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Abstract

A continuum theory for elastic–plastic solids that accounts for the size-dependence of strain
hardening is employed to analyze trends in the indentation hardness test. Strain gradient plasticity
theory incorporates an elevation of .ow stress when non-uniform plastic deformations occur at the
micron scale. Extensive experimental data exists for size-dependence of indentation hardness in
the micron range for conical (pyramidal) indenters, and recent data delineates trends for spherical
indenters. Deformation induced by rigid conical and spherical indenters is analyzed in two ways:
by exploiting an approximation based on spherically symmetric void expansion and by 3nite
element computations. Trends are presented for hardness as a function of the most important
variables in the indentation test, including the size of the indent relative to the material length
parameters, the strain hardening exponent, the ratio of initial yield stress to Young’s modulus, and
the geometry of the indenter. The theory rationalizes seemingly di6erent trends for conical and
spherical indenters and accurately simulates hardness data presented recently for iridium, a low
yield strain/high hardening material. The dominant role of one of the material length parameters
is revealed, and it is suggested that the indentation test may the best means of measuring this
parameter.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Indentation is used extensively to measure the hardness of metals and polymers. The
objective is usually to draw inferences about the mechanical properties (e.g., modulus,
yield strength) of the material. Tabor (1951) and Johnson (1970) established relation-
ships between hardness as measured by conical (or pyramidal) and spherical indenters
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and stress–strain behavior in the regime of “large” indents for which conventional plas-
ticity theory is applicable. More recent experiments (Stelmashenko et al., 1993; Ma and
Clarke, 1995) have documented a strong size dependence of indentation hardness for
micron-size indents that cannot be accounted for by conventional plasticity. Indentation
size e6ect has been one of the motivations underlying the development of a plasticity
theory for the micron scale. Conical or pyramidal indents whose widths exceed tens of
microns generally produce size-independent hardness values in most metals and can be
considered as “large” indents. Smaller indents in the range from sub-micron to about
10 �m in single crystals or 3ne-grained polycrystals often display a signi3cant size
e6ect. The hardness inferred from pyramidal indents on the order of 1 �m in width
can be two or three times the hardness obtained from an indent that is 10 �m across. A
clear understanding of the size e6ect and its connection between material strength is es-
pecially important in modern applications involving thin 3lms and multilayers (Freund
and Suresh, 2003) since nano- and micro-indentation are frequently the only means of
measuring strength.
Recent experiments exploring size dependence associated with indentation by hard

spheres (Swadener et al., 2002) have revealed somewhat more complicated behavior
than for a pyramidal indenter: at 3xed width of indent, hardness increases with decreas-
ing indenter radius, but at a 3xed indenter radius, hardness is relatively independent of
the indent radius. Experiments on torsion of 3ne copper wires (Fleck et al., 1994) and
bending of thin nickel sheets (Stolken and Evans, 1998) reveal large strength eleva-
tions for wire radii and sheet thicknesses in the range from microns to tens of microns.
Assuming surface anomalies can be excluded, any explanation of these trends, as well
as those for indentation, brings to the fore a material length scale—otherwise the size
e6ect can be excluded by dimensional considerations alone. Strength elevation is be-
lieved to be associated with the proliferation of geometrically necessary dislocations
induced by strain gradients imposed on the solid (Ashby, 1970; Fleck et al., 1994;
Nix and Gao, 1998). Micron scale, non-uniform deformations produce densities of ge-
ometrically necessary dislocations that are comparable to, or even exceed, densities of
statistically stored dislocations. The smaller is the scale of the (non-uniform) deforma-
tion, the larger is the relative density of the geometrically necessary dislocations and
the greater is their contribution to hardening.
Micron scale deformations such as those referred to above involve too many disloca-

