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hn W. Hutchi A thin metal film vapor deposited on thick elastomer substrate develops an equi-biaxial
o JO. n bt u“_: m_snn compressive stress state when the system is cooled due to the large thermal expansion
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1 Introduction pattern is held against the film as the buckles form and is then

: removed when the buckles are fully developed. In this case the
Recent studiesBowden et al[1], Huck etal.[2], and Yoo ilm is aluminum and the substrate has two layers, a relatively thin

e . . i
et al. [3]) have explored the feasibility of manipulating bucklei . . .
films on compliant substrates to achieve highly ordered patter, gmpliant polymer layefpolystyren¢ bonded to a thick silicon

with distinctive features. A metal film with a thickness measure
in tens of nanometers can be vapor deposited at an elevated te
perature on a thick elastomer substrate. When the fiIm/substra
system is cooled, the large mismatch between the thermal exp
sion of the metal and elastomer produces a state of equi-biax
compression in the film. At a critical temperature the film begin\ﬁl

All the films considered in this paper remain bonded to the
ystrate in the buckled state. They undergo little, or no, plastic
ormation. Selected tests revealed that the buckles almost en-
|y disappeared when the temperature was revefde?], The
t that the film locks into modes that are very different from
hat would be expected from a linear buckling analysis is due to

buckles grow and distinctive patterns emerge. Buckle patterns g jinearity also accounts for the unusual, highly ordered her-
be manipulated either by creating nonplanar substrate topograpfihone mode of buckling in Figs. 1 and 2 that is observed when
prior to deposition[1,2], or by forcing a film on a smooth planarthe

start of deposition, the buckle pattern is influenced by the undgﬂ

lying topography. On .the right-hand side of Fig. 1, one sees t}a‘f‘stance between jogs in the herringbone mode is aboufub®0
buckle pattern.that arises when the. substrate.surfa.ce h_as a Seﬂ?{?change in direction of the waves at each jog is approximately
of flat depressions running linearly in the vertical direction. DugO deg. The amplitude of the waves is on the order of a micron or
to local deformation of the substrate, the in-plane film stress é?naller'. Thus, although the amplitude is large compared to the
rglaxed in the Q|rect|on perpendmular to the edges qf thg dep“ﬁﬁ'n thickness: the mode is shallow in the sense that the slopes of
sions resqltlng |n”tge bu%kli alllgfrt1ment zhovgm,zj. Th'g alllgn-. the pattern are small. The strains associated with the buckling
ment persists we eyon the left-most epression edge In F',gm]ode are also small, and both the film and the substrate materials
where the substrate is perfectly smooth and flat prior to bucklmgre within their respective linear elastic ranges

The parallel undulations in the left-center of Fig. 1 transition to The herringbone pattern is very different fro.m any mode one

theb herr]ringbcf)ne %atteréL Tlple herrin%bone byckle p"’f‘;.“?m ?pf)eﬁﬁaht suspect based on a linear stability analysis, as will be seen
to be the preferred mode whenever there exists a sufficiently laidga. A clue to its existence is its ability to alleviate equally in all

patch of smooth substrate and when the system has been cogfgditions the biaxial in-plane stress driving buckling. A mode

Well.below the onset.of bupkling. Th?‘re are irregularities to thﬁ/ith undulations extending in only one direction such as that seen
herringbone pattern, including local distortion most likely due B the right in Fig. 1, which will be referred to hereafter as a

imperfe.ctiolns in either the film or su.bstrate. Another e.xamplle blsne-dimensional modeelieves in-plane stress only in the direc-
shown in Fig. 2 where the substrate is pre-patterned with a singig, e hendicular to the undulations. The in-plane stress compo-

circular depression of several millimeters diameter at its center ¢ parallel to the undulations is only slightly altered by buck-

The depression edge determines the orientation of the bucklequ”g. On the other hand, the alternating directions of the local

its vicinity_,l_hbut awayl fr.or7|1:.the3 edrg];_ehthe hkerrir}gboneh Patterdhe_dimensional undulations in the herringbone mode reduce the
emerges. The example in Fig. 3, which is taken fii@h Shows o e rail in-plane stress in the film in all directions. The herring-

the highly ordered mode that forms when a mold with a squafgne mode allows for an isotropic average in-plane expansion of
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Fig. 1 Buckling of a 50 nm gold film on a thick elastomer (PDMS) substrate.
On the right, the substrate has been patterned with alternating flat depres-
sions, [2]. The substrate on the left two-thirds of the figure is flat and not
patterned. The herringbone pattern is on the left. The wavelength of the pattern
across the crests is approximately 30  um while the distance between jogs of
the herringbone mode is approximately 100  um.

