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Herringbone Buckling Patterns
of Compressed Thin Films
on Compliant Substrates
A thin metal film vapor deposited on thick elastomer substrate develops an equi-b
compressive stress state when the system is cooled due to the large thermal exp
mismatch between the elastomer and the metal. At a critical stress, the film unde
buckling into a family of modes with short wavelengths characteristic of a thin plate
compliant elastic foundation. As the system is further cooled, a highly ordered her
bone pattern has been observed to develop. Here it is shown that the herringbone
constitutes a minimum energy configuration among a limited set of comp
modes.@DOI: 10.1115/1.1756141#
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1 Introduction
Recent studies~Bowden et al.@1#, Huck et al. @2#, and Yoo

et al. @3#! have explored the feasibility of manipulating buckle
films on compliant substrates to achieve highly ordered patte
with distinctive features. A metal film with a thickness measur
in tens of nanometers can be vapor deposited at an elevated
perature on a thick elastomer substrate. When the film/subs
system is cooled, the large mismatch between the thermal ex
sion of the metal and elastomer produces a state of equi-bia
compression in the film. At a critical temperature the film beg
to buckle into modes with wavelengths typically measured in
crons. As the temperature is further lowered the amplitude of
buckles grow and distinctive patterns emerge. Buckle patterns
be manipulated either by creating nonplanar substrate topogr
prior to deposition,@1,2#, or by forcing a film on a smooth plana
substrate to buckle into a nonplanar mold that is subseque
removed,@3#. If the surface of the substrate is nonplanar at
start of deposition, the buckle pattern is influenced by the un
lying topography. On the right-hand side of Fig. 1, one sees
buckle pattern that arises when the substrate surface has a
of flat depressions running linearly in the vertical direction. D
to local deformation of the substrate, the in-plane film stres
relaxed in the direction perpendicular to the edges of the dep
sions resulting in the buckle alignment shown,@1,2#. This align-
ment persists well beyond the left-most depression edge in F
where the substrate is perfectly smooth and flat prior to buckl
The parallel undulations in the left-center of Fig. 1 transition
the herringbone pattern. The herringbone buckle pattern app
to be the preferred mode whenever there exists a sufficiently l
patch of smooth substrate and when the system has been c
well below the onset of buckling. There are irregularities to t
herringbone pattern, including local distortion most likely due
imperfections in either the film or substrate. Another example
shown in Fig. 2 where the substrate is pre-patterned with a si
circular depression of several millimeters diameter at its cen
The depression edge determines the orientation of the buckle
its vicinity, but away from the edge the herringbone patte
emerges. The example in Fig. 3, which is taken from@3#, shows
the highly ordered mode that forms when a mold with a squ
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pattern is held against the film as the buckles form and is t
removed when the buckles are fully developed. In this case
film is aluminum and the substrate has two layers, a relatively t
compliant polymer layer~polystyrene! bonded to a thick silicon
layer.

All the films considered in this paper remain bonded to t
substrate in the buckled state. They undergo little, or no, pla
deformation. Selected tests revealed that the buckles almos
tirely disappeared when the temperature was reversed,@1,2#. The
fact that the film locks into modes that are very different fro
what would be expected from a linear buckling analysis is due
the highly nonlinear character of buckling of an elastic film on
compliant substrate as the temperature drops well below criti
Nonlinearity also accounts for the unusual, highly ordered h
ringbone mode of buckling in Figs. 1 and 2 that is observed wh
the system is not manipulated in any way. In Figs. 1 and 2,
substrate is the elastomer, polydimethylsiloxane,~or PDMS, for
short! and the film is 50 nm of gold. The crest-to-crest separat
of the buckle undulations or ‘‘waves’’ is about 30mm and the
distance between jogs in the herringbone mode is about 100mm.
The change in direction of the waves at each jog is approxima
90 deg. The amplitude of the waves is on the order of a micron
smaller. Thus, although the amplitude is large compared to
film thickness, the mode is shallow in the sense that the slope
the pattern are small. The strains associated with the buck
mode are also small, and both the film and the substrate mate
are within their respective linear elastic ranges.

