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A family of herringbone patterns in thin films
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Abstract

Upon cooling, a thin metal film deposited on compliant elastomer substrate undergoes equi-biaxial compression and begins to

buckle at a critical stress. As further cooling occurs, a highly ordered herringbone pattern self-assembles. The preference for the

herringbone pattern over other potential modes is demonstrated based on minimum energy arguments. Control of the pre-buckling

in-plane stress components may be one way to influence the pattern formation, possibly giving rise to a family of unbalanced

herringbone modes that links one-dimensional modes with the balanced herringbone mode.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Self-assembly involving thin films has important

applications in microfabrication. Recent studies [1,2]

have shown that a thin film on an elastomer substrate

can form highly ordered patterns with distinctive fea-

tures simply by elastic buckling. If such mechanical
means can be exploited for pattern formation, they may

provide useful alternatives to chemical routes to self-

assembly.

Due to the large thermal expansion mismatch, a thin

metal film vapor deposited on a thick compliant elas-

tomer substrate undergoes equi-biaxial compression

when the system is cooled. The film buckles into periodic

structures with distinctive features when the temperature
variance exceeds a critical number. The buckling pat-

terns can be manipulated by creating non-planar sub-

strate topography prior to deposition [1,2]. In this case,

the self-assembled structure in thin film conforms to the

pre-buckling stress pattern induced by the underlying

substrate profile. An intriguing phenomenon happens

when the substrate is not pre-patterned. As shown in

Fig. 1, for a system where a 50 nm Au film is vapor
deposited on a flat thick PDMS substrate, the highly
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ordered herringbone mode arises when the temperature is

lowered well below the temperature at the onset of

buckling [1,2]. Here, the crest-to-crest separation, or the

buckle wavelength is about 30 lm, and the distance
between jogs in the herringbone mode is about 100 lm.
The change in direction of the crest at each jog is

approximately 90�. The amplitude of the waves is on the
order of one micron when the temperature drop is 100

�C. Thus, although the amplitude is large compared to
the film thickness, the mode is shallow in the sense that

the slopes of the pattern are small. The herringbone

buckle pattern diminishes when the temperature is re-

elevated to the deposition temperature and the film re-

mains attached with the substrate. This indicates that

the phenomenon is elastic with no delamination. The
strains associated with the buckling mode are also small,

and both the film and the substrate materials are within

their respective linear elastic ranges.

When the substrate is initially flat, the herringbone

buckle pattern appears to be the preferred buckling

mode when the system has been cooled well below the

onset of buckling. It is very different from any mode

obtained from the classical linear bifurcation analysis
discussed below. The emergence of the herringbone

mode is due to the highly non-linear nature of the sys-

tem as the temperature drops well below critical. Com-

pared with other competing classical buckling modes,

such as the one-dimensional mode and the checkerboard

mode sketched in Fig. 1, the herringbone mode has the
lsevier Ltd. All rights reserved.
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Fig. 1. On the left, the herringbone buckling pattern of a 50 nm gold film on a thick flat elastomer (PDMS) substrate [1,2]. The wavelength of the

pattern across the crests is approximately 30 lm while the distance between jogs of the herringbone mode is approximately 100 lm. On the right, the
sketch of the competing one-dimensional and checkerboard buckling modes.
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ability to reduce the overall in-plane stress in the film in
all directions and its near-inextensionality induces only

very little stretching energy. Apart from the immediate

vicinity of the jogs, the mode has zero Gaussian curva-

ture and thus avoids the high energy cost of stretching in

a thin film. As will be shown later, these two charac-

teristics ensure the herringbone mode to be the mini-

mum energy configuration among its competitors (cf.

Fig. 1). Most of the analysis leading to the results in this
paper is taken from an earlier paper [3]. The present

paper emphasizes features that might be used to provide

some control of the pattern assembly process and pro-

vides speculation as to an entire family of unbalanced

herringbone modes that provide a continuous transition

from one-dimensional modes to the regular herring bone

mode seen in Fig. 1.