It will be shown that the herringbone mode of buckling is théhe substrate experiences no pre-stress—buckling is driven by the
minimum energy configuration among several competing modgse-stress in the film not the substrate. In the numerical analysis of
We confine attention to modes that are periodic, and we begin the two other modes, nonlinear kinematics holds throughout the
presenting the result of the classical buckling analysis for the farsystem(with linear stress-strain behavjpbut nonlinearity in the
ily of modes associated with the critical stress. Then, a closeslibstrate is negligible. It will be seen that the energy associated
form analysis is presented of one-dimension undulations of finitéth the herringbone mode is distinctly below that of the other
amplitude at temperatures arbitrarily below the critical stress. Ntwo modes. The energy minimum of the herringbone pattern is
merical analyses of the herringbone mode and a square checkelatively flat in the sense that there is little change in the energy
board mode follow. The film is represented as an elastic thin pléi@ a fairly wide range of the parameters characterizing the geom-
satisfying the nonlinear von Karman plate equations. These eqe#ry of the pattern, especially the spacing between jogs. The paper
tions are accurate for the shallow modes observed. In the analgirds with speculation on how the mode forms and a discussion on
cal work, the elastomer substrate is represented by linear, smh# limitations of approaches based on energy minimization.
strain elasticity theory. This is an accurate representation becaus&he Young's modulus, Poisson’s ratio and coefficient of thermal
the strains in the substrate remain small. Moreover, a linear stragxpansion of the film are denoted By », anda. The correspond-
displacement characterization of the substrate is justified becausg quantities for the substrate are denotedHyy vy, and as.

The film thickness id. The substrate is assumed to be infinitely
thick and, thus, it imposes its in-plane strains on the film. Assum-
ing the film is deposited on the substrate when both are at tem-
peratureT; and the temperature of the system is then reduced by
AT, and assuming the film is elastic and unbuckled, the compres-
sive equi-biaxial pre-stress stresgs,, in the film is

To
0'11:0'22:_0'0:_[E/(1_V)] AadT (1)
Tp—AT

whereAa= as— a. For the systems under consideratiday>0
and oy>0.

The von Karman plate equatiorigl], governing the deflection
of the film are

DVAW—(N1qW 13+ NogW 55+ 2N W 1) = —p (2)
1., 2
Et VIF=Wi— W W 2. (3)

Here,V* is the bi-harmonic operatof) =Et3/[12(1— v?)] is the
bending stiffness of the platey is its displacement perpendicular
to the plane, X, ,X5), pis the stress component acting perpendicu-
lar to the plate that is exerted by the substrate,€y()/dx,,,
N,s=J0,z0%; is the stress resultant in the plane of the plate and
F is the Airy stress function withNyj;=F 55, Nypp=F 13, Npp
=—F ;5. Equation(2) is the moment equilibrium equation, and
(3) is the compatibility equation ensuring the existence of in-plane
displacement gradients,, ;. Tangential components of the trac-
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Fig. 2 Gold film on a substrate which has been patterned with

a circular flat depression of several millimeters in diameter, [1]. tion exerted by the substrate on the plate are ignored. This is a
The herringbone pattern emerges in the center of the spot and standard approximation in the analysis of wrinkling of a thin film
outside the edges of the spot. on compliant substrat¢5], whose accuracy can be validated by a
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Fig. 3 An example from [3] of a highly organized buckling pattern for a film
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/substrate system.

As depicted, the film is forced to buckle into a mold with a square pattern, after which the mold

is removed.

more detailed analysis for one-dimensional moée=e below.
Middle surface strains are related to displacements By
=1/2(Ug gt Uga) F12W W 57 Nop=[E/(1—-?)]((1-v)E,p
+_VE_y~y§aﬂ); and M 5= D((1- V)W,aﬁ+_vw,y76aﬁ) are the con-
stitutive relations withM,; as the bending moment tensor.