The herringbone pattern is very different from any mode o
might suspect based on a linear stability analysis, as will be s
later. A clue to its existence is its ability to alleviate equally in a
directions the biaxial in-plane stress driving buckling. A mo
with undulations extending in only one direction such as that s
on the right in Fig. 1, which will be referred to hereafter as
one-dimensional mode, relieves in-plane stress only in the dire
tion perpendicular to the undulations. The in-plane stress com
nent parallel to the undulations is only slightly altered by buc
ling. On the other hand, the alternating directions of the lo
one-dimensional undulations in the herringbone mode reduce
overall in-plane stress in the film in all directions. The herrin
bone mode allows for an isotropic average in-plane expansio
the film, but otherwise has zero Gaussian curvature apart from
vicinity of the jogs. In addition to bending, some nonunifor
stretching of the film necessarily occurs locally at the jogs. N
ertheless, the near-inextensionality~apart from the average uni
form expansion! of the herringbone mode and its ability to allev
ate the in-plane stress equally in all directions are the two feat
underlying its preferred existence. An origami pattern similar to
can be created from a series of folds of a piece of paper.
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Fig. 1 Buckling of a 50 nm gold film on a thick elastomer „PDMS… substrate.
On the right, the substrate has been patterned with alternating flat depres-
sions, †2‡. The substrate on the left two-thirds of the figure is flat and not
patterned. The herringbone pattern is on the left. The wavelength of the pattern
across the crests is approximately 30 mm while the distance between jogs of
the herringbone mode is approximately 100 mm.
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It will be shown that the herringbone mode of buckling is th
minimum energy configuration among several competing mod
We confine attention to modes that are periodic, and we begin
presenting the result of the classical buckling analysis for the fa
ily of modes associated with the critical stress. Then, a clos
form analysis is presented of one-dimension undulations of fin
amplitude at temperatures arbitrarily below the critical stress. N
merical analyses of the herringbone mode and a square che
board mode follow. The film is represented as an elastic thin p
satisfying the nonlinear von Karman plate equations. These eq
tions are accurate for the shallow modes observed. In the ana
cal work, the elastomer substrate is represented by linear, s
strain elasticity theory. This is an accurate representation bec
the strains in the substrate remain small. Moreover, a linear str
displacement characterization of the substrate is justified bec

Fig. 2 Gold film on a substrate which has been patterned with
a circular flat depression of several millimeters in diameter, †1‡.
The herringbone pattern emerges in the center of the spot and
outside the edges of the spot.
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the substrate experiences no pre-stress—buckling is driven by
pre-stress in the film not the substrate. In the numerical analys
the two other modes, nonlinear kinematics holds throughout
system~with linear stress-strain behavior!, but nonlinearity in the
substrate is negligible. It will be seen that the energy associa
with the herringbone mode is distinctly below that of the oth
two modes. The energy minimum of the herringbone pattern
relatively flat in the sense that there is little change in the ene
for a fairly wide range of the parameters characterizing the ge
etry of the pattern, especially the spacing between jogs. The p
ends with speculation on how the mode forms and a discussio
the limitations of approaches based on energy minimization.

The Young’s modulus, Poisson’s ratio and coefficient of therm
expansion of the film are denoted byE, n, anda. The correspond-
ing quantities for the substrate are denoted byEs , ns , andas .
The film thickness ist. The substrate is assumed to be infinite
thick and, thus, it imposes its in-plane strains on the film. Assu
ing the film is deposited on the substrate when both are at t
peratureTD and the temperature of the system is then reduced
DT, and assuming the film is elastic and unbuckled, the comp
sive equi-biaxial pre-stress stress,s0 , in the film is

s115s2252s052@E/~12n!#E
TD2DT

TD

DadT (1)

whereDa5as2a. For the systems under consideration,Da.0
ands0.0.