tions to allow for reliable predictions of behavior based on current formulations of dis-
location mechanics. Moreover, deformation behavior in the size range from sub-micron
to tens of microns merges smoothly with predictions from conventional “large-scale”
plasticity. Thus, there is a compelling motivation for extensions of conventional plas-
ticity that include strain gradient e6ects. A wide range of micron scale applications has
already been investigated within the framework of continuum strain gradient plasticity
(Fleck and Hutchinson, 1997; Hutchinson, 2000). One drawback of higher-order formu-
lations of strain gradient plasticity is the inherent diKculty associated with their 3nite
element implementation for numerical analysis. A recent reformulation of phenomeno-
logical strain gradient plasticity (Fleck and Hutchinson, 2001) has been proposed which
generalizes classical isotropic strain hardening theory and which appears to have the
scope to encompass a wide range of deformational behaviors. The new formulation
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gives quantitatively similar predictions for plastic behavior to earlier versions such as
those of Fleck and Hutchinson (1997) and Gao et al. (1999), but it improves on the
earlier versions by being considerably easier to implement for numerical work.
The new formulation will be employed here to analyze micron scale indentation.

Speci3cally, indentation of an elastic–plastic solid by rigid conical and spherical in-
denters will be analyzed with emphasis on indentation hardness as dependent on the
size of the indent and indenter (in the case of the sphere) relative to the material length
parameters, strain hardening, and yield stress to modulus ratio. Approximate theoretical
trends will be generated using an approach with makes use of spherically symmetric
void expansion in the strain gradient solid, generalizing a method previously demon-
strated to be highly e6ective for large-scale indentation of conventional elastic–plastic
solids (Marsh, 1964; Johnson, 1970). In parallel to the approximate results, 3nite el-
ement simulations will also be presented and applied to the recent data of Swadener
et al. (2002). The strain gradient plasticity formulation brings in three possible mate-
rial length parameters, but both approaches reveal that only one of these parameters is
important in indentation. A case will be made that indentation is probably the best test
for measuring this length parameter.
The present study builds on several earlier theoretical investigations of indentation

within the framework of strain gradient plasticity. Nix and Gao (1998) used dislocation
mechanics to estimate the density of geometrically necessary dislocations around a con-
ical indenter and the consequent elevation of hardness. While their analysis was quali-
tative, their study provides a bridge from discrete dislocation mechanics to continuum
plasticity providing insights into the phenomenological theory of strain gradient plastic-
ity. The approach of Gao and Nix was extended to spherical indentation by Swadener
et al. (2002). In addition to these two studies, the present work complements three
recent investigations of indentation hardness based on continuum formulations of strain
gradient plasticity that employ 3nite element analysis to make predications (Begley and
Hutchinson, 1998, Huang et al., 2000, Xue et al., 2002).

The outline of the paper is as follows. The new constitutive model for strain gradient
plasticity is summarized in Section 2. Details of the indentation model are spelled out
in Section 3, followed by a brief discussion of the 3nite element implementation. The
approximate approach based on the solution for the spherical expansion of a void
is given in Section 4, while numerical simulations follow in Section 5. Calculations
speci3c to spherical and conical indentation of iridium are given in Section 6, with
concluding remarks in Section 7.

2. Strain gradient plasticity constitutive model

The constitutive model is a phenomenological generalization of isotropic strain hard-
ening plasticity, commonly referred to as J2 theory. The generalization introduces
dependence on gradients of plastic strain and on as many as three material length
parameters. The deformation theory version of the theory is used rather than the .ow
theory version because it is easier to implement numerically and because it gives es-
sentially identical predictions to the .ow theory when stressing is nearly proportional,
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as is the case for indentation. Comparisons and assessments of the deformation and
.ow versions are given by Fleck and Hutchinson (2001).
The elastic properties of the material are isotropic with Young’s modulus, E,

Poisson’s ratio, �, and tensor of moduli, Cijkl. As in conventional small strain the-
ory, the strain is split into elastic and “plastic” parts according to 
ij = 
eij + 
Pij with

Pjj = 0. The conventional stresses, �ij = �ji, satisfy �ij = Cijkl
ekl. Let mij = (3=2)sij=�e
with sij as the deviator of �ij and �e =

√
3sijsij=2 as the conventional e6ective stress.