2 Classical Buckling Based on Linearized Stability
Analysis

however, for an equi-biaxial pre-stress, the critical stress applies
not only to the one-dimensional mode wkh=k® andk,=0 but
to any mode whose wave numbers satisfy

K2+ k2t =kCt=(3E4/E) 3, @)

The compressed film in the equi-biaxial state has multiple modes
associated the critical buckling stress. In what follows, both the
one-dimensional mode and the square checkerboard mode with

The film is imagined to be infinite in extent. The unbuckled filmk; =k,= kC/\2 will be investigated.

has a uniform stress state givenMy;=N,,= — ogt, N;,=0. The
classical buckling analysis, based on linearizatiorifand (3)
about the pre-buckling state, leads to

DV4w+ oot V2w=—p

(4)

along with VAAF=0 where F=—1/2(x3+x3)oot+AF. The
system of equations admits periodic solutions of the form

p=p cog k;x;)cogK,Xs),
AF=0

with (4) giving (Dk*— ootk?)W= — p wherek= \k3+k5.
The exact solution for the normal deflection of the surfatef
the infinitely deep substrate under the normal loadtimg (5) with

zero tangential tractions at the surfacedis 6 cosk;x;)CoskyX,)
where 3=25/(E5k) with Eg= ES/(l—vg).l Combining Ok*
—ootk)W=—p ands= 2p/(Egk) subject tov= 5 gives the eigen-
value equationoot=Dk2+E¢2k. The critical buckling stress,
ag, is the minimum eigenvalue with respect kpwhich is at-
tained fork®t=(3E4/E)*"* giving

Ug 1 (

E 4

W= \;\V COS( klxl)COS k2X2) y

®)

E 2/3
- ) ©)

3 Nonlinear Analysis of the One-Dimensional Mode

An exact closed-form solution for the nonlinear von Karman
plate coupled to the linearly elastic foundation is possible for the
one-dimensional mode with nonzeky and k,=0. The eigen-
value (i.e., the stress at the onset of bucklingssociated with
arbitraryk, is now denoted byr5t=Dk?+ E4/2k, to distinguish
it from the stress in the unbuckled statg,. Results will be pre-
sented for variouk, including the critical case with; =k and
o5=0§. The solution is produced for temperatures such that
O'0> O'E .

The normal displacement in the finite amplitude state continues
to bew=w cosk;x;), and(3) implies that the resultant stress in
the buckled filmN4, is independent af; . It follows, then, from
(2) that the relatiorN,;= — o'5t remains in effect in the nonlinear
regime. An additional constraint must be imposed to ensure that
u,; is consistent with the overall substrate deformation, i.e.,

5”“‘1Auldx1=0 where Au;=u;—u? with u} as the displace-
ment in the unbuckled film at,. (Equation(3) ensures the exis-
tence ofdu, /dxy; this condition provides the underdetermined
constant, ensuring the overall film displacement matches that of

the substrate.This constraint condition can be expressed using

with E= E/(1—»?). This is the result for the one-dimensionalthe strain-displacement relation and the stress-strain relation as

plane-strain wrinkling stress, which is widely knowis]. Note,

The effect of the boundary conditions tangential to the surface of the substrate is
minor. For example, if the tangential displacements are constrained to be zero,

finds :Szzf))\/Esk where\ = (3—4vy)/[4(1— vs)?]. For vs=1/3, \=15/16; for v
=1/2,\=1.

Journal of Applied Mechanics

1 L (27 dw Zd k2 )
E—t(a'ot‘i‘Nll)—E . d_Xl Xl—zw .

®
%nheus, the amplitude of the buckling mode is obtained by combin-
ing (8) with N;,=— o5t:
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In the unbuckled state when the film stresgrig the substrate
is unstressed and the energy per unit area in the film/substr:
system is

Us

1-v

UO: E

(10)

O'St .