The Young’s modulus, Poisson’s ratio and coefficient
of thermal expansion of the film are denoted by E, m, and
a, respectively. The corresponding substrate properties
are Es, ms and as. All numerical results in this study are
presented for Au film deposited on PDMS substrate,

where m ¼ 1=3, ms ¼ 0:48, a=as ¼ 1=20 and Es=E ¼ 4100
with E ¼ E=ð1� m2Þ and Es ¼ Es=ð1� m2s Þ. The

film thickness is t. The substrate is taken to be infinitely
thick.
2. Linearized stability analysis of a compressed film on an

elastic substrate

We begin by considering the case where the pre-

buckling stress is not equi-biaxial. Suppose the pre-stress

in the x1-direction is �r011 and that in the x2-direction is
�r022 with r012 ¼ 0. For an isotropic film on an isotropic
substrate subject to a temperature drop DT , the pre-
buckling stress state is equi-biaxial compression with

r011 ¼ r022 � r0 ¼ ½E=ð1� mÞ�DaDT ð1Þ
where Da ¼ as � a. However, if the substrate is con-
strained in one-direction and not the other or if the film/

substrate system is bent about one-direction, r011 and r022
may differ. The film is represented as an infinite elastic

thin plate satisfying von Karman plate theory [4]. When

linearized about the uniform pre-buckling state, the

classical buckling equation is

Dr4wþ r011w;11 þ r022w;22 ¼ �p ð2Þ

Here, r4 is the bi-harmonic operator, D ¼ Et3=½12ð1�
m2Þ� is the bending stiffness of the plate, w is its dis-

placement perpendicular to the plane, ðx1; x2Þ, p is the
stress component acting perpendicular to the plate ex-

erted on it by the deformed substrate. If the tangential

traction exerted by the substrate is ignored, (1) admits

doubly-periodic solutions of the form

w ¼ ŵ cosðk1x1Þ cosðk2x2Þ;

p ¼ p̂ cosðk1x1Þ cosðk2x2Þ
ð3Þ

where from a three-dimensional elasticity analysis of

the substrate, ŵ ¼ 2p̂=ðEskÞ with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
and

Es ¼ Es=ð1� m2s Þ. A solution where one of the wave

numbers, k1 or k2, is zero is called a one-dimensional
mode and the case where k1 ¼ k2 is called the check-
erboard mode. The eigenvalue equation, r011k

2
1 þ

r022k
2
2 ¼ Dk4 þ Esk=2, governs the critical stress and

critical wave numbers.
If the two pre-buckling stress components are un-

equal then it is readily shown that the eigenvalue

equation predicts a critical mode that is always one-

dimensional with crests lying perpendicular to the

direction of maximum compression. For example, if

r011 > r022, then the critical mode for the onset of buck-
ling has



L

a

α

Unit computational cell

x2
x1

(a)

X. Chen, J.W. Hutchinson / Scripta Materialia 50 (2004) 797–801 799
r011 ¼ rC0 � E
4
3
Es
E

� �2=3
and

k1t ¼ kCt � 3
Es
E

� �1=3
ðk2 ¼ 0Þ ð4Þ

This is the well-known wrinkling mode for buckling of a

thin film or plate on a compliant substrate [5].

It is less known that an entire family of critical modes

is possible when the pre-buckling stress equi-biaxial [3].

The critical stress is still given by (4), but now any mode

whose wave numbers satisfy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
t ¼ kCt ¼

ð3Es=EÞ1=3 is possible. This family includes the one-
dimensional mode (in any direction) and the checker-

board mode (k1 ¼ k2 ¼ kC=
ffiffiffi
2

p
). Other mode forms

result from combinations of the critical modes, although

the herringbone mode is not one of them. An example

that can be formed by a combination of critical modes is

a mode with three-fold symmetry whose nodal lines

coincide with a pattern of regular hexagons covering the
plane.
(b)

Fig. 2. (a) Periodic cell of the regular herringbone mode (or the

transitional herringbone mode with a < 45� and the direction of
maximum compression in the vertical direction). (b) A schematic view

of the unbalanced herringbone mode.
3. Non-linear post-buckling energy for equi-biaxial com-

pression

In this section we consider the case of equi-biaxial

compressive pre-stresses. The herringbone mode is not

critical at the onset of buckling. To gain insight into its

preferred existence as the system is cooled well below the

onset, we have computed the energy of the film/substrate

system for this mode and compared it with the energy

for two competing modes; the one-dimensional mode
and the checkerboard mode. The full non-linear prob-

lem for the one-dimensional mode can be solved in

closed form, but solution of the other two modes re-

quires a three-dimensional finite element analysis [3,6].

