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temperature gradients is analyzed. A crack-like flaw impedes heat flow through the
laminate, producing thermal stresses and crack tip stress intensities. The focus is on
delamination cracks which propagate under steady-state conditions. The steady-state

analysis becomes accurate for a crack whose length is about one laminate thickness.
Moreover, the analysis provides realistic fail-safe criteria for excluding delamination.

1 Introduction

Ceramic matrix composites are being investigated for use as
plate and shell components in turbine engines which involve
relatively low mechanical stress but high through-thickness tem-
perature gradients. A high temperature gradient across a thin-
walled laminate does not necessarily induce significant thermal
stress. However, if the laminate contains an interior crack-like
flaw lying parallel to its surfaces, the flaw can impede the trans-
verse heat flow, redistribute the temperature, and thereby induce
local thermal stresses. These flaw-induced thermal stresses can
be large enough to cause the flaw to become critical and spread
as a delamination crack. Early work on thermally loaded cracks
was carried out by Goodier and Florence (1959, 1963) and Sih
(1962). These authors considered an isolated plane strain crack
of length 2a in an isotropic infinite body subject to a remote
temperature gradient, 97/9z, directed perpendicular to the
crack. They assumed that no heat flows across the crack. The
thermal stresses induced by the crack has a mode II crack tip
field with an energy release rate given by
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where E is Young’s modulus, v is Poisson’s ratio and « is the
coefficient of thermal expansion.

Subsequent work by several authors (Barber, 1979; Sturla
and Barber, 1988; Kuo, 1990) has addressed other issues such
as anisotropy, penny-shaped cracks versus plane strain cracks,
and the effect of cracks which have less than perfect thermal
insulation. The effect of a crack in an orthotropic plate support-
ing a temperature difference across its faces was considered by
Thangjitham and Choi (1993). This is also the problem ad-
dressed in this paper. The geometry and temperature conditions
are shown in Fig. 1. Plane strain conditions are assumed. Here
the focus is on cracks which are sufficiently long such that a
steady-state delamination analysis can be performed. This has
the decided advantage that closed form results of considerable
generality can be obtained. As a practical matter, it will be
argued that the crack approaches steady-state delamination con-
ditions when its length is only about one laminate thickness.
Moreover, since the energy release rates of shorter cracks are
less than that of the steady-state crack, the results from the
steady-state analysis can be used as the basis of a fail-safe
criterion to exclude delamination.

(1

2 Steady-State Analysis

Let 2a be the length of the plane strain crack which is posi-
tioned a distance H, below the upper surface and H. above the
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lower surface of an infinite laminated plate of thickness H =
H, + H,, as shown in Fig. 1. The upper suzface is subject to a
uniform temperature T, and the lower surface to T,. It is antici-
pated that the crack will be open (conditions such that this is
the case will emerge from the analysis). The heat flow across
the crack surfaces at any point is assumed to satisfy

f}: = hr(TH - (2)

where T, = T(x,07), T3 = T(x, 07) and A, is the conductivity
across the crack interface. The conductivity depends on the heat
conduction mechanisms across the crack and, in general, will
depend on the crack opening. Here, as an approximation, we
take A, to be constant along the entire crack. Thus, /. should
be regarded as an effective, or average, quantity. With k. as the
thermal conductivity in the solid in the z direction, the tempera-
ture gradient on each face of the crack under steady-state heat
flow must satisfy —k,8T/8z = g.. The laminate is assumed to
have uniform properties and be orthotropic with respect to axes
(x, ¥, z). The stress-strain equations relevant to the problem
are
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where without loss in generality the temperature of the lower
surface is taken as reference such that AT = T — T,. The
configuration in Fig. 1 is analyzed under the constraint of plane
strain, i.e. €, = 0. Superposition of a uniform stress o,, does
not induce any change in the singular crack tip fields. Thus, the
plane strain results for the stress intensity factors and the energy
release rate will apply to any generalized plane strain situation.
The steady-state analysis given below will involve portions of
the plate in which o, = 0 then, with ¢, = 0,