The average energy per unit area in the buckled state can
expressed as

1
U= E(Nll(Nll_ VN32) + Noo(Npr— ¥N1y))

Ky 2mlky [ d2w
o D\ =
am ) dox,
In (11), the first contribution is from the uniform resultant in-
plane stresses in the film, the second is the bending contributiui
from the film, and the third is the elastic energy in the substra
Enforcing AE;,=0, as measured from the gnbuckled state@l  gypstrate system in the buckled state to that in the unbuckled
one readily finds thall,,= — (1—v) oot — voot. Each of the con- state, U7, as a function of ay/a for the one-dimensional
tributions in(11) can be evaluated explicitly. In the same order agiode. Results are shown for several wavelengths. Note that
(ky

in (11), the ratios of the energy contributions in the buckled statee wavelength that is critical at the onset of buckling
to the energy in the unbuckled state are =k¢) produces the minimum energy in the buckled state even

— when oy is well above o§.
oE\2 (1-1)2] (14w (k) [ E |2 )2 70 7o
EN (1-19) * 48 ao) |t

(1+v)k1t(ES)( E)Z
J,__ J— R—
8 E 0o

2d ky (27 . u
Xl"'E . pwdx . (11)

0 5 10 15 20

[Ei'g. 4 Ratio of average elastic energy per unit area in the film /

U 1+v
U, 2

Jo
sociated with the critical mode. Thus, the results of Fig. 4 empha-
size the strong preference for the wavelength associated with the
critical wavelength L°=2x/k® when the mode is one-
dimensional. The limit of the energy ratio ans)/(rg becomes

\7V 2
n ) (12)

With » and E4/E specified ando,/E determined from(1),
U/U, can be computed front12) for any kit becauseaglE
= (kit)?/12+ (E5/E)/(2k t) and W/t is given by (9). For the
critical mode withk,t=k t=(3E¢/E)*® and o§=0§ given by

(6), one findsw/t= /o /05—1 and

(US)Z (1- )2 +(1y)o_8(1a_8).
(1-17) o oo

U _1+v

U, 2

o0
(13)

Plots of U/U, as a function ofcrolag are given in Fig. 4 for

large isU/Ug=(1—wv)/2. In this limit the in-plane compressive
stress perpendicular to the buckles is completely relieved but the
compressive stress parallel to the buckles is changed only by the
Poisson effect.

4 Numerical Analysis of the Checkerboard and Her-
ringbone Modes

An exact analytic solution such as that given for the one-
dimensional mode cannot be obtained for either the checkerboard
or the herringbone mode. The finite element code, ABAQUS, has
been used to obtain a three-dimensional analysis of the periodic

v=1/3, v=0.48, andE./E=4100, representative of a gold film cell of these two modes. Within the cell, the plate is represented

on a PDMS substrate. Results for the normalized energy are
sented for five values of the wavelength ratld/L¢=k®/k,,
wherelL =2/k, is the wavelength and®=2x/k® is the wave-

phy- 1000 three-dimensional eight-node, quadratic thin shell ele-

ments (with five degrees-of-freedom at each node and with re-
duced integrationthat account for finite rotations of the middle
rface. The stresses and strains within the plate are linearly re-

length of the critical mode. The wavelength predicted for the go
film/PDMS substrate system is@m which is significantly below
the observed wavelength of roughly 20 to @t seen in Figs. 1

ated. The substrate is meshed with 20-node quadratic block ele-
ments with reduced integration. The constitutive relation of the

and 2. The discrepancy, discussedit?], is believed to be due to substrate is also taken to be linear isotropic elasticity, but the
a layer of PDMS just below the film whose Young’s modulus igeometry is updated. As mentioned earlier, nonlinear strain-

much higher than the bulk elastomer due the high film depositi(ﬁ#r‘lspla‘cermi'nt beh_avior of the substrate ha§ essentially no influence
temperature. In effect, it is argued that there is a two-layer fil the results of interest. The substrate is taken to be very deep

whose thickness is substantially greater than the gold film. Othgy _pthd) com_pared to mode wavelength, and the_ boundary con-
possibilities for the wavelength discrepancy include the possibilifj/tions along _|ts| bottom surfaﬁe eft_rle zero normal displacement and
that the modulus used for PDMS in the range of very small straig€"© tangential tractions. The film is assigned a temperature-

applicable to this problem may not be correct. The experimentgf€pendent therncljal expan?ion ”;]ismamb" anc(jj a temper]ratgre al
agreement with the theoretical wavelength prediction is consid OpAT Is imposed starting from the unstressed state. The biaxia
ably better in[3]. compressive stress in the unbuckled film is therefarg

The results of Fig. 4 fotJ/U, for the one-dimensional mode =EA@AT/(1—v) if the substrate is infinitely deep. For each

show that the lowest energy state is associated with the critic@Pde: @ unit periodic cell is identified and meshed with periodic-

mode (L/LS=1) even at finite amplitude buckling deflections Y conditions imposed on the edges of cell, both for the film and