Take 
P to be the non-negative amplitude of the “plastic” strain, 
P =
√

2
Pij

P
ij=3. The

“normality” condition 
Pij = 
Pmij is enforced. Higher-order stress quantities, �i, which
are work conjugate to 
P; i, are present in the theory and are given below. As in con-
ventional J2 theory, the uniaxial stress–strain curve of the material is an input to the
constitutive model, and here �(
P) is used to denote the stress–plastic strain relation in
uniaxial tension.
The gradients of the plastic strains are �ijk = �jik = 
Pij; k , and a generalized e6ective

plastic strain is de3ned as

E2
P = 
2P + ‘21I1 + 4‘22I2 + (8=3)‘23I3: (1)

The three quadratic invariants, In, of �ijk in Eq. (1) are de3ned as follows (Fleck and
Hutchinson, 2001). With eijk as the permutation tensor, let

�Sijk =
1
3 (�ijk + �jki + �kij); �ij = eiqr�jrq: (2)

Then,

I1 = �Sijk�
S
ijk − 4

15 �kii�kjj;

I2 = 1
3 (�ij�ij + �ij�ji);

I3 = 3
5 (�ij�ij − �ij�ji): (3)

The generalized e6ective plastic strain is intended as a phenomenological measure
of the total dislocation density: statistically stored dislocations are due to 
P and geo-
metrically necessary dislocations are induced by the plastic strain gradients. Expression
(1) is the most general isotropic measure that is homogeneous of degree two in the
plastic strains and their 3rst gradients. It is positive de3nite, and the three length pa-
rameters, ‘i, are required for dimensional consistency. These length parameters set the
scales at which the gradients become important. Of the three parameters, ‘1 plays the
dominant role in indentation. However, for application to a wide range of micron scale
phenomena, it is essential that at least two of the length parameters be retained in the
theory, as argued in Fleck and Hutchinson (2001).
From 
Pij = 
Pmij, it follows that �ijk ≡ 
Pij; k = 
P; kmij + 
Pmij;k . Upon substitution into

Eqs. (1)–(3), one obtains an expression for the generalized plastic strain in terms of

P and 
P; i as

E2
P = 
2P + Aij
P; i
P; j + Bi
P; i
P + C
2P: (4)

The factors Aij=Aji, Bi and C are given by Fleck and Hutchinson (2001); they depend
on the material length parameters and on mij and its gradients.
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In analogue to classical deformation theory, a potential energy functional speci3es
the generalized strain gradient theory. The following potential reduces to the classical
functional when gradient e6ects can be ignored, or, equivalently, if the length parame-
ters are set to zero. This ensures that the limit of the generalized theory coincides with
the classical theory in the limit when the scale of the deformation is large compared
to the material length parameters. The potential is de3ned as

�(ui; 
P) =
∫
V

{
1
2
Cijkl(
ij − 
Pmij)(
kl − 
Pmkl) +

∫ EP

0
�(
̃P)d
̃P

}
dV

−
∫
ST
(T 0

i ui + t0
P) dS: (5)

Here, V denotes the volume of the body, S its surface with ni as its outward unit
normal. On the portion of the surface, ST , traction is prescribed with T 0

i as the con-
ventional traction and t0 as a higher-order traction de3ned below. As de3ned earlier,
�(
P) denotes data from the uniaxial tensile stress–strain curve of the material. The
3rst contribution to the volume integral in Eq. (5) is the elastic energy density while
the second is the plastic work density, now evaluated at EP rather than 
P. It is through
this term that the dependence on the plastic strain gradients enters. The generalized
plastic work density provides the clearest and most elementary insight into the role
played by EP in the theory. Simply stated, the theory postulates that the plastic work
expended in bring a material element subject to both plastic strains and plastic strain
gradients to a generalized strain EP is the same as occurs in deforming that element
to the plastic strain 
P = EP in uniaxial tension.
Provided the function �(
P) is monotonically increasing, a unique solution to any

boundary value problem can be obtained by minimizing � with respect to all admissible
ui and 
P. The 3eld equations associated with stationarity of � are

�ij; j = 0; (6)

Q ≡ �e + �i; i =
�(EP)
EP

(

P +

1
2
Bi
P; i + C
P

)
; (7)

�i =
�(EP)
EP

(
Aij
P; j +

1
2
Bi
P

)
: (8)