The von Karman plate equations,@4#, governing the deflection
of the film are

D¹4w2~N11w,111N22w,2212N12w,12!52p (2)

1

Et
¹4F5w,12

2 2w,11w,22. (3)

Here,¹4 is the bi-harmonic operator,D5Et3/@12(12n2)# is the
bending stiffness of the plate,w is its displacement perpendicula
to the plane, (x1 ,x2), p is the stress component acting perpendic
lar to the plate that is exerted by the substrate, ( ),a[]( )/]xa ,
Nab5*sabdx3 is the stress resultant in the plane of the plate a
F is the Airy stress function with (N115F ,22, N225F ,11, N12
52F ,12). Equation~2! is the moment equilibrium equation, an
~3! is the compatibility equation ensuring the existence of in-pla
displacement gradients,ua,b . Tangential components of the trac
tion exerted by the substrate on the plate are ignored. This
standard approximation in the analysis of wrinkling of a thin fil
on compliant substrate,@5#, whose accuracy can be validated by
Transactions of the ASME
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Fig. 3 An example from †3‡ of a highly organized buckling pattern for a film Õsubstrate system.
As depicted, the film is forced to buckle into a mold with a square pattern, after which the mold
is removed.
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more detailed analysis for one-dimensional modes~see below!.
Middle surface strains are related to displacements byEab

51/2(ua,b1ub,a)11/2w,aw,b ; Nab5@E/(12n2)#((12n)Eab
1nEggdab); andMab5D((12n)w,ab1nw,ggdab) are the con-
stitutive relations withMab as the bending moment tensor.

2 Classical Buckling Based on Linearized Stability
Analysis

The film is imagined to be infinite in extent. The unbuckled fil
has a uniform stress state given byN115N2252s0t, N1250. The
classical buckling analysis, based on linearization of~2! and ~3!
about the pre-buckling state, leads to

D¹4w1s0t¹2w52p (4)

along with ¹4DF50 where F521/2(x1
21x2

2)s0t1DF. The
system of equations admits periodic solutions of the form

w5ŵ cos~k1x1!cos~k2x2!, p5 p̂ cos~k1x1!cos~k2x2!,

DF50 (5)

with ~4! giving (Dk42s0tk2)ŵ52 p̂ wherek5Ak1
21k2

2.
The exact solution for the normal deflection of the surface,d, of

the infinitely deep substrate under the normal loadingp in ~5! with
zero tangential tractions at the surface isd5 d̂ cos(k1x1)cos(k2x2)
where d̂52p̂/(Ēsk) with Ēs5Es /(12ns

2).1 Combining (Dk4

2s0tk
2)ŵ52p̂ andd̂52p̂/(Ēsk) subject toŵ5 d̂ gives the eigen-

value equations0t5Dk21Ēs/2k. The critical buckling stress
s0

C , is the minimum eigenvalue with respect tok, which is at-
tained forkCt5(3Ēs /Ē)1/3 giving

s0
C

Ē
5

1

4 S 3
Ēs

Ē
D 2/3

(6)

with Ē5E/(12n2). This is the result for the one-dimensiona
plane-strain wrinkling stress, which is widely known,@5#. Note,

1The effect of the boundary conditions tangential to the surface of the substra
minor. For example, if the tangential displacements are constrained to be zero

finds d̂52p̂l/Ēsk wherel5(324ns)/@4(12ns)
2#. For ns51/3, l515/16; forns

51/2, l51.
ied Mechanics
l,

however, for an equi-biaxial pre-stress, the critical stress app
not only to the one-dimensional mode withk15kC andk250 but
to any mode whose wave numbers satisfy

Ak1
21k2

2t5kCt5~3Ēs /Ē!1/3. (7)

The compressed film in the equi-biaxial state has multiple mo
associated the critical buckling stress. In what follows, both
one-dimensional mode and the square checkerboard mode
k15k25kC/A2 will be investigated.

