives y0/�ε → 0 as �ε → 0 provides the conclusion
asserted earlier that ε̇P(x2) = 0 at ε = εC. The remarkably small range of validity of the asymptotic
result reflects the highly singular nature of the problem and the unusual character of the boundary
layer discussed next.
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An asymptotic relation is also obtained for y(x2) in the boundary layer near the surface. For
x2/h → 1, (�ȳ′)2 � ȳ2 and, thus, �ȳ′ ∼= −Ȳ(0). By (4.27) and (4.31), with terms of order y0 neglected,
Ȳ(0) ∼= ((3σT/αy0)(RC − 1))1/2. Thus, in the boundary layer near x2 = h,

ȳ′ ∼= −1
�

√
3σT

αy0
(RC − 1) and

y
y0

∼= 1
�

√
3σT

αy0
(RC − 1) (h − x2). (4.38)

The asymptotic results for y/y0 in figure 7b in the boundary layer have been computed with
the above equation using the values of y0 from the exact numerical scheme and thus they are not
restricted to the small range of validity noted in connection with (4.37). The width of the boundary
layer scales with �

√
y0. Thus, the width starts from zero in the limit when �ε = 0 and increases as

�ε increases, as seen in figure 7b. The strain-dependent width of the boundary gives rise to the
singular behaviour of the solution associated with resumption of plastic flow.

This problem also illustrates limitations of the non-incremental formulation with regard to
determination of the stress quantities q = q11 and τ = τ112. During uniform plastic stretch prior to
passivation, q = s11 and τ = 0. In the elastic gap period following passivation, q and τ cannot
be determined by the theory. However, immediately after the resumption of plastic flow the
distributions of q and τ are determined. In the boundary layer in the first increment of resumed
plastic flow, |�y′| � y and, by (4.7), q ∼= 0 and τ ∼= −�σ0(εT

P)/
√

3. Thus, only an infinitesimal
increment of plastic flow is required to establish these stresses following the period in which
they were undetermined.

(d) An improved estimate for y0
The reasoning as presented above provides convincing evidence that the plastic strain increment
εP − εPT is of order (�ε)2 as �ε → 0. If the variation were exactly quadratic, the central difference
approximation that has been employed would be exact, and hence ensuring satisfaction of the
governing equations at ε1/2 = εC + (1/2)�ε is appropriate. This requires, however, an expression
for εP

1/2 which has so far been approximated as 1
2 (εPT + εP

1 ), whereas the new approximation

εP
1/2 = 3εPT + εP

1
4

(4.39)

is asymptotically exact. Similarly, EP ∝ �ε so that

(EP)1/2 = (EP)0 + Y0

2
√

3
(4.40)

is asymptotically exact. Adopting these expressions implies the replacement of α by α∗ = 1/2α.
The stress s1/2 = σ1/2/2 now becomes

s1/2 =
(

2E
3

)(
εC + 1

2 �ε − εPT − εP
1 − εPT

4

)

= ∂

∂εP
1

(
1
2 RσT(εP

1 − εPT) −
(

E
12

)
(εP

1 − εPT)2
)

. (4.41)

While this modifies the full equation for y0, the only effect on the asymptotic result (4.37) is to
replace α by α∗ = α/2, thus doubling the coefficient of r2.

5. Summary: implications of the examples of non-proportional loading

As noted in the Introduction, applications of strain gradient plasticity to problems with
proportional, or nearly proportional, loading are not problematic. For such applications even
a deformation theory will generally give predictions that are similar to those of a genuine
plasticity theory. The class of constitutive laws with non-incremental stresses proposed by
Gudmundson [4] and Gurtin & Anand [5,9] was specifically constructed to be applicable to
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non-proportional loading problems, because it is under these conditions that violations of
the constraint on plastic dissipation will generally arise. The examples in this paper reveal
that this construction gives rise to unanticipated mathematical and physical consequences. By
contrast, the incremental theory generates mathematical problems and predictions which are less
exceptional, mathematically and physically, and the predictions do not diverge in an unexpected
manner from those widely explored for non-proportional loading problems with the context of
conventional theories.

For the stretch-passivation problem, the non-incremental theory predicts a substantial ‘elastic
gap’ following passivation with no plastic straining. The extent of the gap depends on the material
length parameter. Within the elastic gap, the stress quantities q11 and τ112 are undetermined.
As laid out in §4, the problem for the additional plastic strain following the resumption of
plastic flow is a non-standard incremental problem that is inherently nonlinear. No elastic gap is
predicted for the incremental theory, and the incremental relationship between the average stress
and stretch increment after passivation deviates from conventional elastic–plastic behaviour in a
continuous manner that depends on the amplitude of the material length parameter. Unlike the
non-incremental theory, the stress quantities q11 and τ112 are well defined throughout the history
and vary continuously with stretch.

The moment–curvature behaviours predicted by the two theories following the onset of
bending in the stretch–bend problem are also markedly different. For the non-incremental theory,
there is a substantial range of curvature in which the moment–curvature response is nearly elastic.
Within this same curvature range, the prediction based on the incremental theory indicates that
the moment–curvature behaviour is significantly less stiff and approaches that from conventional
plasticity theory as the material length parameter becomes small.

Several interesting and unusual mathematical problems based on the non-incremental theory
for resumption of plastic flow following passivation have been analysed. Minimum principle I
of Fleck & Willis [10,11] leads to a nonlinear eigenvalue problem with no acceptable solution.
Problematically, it is not possible to impose the desired boundary condition that the plastic strain
increment vanishes at the surfaces. This is traced to the feature that minimum principle I has the
character of a forward Euler scheme, which is adequate for the analysis of continued plastic flow.
To deliver the correct asymptotic behaviour, it was essential to employ an incremental scheme
that samples at the end of the load step. Following resumption of plastic flow, the solution has a
steep boundary layer adjacent to the passivated surfaces, and the boundary layer width increases
from zero.