The boundary relations between the stress and traction quantities on S are

Ti = �ijnj and t = �ini: (9)

The virtual work statement for this class of theories is∫
V

{
�ij#
eij + Q#
P + �i#
P; i

}
dV =

∫
S
(Ti#ui + t#
P) dS: (10)

Here, �ij#
eij is the elastic work increment, Q in Eq. (7) is work conjugate to the
plastic strain 
P, and the vector quantity �i is the higher-order stress working through
the plastic strain gradient 
P; i. The contributions in Eqs. (5) and (10) from t and �i
are absent if EP = 0 or if the material length parameters are zero.
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Fig. 1. Geometry of rigid conical and spherical indentation. The hemispherical core region directly under
the contact region is used in carrying out the indentation analysis using the void expansion approximation.

The formulation is unusual in the sense that the free variables employed are ui and

P. It is this feature that makes the formulation easier to implement in numerical work
than earlier formulations. Although the variational principle based on � is not standard
because of the explicit role of 
P as a variable, the formulation does reduce to the
classical J2 theory when the material length parameters vanish.

3. The indentation problems

The indenter is either a rigid cone with angle $ or a rigid sphere of radius R, as
depicted in Fig. 1. The indenter is loaded with a normal force P, and the hardness is
de3ned as H =P=((a2), where a is the radius of contact of the indenter. The substrate
is semi-in3nite and is characterized by the constitutive model detailed in Section 2.
The problem is axisymmetric. The tensile stress–strain curve of the substrate is taken
to be the Ramberg–Osgood relation


=
�
E

+ *
�Y
E

(
�
�Y

)n
(11)

with �Y as the nominal yield stress. The function appearing in the potential � is,
therefore, �(
P) = �Y(
P=(*
Y))N with 
Y = �Y=E and N = 1=n as the strain hardening
exponent. With speci3cation of the three length parameters, ‘i, the solid is fully pre-
scribed. All numerical results presented in this paper based on Eq. (11) are computed
with *= 3

7 .

3.1. Finite element method

The semi-in3nite half-space is replaced by a 3nite hemispherical substrate whose
radius, R0, is very large compared to the radius of the indent, a, and the surrounding
plastic zone. Tractions are applied on the outer hemispherical surface corresponding
to those for a concentrated load, P, applied normally to an in3nite elastic half-space
at radial distance R0 from the point of application (Timoshenko and Goodier, 1970).
These tractions equilibrate the applied load and specify the correct asymptotic stresses
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for the semi-in3nite problem. Frictionless contact is assumed at the common surface
between the indenter and the substrate. Moreover, the plastic strain 
P is assumed to
be unconstrained at the contact surface such that the higher-order boundary condition
enforced by the variational solution is t = 0. A few simulations were carried out with

P = 0 at the contact surface, but the hardness predictions were only slightly changed
from the results with unconstrained plastic .ow at the contact surface. A 3nite ele-
ment code for axisymmetric deformations has been developed for the strain gradient
plasticity formulation of Section 2. At each node, there are three nodal variables, the
two displacement components and the plastic strain amplitude 
P. These three vari-
ables are expressed within the elements by shape functions. Stress gradients appear in
the expression for the e6ective strain Ep in Eq. (4) through the coeKcients Bi and
C; these are calculated directly through the constitutive equation with the aid of the
shape functions. Selected details related to the constitutive relation are outlined in
Appendix A.

3.2. Spherically symmetric void expansion

The spherically symmetric solution (Fleck and Hutchinson, 2001) for growth of
a spherical void containing a hydrostatic pressure, p, in an in3nite solid was used
a benchmark to demonstrate the accuracy of the axisymmetric 3nite element program
formulation. For conventional plasticity, spherically symmetric void expansion has been
used to develop approximate indentation solutions (Johnson, 1970). The corresponding
solution for strain gradient plasticity will be used for this same purpose in the next
section, and in this respect it is a particularly sensible choice for benchmarking the
present program. The solid is also speci3ed by the deformation theory version of the
strain gradient plasticity theory in Section 2 for a material with the Ramberg–Osgood
tensile stress–strain curve (11) with * = 3