2
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The idea behind the analysis is to consider the limit when
the crack is long (2a ® H) such that the temperature and stress
distributions away from the ends of the crack depend only on
z. Once these distributions have been identified, the energy
release rate and stress intensity factors can then be obtained
from a previous analysis given for the general loading in Fig.
2 by Suo (1990) and Hutchinson and Suo (1992). In regions
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Fig. 1 Notation and conventions for a laminate containing a plane strain
crack under thermal loading

of the laminate well away from the ends of the crack the steady-
state temperature distributions are linear in z within each layer.
In the uncracked laminate well to the right of the tip,

T = (T, — T,)z/H + (H\T, + H,T\)/H (5)
In the central cracked region away from the crack tips,

T=(T,—-T)z/H + T, for z>0

T=(Tg—T)z/H,+ T for z<0 (6)

where 7, and T, are the temperatures at the upper and lower
surfaces of the crack. These are

- Ty(1 +n) + BT, + nTy)
(1+B)(1+m)

_ T.(1 + n) + BT, + nT>)
(1+B)(1+m)

T, and

Ts (7)

with n = H,/H, and B. = Hh./k,. The temperature jump across
the crack is given by

T]_Tz
1+ B,

T,-Is= (8)

such that the heat flow impeded by the crack is ¢,/(1 + B.). The
dimensionless Biot number, B., controls the heat flow across the
crack surfaces. In the limit, B. = 0, the crack is perfectly insulat-
ing such that T, = T, and T = T,. At the other extreme when
B, — =, there is no interruption of the heat flow by the crack,
T, = Ts = (T; + nT2)/(1 + n), and (6) reduces to (5).

As indicated in Fig. 2, let P be the force (per unit depth in
the y-direction) carried by the layers of the laminate above and
below the crack, and let M, and M, be the moments (per unit
depth) carried by the layers about their respective midplanes
with the positive senses shown. The stress distribution in each
of the layers well away from the tip is

an=—f—+-—M—l<z—ﬂ> for z>0
H, I 2

an=£+%<z+é> for z<O0 (9)
H, 5L 2

where I, = H3/12 and I, = H3/12. The distribution of the
strain ¢,, is given by (4) in terms of the distribution of o, and
T in the respective layers. Equilibrium requires M, = —M;
+ PH/2. The conditions for determining the remaining two
unknowns, P and M,, are the two compatibility requirements
for layer segments in central portions of the plate away from
the crack tips: (i) equality of the curvatures of the upper and
lower layers, k; and k,, and (ii) equality of the strain compo-
nents on the crack surfaces, i.e. €,(z = 0%) = €,(z = 07).
These are asymptotic conditions which must be approached in
the central sections in steady-state limit as a/H becomes large.
Were they not met, the two layers would not join up at the
crack tip. That is, as longer and longer cracks are considered,
any other conditions in the central sections would be incompati-
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ble with a steady-state solution. Imposition of these two condi-
tions gives

_EaH(T, - T)) n(1 + 7°)

(1+B) (1 +n)°
7’ 3
M, = PH, M,=M,/ 10
1 201 + 1% 2 W (10)

All the information needed to evaluate the energy release rate
and the mode I and II stress intensity factors has now been
assembled. With reference to Section III of Hutchinson and Suo
(1992), the desired results are:
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The measure ¢ of the relative amount of mode II to mode I is
given by
Ky
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In carrying out the above analysis, it has been assumed that the
crack is open and that K; is positive. The parameter regime for
which this assumption is met will be seen in the next section.

(14)

3 Results and Implications

To see the relevance of the steady-state solutions, denote the
steady-state energy release rate given by (11) by Gieagy-sate and
denote the short crack limit in (1) by Gahon crack- When the crack
length 2a is very short compared to H, the temperature gradient
8T/8z in (1) should be identified with (T, — T,)/H. With this
replacement, the ratio of the two estimates of the energy release

T

Fig. 2 Section of a laminate with a “long” crack. Axial forces and mo-
ments, per unit width in the y-direction, are applied at the two left edges.
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Fig. 3 Transition of energy release rate from short crack limit to steady
state for a perfectly insulating crack (B. = 0) located on the midplane
(n=1)

rate for a laminate with isotropic properties and a perfectly
insulating crack (B, = 0), positioned halfway between the upper
and lower surfaces of the laminate (n = 1), is