3 Nonlinear Analysis of the One-Dimensional Mode
An exact closed-form solution for the nonlinear von Karm

plate coupled to the linearly elastic foundation is possible for
one-dimensional mode with nonzerok1 and k250. The eigen-
value ~i.e., the stress at the onset of buckling! associated with
arbitraryk1 is now denoted bys0

Et5Dk1
21Ēs/2k1 to distinguish

it from the stress in the unbuckled state,s0 . Results will be pre-
sented for variousk1 including the critical case withk15kC and
s0

E5s0
C . The solution is produced for temperatures such t

s0.s0
E .

The normal displacement in the finite amplitude state contin
to be w5ŵ cos(k1x1), and ~3! implies that the resultant stress i
the buckled film,N11, is independent ofx1 . It follows, then, from
~2! that the relationN1152s0

Et remains in effect in the nonlinea
regime. An additional constraint must be imposed to ensure
u1 is consistent with the overall substrate deformation, i
*0

2p/k1Du1dx150 whereDu15u12u1
0 with u1

0 as the displace-
ment in the unbuckled film ats0 . ~Equation~3! ensures the exis-
tence ofdu1 /dx1 ; this condition provides the underdetermine
constant, ensuring the overall film displacement matches tha
the substrate.! This constraint condition can be expressed us
the strain-displacement relation and the stress-strain relation

1

Ēt
~s0t1N11!5

k1

4p E
0

2p/k1S dw

dx1
D 2

dx15
k1

2

4
ŵ2. (8)

Thus, the amplitude of the buckling mode is obtained by comb
ing ~8! with N1152s0

Et:

te is
, one
SEPTEMBER 2004, Vol. 71 Õ 599
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k1t
A~s02s0

E!

Ē
. (9)

In the unbuckled state when the film stress iss0 , the substrate
is unstressed and the energy per unit area in the film/subs
system is

U05
12n

E
s0

2t. (10)

The average energy per unit area in the buckled state ca
expressed as

U5
1

2E
~N11~N112nN22!1N22~N222nN11!!

1
k1

4p E
0

2p/k1

DS d2w

d2x1
D 2

dx11
k1

4p E
0

2p/k1

pwdx1 . (11)

In ~11!, the first contribution is from the uniform resultant in
plane stresses in the film, the second is the bending contribu
from the film, and the third is the elastic energy in the substr
EnforcingDE2250, as measured from the unbuckled state ats0 ,
one readily finds thatN2252(12n)s0t2ns0

Et. Each of the con-
tributions in~11! can be evaluated explicitly. In the same order
in ~11!, the ratios of the energy contributions in the buckled st
to the energy in the unbuckled state are

U

U0
5

11n

2 F S s0
E

s0
D 2

1
~12n!2

~12n2!
G1

~11n!~k1t !4

48 S Ē

s0
D 2S ŵ

t D 2

1
~11n!k1t

8 S Ēs

Ē
D S Ē

s0
D 2S ŵ

t D 2

. (12)

With n and Ēs /Ē specified ands0 /Ē determined from~1!,
U/U0 can be computed from~12! for any k1t becauses0

E/Ē
5(k1t)2/121(Ēs /Ē)/(2k1t) and ŵ/t is given by ~9!. For the
critical mode withk1t[kCt5(3Ēs /Ē)1/3 and s0

E5s0
C given by

~6!, one findsŵ/t5As0 /s0
C21 and

U

U0
5

11n

2 F S s0
C

s0
D 2

1
~12n!2

~12n2!
G1~12n!

s0
C

s0
S 12

s0
C

s0
D .