7 . A relatively simple exact formulation for
generating a numerical solution to the problem was given in Fleck and Hutchinson
(2001) for the limiting case of an elastically incompressible solid, �= 1

2 . The solution is
obtained within the framework of small strain theory. The second of the three material
lengths, ‘2, does not enter the solution for this problem. The initial radius of the void
is a, the initial volume, V = 4(a3=3, and the volume expansion is denoted by QV .
Plastic .ow is unconstrained at the void surface such that the higher-order boundary
condition is t = 0.
A selected set of numerical results generated using the scheme detailed in Fleck

and Hutchinson (2001) is presented in Fig. 2 as p=�Y against QV=(
YV ) for N = 0:2
and combinations of ‘1 and ‘3. Presented in this form, the results are independent of
�Y=E. One also notes that there is only a very weak dependence of the void expansion
solution on ‘3—an order of magnitude change of this parameter has little in.uence.
Included in Fig. 2 are results computed using the axisymmetric 3nite element pro-
gram developed for the indentation study. Elastic compressibility is required in this
program, and results have been computed for both � = 0:3 and 0.48, with the latter
falling quite close to the results for the elastically incompressible material. Spherical
symmetry was not invoked in the 3nite element calculation but symmetry with respect
to the equatorial plane was used. A total of 720 quadrilateral elements were used with 9
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Fig. 2. Expansion of a spherical void in an in3nite solid subject to internal pressure. The curves without
markers are for a solid that is elastically incompressible and characterized by the strain gradient plasticity
with material length parameters ‘1=‘3 (solid curves) and ‘3=‘1=10 (dashed curves). There is no dependence
on ‘2. Uniaxial tensile behavior is given by the Ramberg–Osgood relation with N = 0:2 and * = 3

7 . The
two curves with markers have been computed using the axisymmetric 3nite element code developed for the
present study for elastically compressible solids with ‘1 = ‘3 = ‘2.

nodes/element and 3 variables/node. Gauss integration was employed with 2×2 points
per element.

4. Hardness trends based on the void expansion approximation

Johnson (1970), following the earlier ideas of Marsh (1964), demonstrated the eK-
cacy of predictions of indentation hardness derived from the solution for spherical void
expansion. They approximated the 3eld around “large” indents using the solution for
spherically symmetric void expansion obtained on the basis of conventional plasticity.
Here, this same approach will be implemented for strain gradient plasticity and used
to illustrate hardness trends with particular emphasis on the size dependence.
The solution for the spherically symmetric expansion of a spherical void in the

elastically incompressible solid discussed in the previous section can be written in
terms of the dimensionless variables and parameters as

p
�Y

= f
[
QV

YV

; N;
a
‘1

]
: (12)

There is no dependence on ‘2, and the weak dependence on ‘3 is not noted. All results
presented below based on the void approximation have been determined with ‘3 = ‘1.
The indentation approximation is motivated using Fig. 1 and the rational employed

by Johnson (1970). Directly under the indenter contact area in a hemispherical core
of radius a, the solid is assumed to be in a state of uniform hydrostatic pressure such



Y. Wei, J.W. Hutchinson / J. Mech. Phys. Solids 51 (2003) 2037–2056 2045

that p=H , since the hardness, H , is by de3nition the average normal pressure under
the indenter. The 3eld outside the core is approximated by the spherically symmetric
solution for void expansion, with the core as the spherical void of radius a containing
pressure p. The volume of the indent is identi3ed with one-half the expansion of the
void, QV=2. For the conical indenter, QV = (2(=3) tan $a3, and thus, by Eq. (12), the
hardness relation is

H
�Y

= f
[
tan $
2
Y

; N;
a
‘1

]
(conical indenter): (13)

For relatively shallow indents with the spherical indenter, QV = ((=2)a4=R, and, by
Eq. (12),

H
�Y

= f
[

3a
8
YR

; N;
a
‘1

]
(spherical indenter): (14)