The lowest energy state at valueSc;Q,f/aOC just above unity must the underlying substrate.
be associated with the critical mode, but, in general, there is no &4.1 The Square Checkerboard Mode. Consider a square
priori reason why lowest energy configuration should remain asheckerboard mode such that the wavelengtin the x; and
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. . . . . . Fig. 6 Ratio of average elastic energy per unit area in the film /
Fig. 5 Buckling amplitude of the film,  w/t, as a function of  gypstrate system in the buckled state to that in the unbuckled
o,/ 0§ for the three modes considered. The wavelengths (@and  state, Ur Uy, as a function of /e for the three modes con-
inclination in the case of the herringbone mode ) correspond to  sjdered. The wavelengths (and inclination in the case of the
the critical at the onset of buckling. herringbone mode ) correspond to the critical at the onset of
buckling. At (rolog well above unity, the herringbone mode
lowers the energy more than the other two modes.

Xo-directions is set by the critical condition ifY), i.e., 2m/k;

—_ —_] = C ¢ C— C

_z.tW/kﬁ._LtE.\/EL where af deﬁlned befl?r:s fzg/kf .d_The _with the ridge in the next cell. The excess breadth of the cell

unit cell in this case 1S a rectanguiar parafielepiped ot dimensi vingL/L®=2.4 results in two ridges in the interior sector of the

LXLxd. Avery small initial imperfection is prescribed such thaCell The shape of the mode with narrow breadth.C— 0.55, is

the plate in the unstressed systemAdt=0 has a slight middle =~ p . . T e
similar to that of the experimental herringbone pattern, but it will

surface deflectionw=wW, cosk;x;)coskyx,), where w, /t=0.02. :
Periodicity conditions are applied to the cell by enforcing all fiw%:: sée_eg that the energy for the narrow cell is well above that for

nodal degrees-of-freedom to be the same on the two edges of he d q iy h f th I
cell parallel to thex;-coordinate, and similarly for the,-axis. In e dependence d3/U, on the parameters of the cell geom-

addition, at one of the corners of the cell the conditiongdx, €Y (L/LS.a/L,a) is presented in Fig. 9. Figurd®, displays the
=0 andaw/ax,=0 are enforced such that the mode crests arfdear trend whereby minimum energy is associated with®
valleys align with the cell sides. =1. The energy of modes with/L°=1.6 andL/L°=0.7 is dis-

A square checkerboard mode is indeed determined with nornigictly above the minimum. In Fig.(®) it is seen that the energy
deflection that is roughly of the formv=W cosx,)cosk,x,). in the buckled state is surprisingly insensitive to the normalized
The computed relation between the mode amplitwde, defined length of the cella/L. Only for very short cellsa/L=0.5, is the
as one half the difference between the maximum and minimu@fergy noticeably above the minimum. Evidence for this insensi-
deflections, andro/goc is plotted in Fig. 5. Included in this figure tvity is reflected_ in the experimental her_rlngbone patterns in Figs.
are the corresponding results for the one-dimensional mode ah@nd 2, where it can be seen that the distance between jogs varies
the herringbone mode, which is obtained in the next subsecti(gﬁ’. qt least a faqtor of two from one section of the film to another.
The results for the computed average strain energy per area in @ilarly, there is not a very strong dependence of the energy of
film/substrate system are presented in Fig. 6 in normalized folf#¢ buckled system on the inclination of the cell,although the
as U/U, versus 00/08. The results for the one-dimensional
mode withk;=k® (k,=0) are also plotted, as is the correspond- . .
ing result for the critical herringbone mode obtained next. The Unit computational cell
energy per area of the critical checkerboard mode lies betwet
that for the one-dimensional mode and the herringbone mode.

4.2 The Herringbone Mode. The unit top surface of the
periodic cell for the herringbone mode is shown in Fig. 7. Th
parallelepiped is characterized by its widi, breadth,L, and
inclination angle,a. Periodicity conditions are applied to the top
and bottom edges of the cell, and symmetry is imposed on the |
and right edges. A small initial deflectiomv(/t=0.02) satisfying
these edge conditions is introduced to initiate the mode.