(13)

Plots of U/U0 as a function ofs0 /s0
C are given in Fig. 4 for

n51/3, ns50.48, andĒs /Ē54100, representative of a gold film
on a PDMS substrate. Results for the normalized energy are
sented for five values of the wavelength ratio,L/LC5kC/k1 ,
whereL52p/k1 is the wavelength andLC[2p/kC is the wave-
length of the critical mode. The wavelength predicted for the g
film/PDMS substrate system is 3mm which is significantly below
the observed wavelength of roughly 20 to 30mm seen in Figs. 1
and 2. The discrepancy, discussed in@1,2#, is believed to be due to
a layer of PDMS just below the film whose Young’s modulus
much higher than the bulk elastomer due the high film deposi
temperature. In effect, it is argued that there is a two-layer fi
whose thickness is substantially greater than the gold film. O
possibilities for the wavelength discrepancy include the possib
that the modulus used for PDMS in the range of very small stra
applicable to this problem may not be correct. The experime
agreement with the theoretical wavelength prediction is consi
ably better in@3#.

The results of Fig. 4 forU/U0 for the one-dimensional mod
show that the lowest energy state is associated with the cri
mode (L/LC51) even at finite amplitude buckling deflection
The lowest energy state at values ofs0 /s0

C just above unity must
be associated with the critical mode, but, in general, there is n
priori reason why lowest energy configuration should remain
600 Õ Vol. 71, SEPTEMBER 2004
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sociated with the critical mode. Thus, the results of Fig. 4 emp
size the strong preference for the wavelength associated with
critical wavelength LC[2p/kC when the mode is one
dimensional. The limit of the energy ratio ass0 /s0

C becomes
large isU/U05(12n)/2. In this limit the in-plane compressive
stress perpendicular to the buckles is completely relieved but
compressive stress parallel to the buckles is changed only by
Poisson effect.

4 Numerical Analysis of the Checkerboard and Her-
ringbone Modes

An exact analytic solution such as that given for the on
dimensional mode cannot be obtained for either the checkerb
or the herringbone mode. The finite element code, ABAQUS,
been used to obtain a three-dimensional analysis of the peri
cell of these two modes. Within the cell, the plate is represen
by 1000 three-dimensional eight-node, quadratic thin shell e
ments ~with five degrees-of-freedom at each node and with
duced integration! that account for finite rotations of the middl
surface. The stresses and strains within the plate are linearly
lated. The substrate is meshed with 20-node quadratic block
ments with reduced integration. The constitutive relation of
substrate is also taken to be linear isotropic elasticity, but
geometry is updated. As mentioned earlier, nonlinear stra
displacement behavior of the substrate has essentially no influ
on the results of interest. The substrate is taken to be very d
~depthd! compared to mode wavelength, and the boundary c
ditions along its bottom surface are zero normal displacement
zero tangential tractions. The film is assigned a temperat
independent thermal expansion mismatch,Da, and a temperature
dropDT is imposed starting from the unstressed state. The bia
compressive stress in the unbuckled film is therefores0
5EDaDT/(12n) if the substrate is infinitely deep. For eac
mode, a unit periodic cell is identified and meshed with period
ity conditions imposed on the edges of cell, both for the film a
the underlying substrate.

4.1 The Square Checkerboard Mode. Consider a square
checkerboard mode such that the wavelengthL in the x1 and

Fig. 4 Ratio of average elastic energy per unit area in the film Õ
substrate system in the buckled state to that in the unbuckled
state, UÕU0 , as a function of s0 Õs0

C for the one-dimensional
mode. Results are shown for several wavelengths. Note that
the wavelength that is critical at the onset of buckling „k 1

Äk 1
C
… produces the minimum energy in the buckled state even

when s0 is well above s0
C .
Transactions of the ASME
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x2-directions is set by the critical condition in~7!, i.e., 2p/k1

52p/k25L5A2LC where as defined beforeLC[2p/kC. The
unit cell in this case is a rectangular parallelepiped of dimens
L3L3d. A very small initial imperfection is prescribed such th
the plate in the unstressed system atDT50 has a slight middle
surface deflection,w5ŵI cos(k1x1)cos(k2x2), where ŵI /t50.02.
Periodicity conditions are applied to the cell by enforcing all fi
nodal degrees-of-freedom to be the same on the two edges o
cell parallel to thex1-coordinate, and similarly for thex2-axis. In
addition, at one of the corners of the cell the conditions]w/]x1
50 and]w/]x250 are enforced such that the mode crests a
valleys align with the cell sides.