The Marsh–Johnson approximations correspond to a=‘1 → ∞. Approximations (13) and
(14) draw no distinction between the size of indents in the loaded and unloaded state,
nor does it account for the in.uence of pile-up or depression around the perimeter of
the indent or indenter elasticity. These are important secondary e6ects that are generally
taken into account in indentation hardness testing protocols. Nevertheless, it will be
shown that Eqs. (13) and (14) capture the 3rst-order hardness relations quite e6ectively.
For the purpose of generating numerical results based on Eqs. (13) and (14), the

following approximate power law interpolation of the spherical void solution (12) has
been developed, guided by the form of the Ramberg–Osgood stress–strain curve (1):

QV

YV

=
9
4

p
�Y

+ *
(

p
b(N; a=‘1)�Y

)n
: (15)

This representation is exact in the linear range and it has the correct power law func-
tional form in the limit that p=�Y becomes large. The coeKcient b has been chosen
such that p=�Y from Eq. (15) coincides at QV=(
YV ) = 50 with the exact solution,
computed in the manner described in the previous section. Curves of b(N; a=‘1) are
presented in Fig. 3, again with *= 3

7 . The function f in (12) is obtained by numerically
solving Eq. (15) for p=�Y at any given QV=(
YV ). The curves in Fig. 4 are obtained
from Eq. (15) and can be compared to those presented earlier in Fig. 2. Apart from
some discrepancy in the relatively narrow transition between linear and nonlinear re-
gions, interpolation (15) provides an approximation to the spherical expansion solution
that is suKciently accurate for present purposes.

4.1. Hardness trends for conical indenters

The implication of Eq. (13), that H=�Y depends on indenter angle and yield strain
in combination, tan $=
Y, extends to the micron scale the outcome of the earlier studies
(e.g. Johnson, 1970). The two plots of Fig. 5 based on approximation (13) summarize
the parametric dependence of the normalized hardness. As noted in earlier studies (e.g.
Begley and Hutchinson, 1998; Nix and Gao, 1998; Elmustafa and Stone, 2003), a strong
size dependence is predicted for conical indentation with the hardness, H , diminishing
to the limit for large indents as the radius a of the indent increases. For the present
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Fig. 3. CoeKcient b(N; ‘1=a) in void expansion approximation (15). Computed with ‘3 = ‘1.
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Fig. 4. Expansion of a spherical void from the power law approximation (15) with N = 0:2 and * = 3
7 .

The approximate results can be compared with the corresponding curves from the exact solution in Fig. 2.
Trajectories under increasing indent size are traced typical of those for conical and spherical indentation.

theory, the size dependence becomes evident for a=‘1 less than about 10, and elevations
in hardness on the order of a factor of roughly 2 occur when a=‘1 = 2. The result
for a large indent in an elastic–perfectly plastic solid is H=�Y = 2

3 (1 + ln(tan $=3
Y))
(Johnson, 1970), in agreement with the limit for large indents for the solid with low
strain hardening in Fig. 5.
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Fig. 5. Hardness trends for conical indentation from the void expansion approximation.

4.2. Hardness trends for spherical indenters

The convenient separation of geometry and yield strain via a single parameter
in conical indentation does not hold for spherical indentation, as can be seen from
Eq. (14). Trends for spherical indentation are inherently more complicated. For present
purposes, the 3rst set of trends will be presented as a function of a=R, in the manner
that recent experiment data has been presented by Swadener et al. (2002). Rewrite
Eq. (14) in a form that emphasizes the dependence on a=R as

H
�Y

= f
[

3a
8
YR

; N;
a
R

R
‘1

]
(spherical indenter): (16)

Plots of normalized hardness as a function of a=R are presented in Fig. 6. From these
plots, as well as Eq. (16), it is clear that R=‘1, N and 
Y have independent e6ects. The
uppermost plot in Fig. 6 reveals that the dominant size e6ect in spherical indentation
is associated with variations in indenter size, R, rather than, a=R, as emphasized by
Swadener et al. (2002). For a=R suKciently large such that plastic deformation under
the indenter dominates elastic deformation (i.e. for a=(
YR)¿ 25), there is a relatively
weak dependence on a=R. For smaller a=R, the hardness trend with a=R at 3xed R=‘1
would appear to be opposite that for conical indentation. However, the regime in which
H=�Y decreases with decreasing a=R corresponds to the region of transition in f from
elastic to plastic void growth in Fig. 2. This is the regime in which plasticity does not
dominant behavior under the indenter. The void approximation is expected to su6er its
largest errors in this regime. Nevertheless, the trend in hardness with a=R in Fig. 6 is
similar to that seen in the data taken by Swadener et al. (2002) and from their model.
The dependence of H=�Y on N and 
Y = �Y=E is presented in two lower plots in