For the non-incremental theory, the problem for the initial plastic yield stress, σC, of a layer
passivated from the start and subject to a plane strain stretch displays the same behaviour, with
yield initiating at RC = σC/σY. The same feature arises for shearing of a layer with constrained
plastic flow at its surfaces. Yield initiates at a stress level τC > τY, where τY is the initial yield
stress in the absence of gradients. The delay in yielding in the shear problem was computed as
a function of the dimensionless material length parameter by Niordson & Legarth [13] using a
rate-dependent version of the non-incremental theory. The computed ratio, τC/τY, in fig. 3a of
Niordson & Legarth [13] agrees with the results for RC in figure 1 to within several per cent when
account is taken for different definitions of the material length parameter. Nielsen & Niordson [14]
have presented further results, including for rate-independent behaviour. Their finite-element
discretization employed minimum principles I and II of Fleck & Willis [10,11]. They could not
capture details of the very steep boundary layer in the early stages of plastic flow as their
algorithm was initiated by a small elastic step, but otherwise their numerical method produces
satisfactory predictions of overall shear stress–strain behaviour and of shear strain distributions
beyond the early stage of plastic flow.

A third class of strain gradient plasticity theories has been proposed in the literature (e.g.
[15,16]) which has not been considered in this paper. In this third class of theories, the governing
equations are postulated in weak form. It is not necessary to define additional stress quantities,
such as q and τ , although, in principle, they could be identified. This class of theories is
intrinsically incremental. Thus, we conjecture that their application to the stretch-passivation
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and stretch–bend problems would generate results similar to those predicted by the incremental
theory, but we have not carried out the requisite calculations.

From a physical standpoint, there are significant differences between the predictions of the
two classes of theories considered here for the stretch-passivation and the stretch–bend problems.
For both problems, the non-incremental theory predicts an initial response that is either elastic or
nearly elastic, whereas the incremental theory predicts an initial response that is much less stiff
due to continued plastic flow. The difference is most marked for the stretch-passivation problem,
where for the non-incremental theory it can be noted from figure 1 that a moderate value of
the material length parameter, �/h = 0.5, predicts an elastic gap having almost a 40% increase in
stress before resumption of plastic flow following passivation. The incremental theory predicts
that plastic flow is not interrupted by passivation, only constrained, giving rise to an increase in
effective incremental stiffness. This clear difference in predictions suggests critical experiments to
clarify the physical relevance of the two theories.

Appendix A. Discretization in the time-like variable

Define εk = εC + k�ε, and let εP
k denote εP at load level εk. Assuming that εP

k has already been
found, the problem is to find εP

k+1. For this purpose, note that (εP
k+1 − εP

k )/�ε gives exactly ε̇P, at
some value of ε between εk and εk+1. However, the form of the resulting differential equation for
εP

k+1 depends on exactly what the finite difference is taken to represent. The simplest assumption
is to employ the forward difference approximation—that the finite difference delivers ε̇P

k , i.e. the
derivative evaluated at εk. This, however, is of no use at the first step, k = 0, because it will give the
result already found from minimum principle I, i.e. ε̇P

0 = 0. A better assumption would be to make
the backward difference approximation to deliver ε̇k+1, which amounts to employing an implicit
scheme for solving the system. However, both the forward difference and the backward difference
approximations have an error of order �ε, whereas the central difference approximation

εP
k+1 − εP

k

�ε
≈ ε̇P

k+1/2 (A 1)

has an error of order (�ε)2. The use of this approximation is now pursued. It implies that (4.7)
and (4.10) are satisfied at εk+1/2. Equation (4.10) thus requires an expression for εP

k+1/2. The most
natural choice is

εP
k+1/2 ≈ 1

2 (εP
k + εP

k+1/2). (A 2)

Equations (4.7) require (EP)k+1/2. The only simple choice is to assume that EP varies linearly on
the interval (εk, εk+1), which gives

(EP)k+1/2 ≈ 1
2 [(EP)k + (EP)k+1] = (EP)k + 1

2 �ε(ĖP)k+1/2, (A 3)

where (ĖP)k+1/2 is obtained from its exact formula (4.8) with ε̇P
k+1/2 given by (A 1).

With these approximations (now treated as though they are exact), the system that defines
εP

k+1 is

qUR
k+1/2 = 1√

3
(σ0)k+1/2

εP
k+1 − εP

k

Yk
and τUR

k+1/2 = 1√
3

(σ0)k+1/2
(εP

k+1)′ − (εP
k )′

Yk
, (A 4)

where

(σ0)k+1/2 = σ0

(
(EP)k +

(
1√
3

)
Yk

)
, (A 5)

and

Yk =
√

3
2

�ε(ĖP)k+1/2 = {[εP
k+1 − εP

k ]2 + l2[(εP
k+1)′ − (εP

k )′]2}1/2, (A 6)

along with the equilibrium equation

qUR
k+1/2 − (τUR

k+1/2)′ =
(

2
3

)
E
{
εk+1/2 − 1

2
(εP

k+1 + εP
k )
}

. (A 7)
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It is worthwhile to note that this system is equivalent to the variational statement

δ

∫h

−h
Φk(Yk)dx2 = 0, (A 8)

where

Φk(Yk) =
∫Yk

0

{
1√
3
σ0((EP)k +

(
1√
3

)
Z)
}

dZ

+
(

1
6

)
E
{

(εP
k+1 + εP

k )2 − 4εk+1/2(εP
k+1 + εP

k )
}

. (A 9)

The variation is with respect to εP
k+1 and this minimum principle delivers εP

k+1 as a function of the
current state εP

k and the increment �ε.
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