In each of these two cases, the basic periodic cell of the

mode is identified and meshed. Within the cell, the film

is represented by 1000 three-dimensional eight-node,

quadratic thin shell elements (with 5� of freedom at each
node and with reduced integration) that account for fi-

nite rotations of the middle surface. The stresses and

strains within the plate are linearly related. The sub-

strate is meshed with 20-node quadratic block elements

with reduced integration. The constitutive relation of the

substrate is also taken to be linear isotropic elasticity,

but the geometry is updated. Non-linear strain-dis-

placement behavior of the substrate has essentially no
influence on the results of interest. The substrate is taken

to be very deep (depth d) compared to mode wave-
length, and the boundary conditions along its bottom

surface are zero normal displacement and zero tangen-

tial tractions. The calculations are carried out within the

framework of quasi-static deformation and kinetic ef-

fects in the polymer substrate are ignored. In the case of
the herringbone mode (Fig. 2a), the parameters of the

cell geometry were treated as variables, i.e. L=t, the cell
aspect ratio (a=L) and the angle between crests at the
jog, a. The energy in the buckled state was computed as
a function of these variables and the minimum was

determined.
The energy per unit area of the system in the

unbuckled state is U0 ¼ ð1� mÞr20t=E. For the one-
dimensional mode the energy per unit area in the

buckled state, U , is given by

U
U0

¼ 1þ m
2

rC0
r0

� �2"
þ ð1� mÞ
ð1þ mÞ

#

þ ð1� mÞ rC0
r0

1

�
� rC0

r0

�
ð5Þ

with amplitude ŵ=t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=rC0 � 1

p
. These results apply

to the critical wave number ðk1 ¼ kC; k2 ¼ 0Þ, but the
energy for one-dimensional modes is minimum, or

nearly minimum, at this wave number even at temper-

atures well below the onset of buckling. The normalized
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Fig. 3. Ratio of average elastic energy per unit area in the film/sub-

strate system in the buckled state to that in the unbuckled state, U=U0,
as a function of r0=rC0 for the three modes considered. The wave-
lengths correspond to the critical at the onset of buckling. For the

herringbone mode, a ¼ 2L and a ¼ 45�.
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energy is shown in Fig. 3. Also plotted in Fig. 3 is the

computed normalized energy for the checkerboard

mode and the herringbone mode. For the checkerboard

mode, the wave numbers determining the periodicity are
those of the onset mode in the previous section. For the

herringbone mode, the distance between crests leading

to minimum energy is essentially identical to that found

for the one-dimensional mode. The minimum is only

weakly dependent on a=L-the results shown in Fig. 2
were computed with a=L ¼ 2 but almost identical results
are obtained for a=L in range from about 1.5 to 4. The
minimum is attained for jogs that are at right angles and
the results in Fig. 3 were computed with a ¼ 45�.
The results of Fig. 3 show that at r0=rC0 well above

unity, the energy of the herringbone mode is distinctly

lower than that of the other two modes. The reason for

this, as mentioned in the introduction, is the herring-

bone mode is the only one of the three modes that re-

laxes the in-plane stress in all directions without

incurring significant stretch energy. Only in the imme-
diate vicinity of the jogs is significant stretch induced.