Fig. 6. Both low strain hardening and low yield strain can lead to falling hardness
with increasing indentation depth, but the e6ect is weak compared to that for conical
indentation. For all curves in Fig. 6, the range of a=‘1 = (a=R)(R=‘1) has been limited
to a=‘1¿ 1; termination of the curves on their left end corresponds to a=‘1 = 1.
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Fig. 6. Hardness trends for spherical indentation from the void expansion approximation.

The similarity in the size dependence of spherical indenters with that for coni-
cal indenters is brought out by the curves of H=�Y against ‘1=R for 3xed a=R in
Fig. 7. The limit for large size-independent indents is attained for ‘1=R¡ 0:01. Thus,
if ‘1 ≈ 1 �m, signi3cant size dependence is expected for spherical indenters with radii
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Fig. 7. Hardness trends for spherical indentation from the void expansion approximation. Dependence on
size of the spherical indenter at 3xed a=R.

less than about 100 �m. This is the case for the data presented for annealed oxygen-free
copper by Swadener et al. (2002). Their data for iridium suggests that the transition
to size-independent behavior is R ≈ 300 �m, implying ‘ ≈ 3 �m for this material, as
will be seen to be the case in Section 6.

4.3. Conical versus spherical indentation

Johnson (1970), elaborating on Tabor (1951) proposals, notes that conventional hard-
ness measured for strain hardening materials can be associated with the uniaxial .ow
stress at a representative strain, �(
r), according to H ∼= 3�(
r). The representative
strain under a conical indenter is 
r ∼= 0:2 tan $, independent of indent size, while the
representative strain under a spherical indenter depends on indent size according to

r ∼= 0:2a=R. In other words, data taken in the form of load versus indentation radius,
a, provides di6erent information for the two shapes of indenters. Distinction between
behaviors for the two shapes persists into the micron range. This is illustrated in
Fig. 4, where typical trajectories associated with increasing indent size, a, are mapped
onto the void expansion solution. For the conical indent, QV=(
YV ) = tan $=(2
Y) is
constant, while for the spherical indent, QV=(
YV )=3a=(8
YR) increases. In each case,
the trajectory shifts across curves for larger and larger voids relative to the material
length, ‘1, as a increases. For the conical indenter, the e6ective strain under the in-
denter is constant and the drop in hardness is due to the increase in indent size. Under
the spherical indenter, the hardness drop due to increasing indent size is counteracted
by the hardness rise due to increasing strain, 
r ∼= 0:2a=R.
According to the void expansion approximations, Eqs. (13) and (14), the hardness

measured for a particular material by the two indenters should be identical if the radii
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of the indents, a, are the same and if 3a=(4R) = tan $, whether in the micron range
or in the “large” size range. Increasing a at 3xed radius, R, for the spherical indenter
is equivalent to testing with a sequence of conical indenters of increasing angle $.
Alternatively, increasing a at 3xed $ for the conical indenter is equivalent to testing
with a sequence of spherical indenters with larger and larger radii, R. Swadener et al.
(2002) employed a sequence of spherical indenters of varying R to bring out the strong
size dependence of several materials, as will be discussed in Section 6.