Gisnort crack = 27r(£)3

(15)
Gslcady-slalc H

The expected trend showing the transition from (15) to steady-
state is indicated by a dashed curve in Fig. 3. Steady-state
behavior should be in force at a crack length, 2a, which is just
over one plate thickness H. Equally important, the steady-state
energy release rate is expected to be the maximum release rate
possible. Thus, if conditions are such that the steady-state en-
ergy release rate is below the delamination toughness, I'.(¢),
extensive delamination cannot occur. In this sense, the steady-
state analysis provides a fail safe criterion. Because the energy
release rate in the short crack limit is so strongly dependent of
the crack length, increasing in proportion to a®, cracks much
shorter than about a laminate thickness will be subject to driving
forces well below the steady-state limit. This suggests that flaws
of concern will be those whose size exceeds about a laminate
thickness.

Curves for the steady-state energy release rate as a function
of the depth of the crack below the top surface from (11) are
shown in Fig. 4(a) for an isotropic laminate. Companion results
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Fig. 4 (a) Steady-state energy release rate G, and (b) measure of mode
mixity ¢ as functions of crack position H,/H for an isotropic plate with
various B, values. T, > T,
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Fig. 5 Effect of Biot number, B,, on energy release rate with increasing
temperature loading, T, — T, for steady-state cracking in alumina (H,/
H =0.211,H = 2 mm)

for ¢ for the tip at the right end of the crack are given in Fig.
4(b). The measure of the mode mixity is independent of the
Biot number, B.. For T, > T,, for which the curve in Fig. 4b
applies, the crack tip is open with a positive mode 1 stress
intensity factor as long as the crack lies above the midplane of
the laminate. The crack tip is closed and is in pure mode II
when the crack lies below the midplane. The present analysis
does not apply when the crack is closed. Nevertheless, the en-
ergy release rate may not be greatly in error in this regime if
frictional interaction between the crack faces can be neglected.
Since the delamination toughness of a closed crack under pure
mode-II is generally larger than that of a crack tip experiencing
some opening, the likelihood of a crack forming on the cooler
side of the midsurface is small anyway. Cracks located approxi-
mately one quarter of a laminate thickness below the hot surface
(H,/H = 0.211, to be precise) experience the highest energy
release-rate and a small, but not insignificant, positive mode I
stress intensity component. It is near this location that delamina-
tion cracks are most likely to lie.

The energy release-rates associated with thermal delamina-
tion can be fairly large, as the following numerical example
illustrates. Consider an isotropic plate of alumina with the fol-
lowing representative properties and temperature loading :

E=200GPa, a =8 X 107%/°C,
v=025H=2mm, T,-T,=500°C

If the crack is perfectly insulating (B. = 0), the steady-state
energy release rate from (11) for a crack positioned halfway
between the top surface and the midplane is G = 333.3 Jm™.
This value far exceeds the fracture toughness of most ceramic
matrix materials. Large energy release rates have been found
in detailed analyses of penny-shaped cracks in representative
laminate shell components of ceramic matrix composites (H.
Rajiyah, G. E. Research Labs., private communication). The
assumption of a perfectly insulating crack may often be too
extreme, as can be seen in Fig. 5 where the energy release
rate from (11) for steady-state cracking in alumina is plotted
as a function of (7, — T,) for various B,, with H,/H fixed
at 0.211.