The one-dimensional mode lowers the pre-stress only in

one-direction. The checkerboard mode lowers the stress

in all directions, but it produces significant stretch en-

ergy accompanying the bending. Similarly, a mode with

nodal lines coincident with a hexagon pattern covering

the plane would relax stress in all directions but would

also induce significant stretching. The features of the
herringbone pattern seen in Fig. 1 are in accord with the

parameters of the theoretical herringbone mode associ-

ated with the minimum energy. The jog angle is

approximately a right angle, and the variation in dis-

tance between jogs seen in Fig. 1 is consistent with the
fact that the energy depends only weakly on this dis-

tance over a fairly large range.
4. Factors controlling self-assembly of herringbone pat-

terns

The process by which the herringbone pattern forms

as the system is cooled below the critical temperature
has not been observed––the pattern seen in Fig. 1 is

observed under the microscope when the specimen is at

room temperature [1,2]. As discussed above, the her-

ringbone mode is not expected to emerge at tempera-

tures just below critical since it is not among the

bifurcation buckling modes of the classical theory. One

suspects that it slowly emerges from some combination

of the classical modes as the temperature is lowered.
Does it form spontaneously across wide regions of the

film, or does it form locally, at an edge for example, and

then spread across wide regions? We do not yet know.

Assembly can be influenced by the creation of non-

planar surface features on the substrate, although this

leads to patterns other than the herringbone [1,2]. An

alternative process for influencing the herringbone

pattern might exploit control of the two in-plane pre-
buckling stresses in the film, r011 and r022. These com-
ponents can be controlled by various forms of substrate

constraint, e.g. constraint during cooling or by bending

after cooling. If r011 > r022, the classical mode is a
one-dimensional mode aligned perpendicular to the one-

direction. As the system is cooled below critical the one-

dimensional mode will be preferred, but at some point,

depending on r022=r
0
11, we speculate that some other

herringbone-like mode should become energetically

favorable. This assertion can be inferred from Fig. 3. At

temperatures well below critical, there is a wide sep-

aration between the energy associated with the one-

dimensional mode and the herringbone mode. By

continuity, one expects the existence of a mode similar

to the herringbone mode when r022=r
0
11 is not much

smaller than unity.
We speculate that for 0 < r022=r

0
11 < 1, there exist

other modes of herringbone character such a transitional

herringbone mode with 0 < a < 45� (now with one-

direction aligned in the vertical direction in Fig. 1), or an

unbalanced herringbone mode with the major branch of

crests aligned perpendicular to the one-direction and the

minor branch aligned perpendicular to the two-direction

(Fig. 2b). Based on the findings for the equi-biaxial
mode, the crest-to-crest distance is expected to be the

same for either of these modes. For the transitional

mode, the inclination of the crests to the direction of

maximum compression, a, permits accommodation of
the differing pre-stresses in the two-directions. Similarly,

the larger distance between the jogs for crests perpen-

dicular to the maximum compression direction in the
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unbalanced mode relaxes more stress in that direction.

Either feature would accommodate the different pre-

stresses in the two-directions. Another attractive feature

of both families of modes is that they provide a con-
tinuous transition between the one-dimensional mode

and the ‘‘regular’’ herringbone mode associated with

equi-biaxial stressing. For the transitional mode, this

occurs as a varies from 0� to 45�, while for the unbal-
anced mode it occurs as the ratio of length the minor

branch to that of the major branch varies from 0 to 1.

If the buckling process is strictly elastic, it might be

possible to observe continuous changes in the unbal-
anced herringbone mode as r022=r

0
11 is varied. Such a

variation occurs naturally near an edge (or elevation step)

of the compliant substrate where the pre-stress compo-

nent in the film in the direction perpendicular to the edge

is relaxed. At an edge or step, there is a transition region

where the pre-stress varies from uniaxial at the edge to

equi-biaxial in the interior well away from the edge over a

distance set by shear lag in the substrate. In such regions
one does indeed see clear evidence of a transition from a

distinct one-dimensional mode, through what appears to

be best described by the transitional herringbone mode,

to the regular herringbone mode in the interior well away

from the edge or step [1–3].
In summary, there appears to be scope for exploring

and perhaps utilizing the film pre-stresses to generate a

family of highly regular patterns ranging from one-

dimensional modes to the balanced herringbone mode.
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