Contours of the normal deflection of the filmwithin the cell
are displayed in Fig. 8 for three values ofLC, at 00/03:26
(Figs. 8a), 8(b)) or oo/o5=4 (Fig. 8c)) with a/L=2 and
a=45°_ It will be seen below that the minimum energy configu-
ration hasL/L®=1, and for this value it can be seen that the
deflection shape displays the features of the herringbone mor
seen in Figs. 1 and 2. The mode has a curving ridge running along
the center of the cell that aligns itself to merge smoothly at the jog Fig. 7 Periodic cell of the herringbone mode
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a=45, a/L=2

(b)
=45, a/L=2

o,/ o8 =4

Fig. 8 Contour plots of the normal deflection of the film in the
herringbone mode at o/o5=26 (a,b) and o,/o5=4 (c) for
several values of the breadth of the periodic cell, all with alL
=2 and a=45 deg
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Fig. 9 Variation of U/U, as a function of o/ o for the herring-

bone mode. (a) Dependence on L/LC with a/L=2 and a=45
deg. (b) Dependence on a/L with L/L=1 and a=45 deg. (c)
Dependence on a with L/LC=1 and a/L=2.
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minimum is attained fow=45 deg(Fig. 9(c)). A feature seen in the herringbone mode emerges as the minimum energy mode.
each of the plots in Fig. 9, as well as for the one-dimensionBloes the herringbone mode spread across the film starting from
mode in Fig. 4, is the invariance of the ordering of the relativeome region of imperfection or from an edge? Or does it some-
energy trends with respect to changesriﬁgg_ Put another way, how emerge spontaneously over the entire film as a transition
the parameters governing the geometry of the minimum enerfjpm a combination of classical modes? Bowden ef B2] were

mode do not change in a significant way @s/o§ increases. In Not able to observe the evolution of the buckling patterns as their
both Figs. 5 and 9 the results for the herringbone mode are ofecimens were cooled from the film deposition temperature, and
plotted for values oir(,/zrg sufficiently large compared to unity. thus at this time it is not possible to give an experimental descrip-

The herringbone mode is not a bifurcation mode, and it only pdon of how the herringbone mode evolves.

comes a preferred mode in the sense of having minimum energ)Ba'tA‘ word of caution is in order about predicting mode patterns

00/08 somewhat above unity. MO/UC();%L the amplitude and ased on minimum energy states. The means by which deforma-

. : ) . ions evolve to the minimum energy state is by no means obvious.
normalized energy of the herringbone mode is dominated by i chanics is replete with problems whose minimum energy states
initial imperfection. are not easily assessable. The pattern formed by forcing a film to
buckle into a mold in Fig. 3 is just such an example. Once the
finite amplitude mode has formed and the mold removed, it ap-

Among the three buckling modes considered, the herringbopears that the mode is locked in place and does not undergo
mode produces the lowest average elastic energy of the filaWanges towards a lower energy state unless further disturbed. To
substrate system for films stressed well above critical, as seeroiir knowledge, the nonlinear mechanics governing such behavior
Fig. 6. The herringbone mode is able to relax the biaxial pre-stregsbuckled films has not been studied. In the case of the minimum
stress,oy, in the film in all directions while inducing relatively energy herringbone mode, experimental observation confirms its
little concurrent stretch energy. The stretch energy associated wéttistence, even though it has not been established how it evolves.
buckling that does occur is localized in the jog regions. By con-
trast, the one-dimensional mode requires essentially no strefgBknowledgment
energy (it continues to exhibit zero Gaussian curvajureut it . .
relaxes the biaxial pre-stress only in one direction. The checker-1NiS work has been supported in part by Grant NSF DMR

&
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board mode relaxes the pre-stress in all directions, but it develdj&L3805 and in part by the Division of Engineering and Applied
non-zero Gaussian curvature and induces much more concurréRences, Harvard University.

stretch energy than the herringbone mode. The minimum enerlgy

state of the herringbone mode has undulation witlthwhich is eferences
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Figs. 1 and 2 show a spread in the jog spacing, and they also Whitesides, G. M 2000,_ Ordering of Spontaneously Formed Buckles on
. . . . . Planar Surfaces,” Langmuif,6, pp. 3497-3501.
displays jog angles in reasonable agreement with the theoreticak) voo, p. 3., Suh, K. Y., Park, S. Y., and Lee, H. H., 2002, “Physical Self-
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