A square checkerboard mode is indeed determined with nor
deflection that is roughly of the formw5ŵ cos(k1x1)cos(k2x2).
The computed relation between the mode amplitude,ŵ/t, defined
as one half the difference between the maximum and minim
deflections, ands0 /s0

C is plotted in Fig. 5. Included in this figure
are the corresponding results for the one-dimensional mode
the herringbone mode, which is obtained in the next subsec
The results for the computed average strain energy per area i
film/substrate system are presented in Fig. 6 in normalized f
as U/U0 versus s0 /s0

C . The results for the one-dimension
mode withk15kC (k250) are also plotted, as is the correspon
ing result for the critical herringbone mode obtained next. T
energy per area of the critical checkerboard mode lies betw
that for the one-dimensional mode and the herringbone mode

4.2 The Herringbone Mode. The unit top surface of the
periodic cell for the herringbone mode is shown in Fig. 7. T
parallelepiped is characterized by its width,a, breadth,L, and
inclination angle,a. Periodicity conditions are applied to the to
and bottom edges of the cell, and symmetry is imposed on the
and right edges. A small initial deflection (ŵI /t50.02) satisfying
these edge conditions is introduced to initiate the mode.

Contours of the normal deflection of the filmw within the cell
are displayed in Fig. 8 for three values ofL/LC, at s0 /s0

C526
~Figs. 8~a!, 8~b!! or s0 /s0

C54 ~Fig. 8~c!! with a/L52 and
a545°. It will be seen below that the minimum energy config
ration hasL/LC>1, and for this value it can be seen that t
deflection shape displays the features of the herringbone m
seen in Figs. 1 and 2. The mode has a curving ridge running a
the center of the cell that aligns itself to merge smoothly at the

Fig. 5 Buckling amplitude of the film, ŵ Õt , as a function of
s0 Õs0

C for the three modes considered. The wavelengths „and
inclination in the case of the herringbone mode … correspond to
the critical at the onset of buckling.
Journal of Applied Mechanics
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with the ridge in the next cell. The excess breadth of the c
havingL/LC52.4 results in two ridges in the interior sector of th
cell. The shape of the mode with narrow breadth,L/LC50.55, is
similar to that of the experimental herringbone pattern, but it w
be seen that the energy for the narrow cell is well above that
L/LC51.

The dependence ofU/U0 on the parameters of the cell geom
etry (L/LC,a/L,a) is presented in Fig. 9. Figure 9~a!, displays the
clear trend whereby minimum energy is associated withL/LC

>1. The energy of modes withL/LC51.6 andL/LC50.7 is dis-
tinctly above the minimum. In Fig. 9~b! it is seen that the energy
in the buckled state is surprisingly insensitive to the normaliz
length of the cell,a/L. Only for very short cells,a/L50.5, is the
energy noticeably above the minimum. Evidence for this insen
tivity is reflected in the experimental herringbone patterns in Fi
1 and 2, where it can be seen that the distance between jogs v
by at least a factor of two from one section of the film to anoth
Similarly, there is not a very strong dependence of the energ
the buckled system on the inclination of the cell,a, although the

Fig. 6 Ratio of average elastic energy per unit area in the film Õ
substrate system in the buckled state to that in the unbuckled
state, UÕU0 , as a function of s0 Õs0

C for the three modes con-
sidered. The wavelengths „and inclination in the case of the
herringbone mode … correspond to the critical at the onset of
buckling. At s0 Õs0

C well above unity, the herringbone mode
lowers the energy more than the other two modes.