The important role of the heat transfer across the crack is
determined by the dimensionless Biot number, B,, as evident
in (11) and Fig. 5. At temperatures below about 1500 K the
dominant mechanism of heat transfer across an open crack is
due to gaseous transport. Using estimates for h. given for
gaseous transport (see Lu and Hutchinson, 1995 for values and
references), one can estimate B.. The approximate formula for
B. when § is larger than about 0.1 pm is B, = k H/k.§ where
k, is the thermal conductivity of the gas. Fig. 6 displays plots
of B. as a function of the crack opening displacement § for a
laminate thickness H = 1 mmat 7= 300 K and T = 1273 K,
respectively, and for a composite having a transverse thermal
conductivity k&, = 30 W/(m- K), typical of Al,Os-based mate-
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rials. The values of k, used in computing B, were for dry air
(0.032 W/(mK) for T = 300 K and 0.085 W/(mK) for T =
1273 K). Small openings, less than 0.1 pm, are associated
with large values of B., implying that a crack in a laminate
of thickness 1 mm or greater will have a relatively low energy
release rate, c.f. Figure 5. By contrast, if the crack opening is
as large as 10 um, the Biot number is quite small when H =
1 mm, such that the crack is effectively perfectly insulating
and, therefore, highly susceptible to delamination if the tem-
perature gradient is large enough. In the range of crack open-
ings lying between roughly 0.1 and 10 pm, the Biot number
B. is significant.

It is revealing to relate the crack opening displacement é to
the energy release rate G and then to eliminate B, as an un-
known in (11). To this end, the relation between é and G for
a crack of length 24 lying along one of the principal directions
of an orthotropic, infinite solid will be used as an approxima-

tion, i.e.,
5= AN ncos ¥ |Ga
" \E
Vr

where n = V(1 + p)/2 and the result of Sih et al. (1965) has
been used. The factor cos ¢ reflects the fact that only the mode
1 component of crack tip intensity contributes to the opening.
From Fig. 4(b) it can be noted cos ¢ will be between 0.5 and
0.6 for a crack lying midway between the hot side and the
center of the laminate. Notice that A = p = 1 if the laminate
is transversely isotropic, ¢.f. Eq. (13). Next,

(16)

_kH kH
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kS  4kN"**n cos ¢\ Ga

Then, eliminating B, in (11) gives the following relation be-
tween G and T, — T,, assuming the crack is located at H,/H
=0.211:

(1

The above relation between G and the temperature loading is
displayed in Fig. 7 for alumina with the properties cited earlier
(and A = p = 1) for three different values of the gas conductiv-
ity parameter k;. In this plot, the crack length, 2a, has been
taken equal to the laminate thickness H. The surprising feature
of these curves is the fact that once T, — T, exceeds the
threshold, below which G is essentially zero, G immediately
becomes very large for relatively small further increases in T,
— T,. Thus, the threshold (T, — T,). associated with G — 0
can serve as a conservative, but not unrealistic, measure of
maximum temperature difference the laminate can sustain

(17)

k. H TE\?
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Fig. 6 Biot number, B,, plotted as a function of crack opening displace-

ment, 5, for dry air at two temperatures. The parameters used for plotting
are H =1 mm and k; = 30 W/(m K)
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Fig. 7 Energy release rate for steady-state cracking in alumina (H:/H
= 0.211) plotted as a function of temperature loading, T, — T, for various
values of plate thickness H and gas conductivity k,

without delamination. This threshold from (18) is immediately
seen to be

k H

T, —T,), =2127 ——~&%—
(T: 2) akA*ncosy\ a

(19)

If one further assumes that cracks of length on the order of the
laminate thickness are present (2a = H), then this criterion
simplifies even further to

3k,

Ty = Ta)e = ———t——
S 2) @k \"*"%n cos ¢

(20)

The threshold temperature difference increases with the tem-
perature at the crack since the conductivity of the gas k, in-
creases with temperature. If the threshold exceeds the imposed
temperature difference, delamination cracking is not expected to
occur. As indicated by the above discussion, the heat conducted
across the crack may indeed be significant, and the assumption
of a perfectly insulating crack may be unduly conservative.
Secondary loads, which result in bending, may enlarge the crack
opening and further reduce the heat transfer across the crack.
If the imposed temperature difference exceeds the threshold
(20), or if secondary loads bring the crack to its critical delami-
nation condition, steps will have to be taken to hold down the
crack opening, typically to values below 0.1 to 0.5 um. Cross-
stitches are capable of keeping openings to these low levels.
As well as holding the crack flanks together, cross-stitches have
two additional benefits. They contribute to the conduction of
heat across the crack, and they also impede delamination by
reducing the energy release rate of the delamination crack. The
mechanics of bridged delamination cracks driven by tempera-
ture gradients has not been studied.
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