Fig. 7 Periodic cell of the herringbone mode
SEPTEMBER 2004, Vol. 71 Õ 601



Fig. 8 Contour plots of the normal deflection of the film in the
herringbone mode at s0 Õs0

CÄ26 „a,b… and s0 Õs0
CÄ4 „c… for

several values of the breadth of the periodic cell, all with aÕL
Ä2 and aÄ45 deg
602 Õ Vol. 71, SEPTEMBER 2004
Fig. 9 Variation of UÕU0 as a function of s0 Õs0
C for the herring-

bone mode. „a… Dependence on L ÕL C with aÕLÄ2 and aÄ45
deg. „b… Dependence on aÕL with L ÕL CÄ1 and aÄ45 deg. „c…
Dependence on a with L ÕL CÄ1 and aÕLÄ2.
Transactions of the ASME
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minimum is attained fora>45 deg~Fig. 9~c!!. A feature seen in
each of the plots in Fig. 9, as well as for the one-dimensio
mode in Fig. 4, is the invariance of the ordering of the relat
energy trends with respect to changes ins0 /s0

C . Put another way,
the parameters governing the geometry of the minimum ene
mode do not change in a significant way ass0 /s0

C increases. In
both Figs. 5 and 9 the results for the herringbone mode are
plotted for values ofs0 /s0

C sufficiently large compared to unity
The herringbone mode is not a bifurcation mode, and it only
comes a preferred mode in the sense of having minimum energ
s0 /s0

C somewhat above unity. Ats0 /s0
C'1, the amplitude and

normalized energy of the herringbone mode is dominated by
initial imperfection.

5 Conclusions
Among the three buckling modes considered, the herringb

mode produces the lowest average elastic energy of the
substrate system for films stressed well above critical, as see
Fig. 6. The herringbone mode is able to relax the biaxial pre-st
stress,s0 , in the film in all directions while inducing relatively
little concurrent stretch energy. The stretch energy associated
buckling that does occur is localized in the jog regions. By co
trast, the one-dimensional mode requires essentially no str
energy ~it continues to exhibit zero Gaussian curvature!, but it
relaxes the biaxial pre-stress only in one direction. The chec
board mode relaxes the pre-stress in all directions, but it deve
non-zero Gaussian curvature and induces much more concu
stretch energy than the herringbone mode. The minimum en
state of the herringbone mode has undulation width,L, which is
very close to that of the one-dimensional mode,LC

52pt(Ē/3Ēs)
1/3, and jog anglea>45 deg. The minimum energy

state is weakly dependent on the spacing between jogs, w
stretch is localized. The experimental herringbone patterns
Figs. 1 and 2 show a spread in the jog spacing, and they
displays jog angles in reasonable agreement with the theore
minimum energy state.

A question not addressed in this paper is how the herringb
mode emerges ass0 increases above critical. For a small range
s0 above critical, combinations of the classical modes of Sec
2 necessarily have the lowest system energy; but ass0 increases,
Journal of Applied Mechanics
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the herringbone mode emerges as the minimum energy m
Does the herringbone mode spread across the film starting f
some region of imperfection or from an edge? Or does it som
how emerge spontaneously over the entire film as a transi
from a combination of classical modes? Bowden et al.@1,2# were
not able to observe the evolution of the buckling patterns as t
specimens were cooled from the film deposition temperature,
thus at this time it is not possible to give an experimental desc
tion of how the herringbone mode evolves.

A word of caution is in order about predicting mode patter
based on minimum energy states. The means by which defor
tions evolve to the minimum energy state is by no means obvio
Mechanics is replete with problems whose minimum energy st
are not easily assessable. The pattern formed by forcing a film
buckle into a mold in Fig. 3 is just such an example. Once
finite amplitude mode has formed and the mold removed, it
pears that the mode is locked in place and does not und
changes towards a lower energy state unless further disturbed
our knowledge, the nonlinear mechanics governing such beha
in buckled films has not been studied. In the case of the minim
energy herringbone mode, experimental observation confirms
existence, even though it has not been established how it evo
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