5. Hardness trends based  nite element computations

A selected number of the trends discussed based on the void expansion approximation
were computed using the axisymmetric 3nite element program developed for the full
3eld equations in Section 2. The dominant importance in indentation of the 3rst material
length parameter, ‘1, over ‘2 and ‘3 was veri3ed using the 3nite element program.
For all the calculations reported in this section, the role of ‘1 is emphasized, and the
calculations have been carried out with ‘3 = ‘2 = ‘1. The tensile stress–strain curve
characterizing the solid is the same as that used for the void expansion approximation,
i.e. Eq. (11) with *= 3

7 . Poisson’s ratio is taken to be �= 0:3.
The computed hardness trends for the rigid conical indenter are shown in the two

parts of Fig. 8. In almost every respect, the trends from the 3nite element calculations
are in reasonably close quantitative agreement with those presented earlier based on the
spherical void approximation. First, it can be noted that the implication from the void
approximation that the parameter, tan $=
Y, collapses the dependence on cone angle and
initial yield strain is indeed borne out to a very good approximation. Secondly, it can be
noted that the dependence on the strain hardening exponent, N , in Fig. 8b is completely
in accord with the corresponding trend based on the void approximation. The main
di6erence between the trends in Fig. 8 and those based on the void approximation
in Figs. 4 and 5 is approach to the classical limit for large indents as ‘1=a → 0. The
numerical results in Fig. 8 from the 3nite element calculations indicate that the hardness
approaches the large indent limit nearly linearly with ‘1=a, while the void approximation
suggests that this limit is approached more slowly, roughly in proportion to (‘1=a)2.
The large indent limits from the two approaches are within 10% of one another. Over
the entire range of ‘1=a, the di6erence between the void approximation and the 3nite
element results is generally less than 10%, with the largest discrepancy occurring at
‘1=a ≈ 0:1 due to the di6erent approaches to the large indent limit.
The 3nite element results for the rigid spherical indenter are presented in Fig. 9.

The dependence of the normalized hardness, H=�Y, on a=R at 3xed values of ‘1=R can
be compared directly with the corresponding curves based on the void approximation
in upper plot of Fig. 6. In this case, the general trends are again similar, but the
discrepancy between the 3nite element predictions and the void approximation are
greater. The 3nite element results indicate that the hardness has little dependence on
a=R at 3xed R=‘1 once a=R is larger than about 0.05, in agreement of the observations
and modeling of Swadener et al. (2002). Larger variation with a=R is predicted by the
void approximation. It is not surprising that the void approximation looses accuracy
when a=R¡ 0:05 because this is the range in which plasticity is not dominant under
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Fig. 8. Hardness trends for conical indentation computed using the 3nite element program. Top: Variation of
cone and angle and initial yield strain showing the signi3cance of the parameter tan $=
Y. Bottom: Variation
of strain hardening exponent.

the indenter and justi3cation for the void approximation is lost. The strong size e6ect
under spherical indentation is seen in the lower plot in Fig. 9, where hardness is
plotted against ‘1=R with a=R = 0:15 and three values of the initial yield strain. The
trends are similar to those from the void approximation in Fig. 7. However, the void
approximation exaggerates the spread in the dependence on the initial yield strain,
overestimating the hardness at smaller 
Y and underestimating it a larger 
Y.

6. Simulations of the data for spherical and pyramidal indentation of iridium

Swadener et al. (2002) obtain hardness data on 3ne-grained polycrystalline iridium
using both spherical and pyramidal Berkovich indentation. They employed 3ve spherical
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Fig. 9. Hardness trends for spherical indentation computed using the 3nite element program. Top: Hardness
versus a=R at 3xed ‘1=R. Bottom: Hardness versus ‘1=R at 3xed a=R.

indenters ranging in radius from 14 to 1600 �m. Iridium has an exceptionally low initial
yield strain (0.00021) and very high strain hardening. Swadener et al., found that for
stresses above the yield stress, �Y = 109 MPa, and strains less than about 5%, the
tensile stress–strain curve is well approximated by

� = �Y + k
N ; (17)

where k=2739 MPa and N=0:638. Stress–strain data at larger strains was not available,
but Eq. (17) should provide a reasonable representation for strains that do not exceed
10%, which is the range relevant to conical and shallow spherical indentation. The
elastic shear modulus of iridium is 217 GPa and its Poisson’s ratio has been taken to
be 0.2 in the computations. When the material length parameters and the geometry
of the indenter are speci3ed, the 3nite element program can be used to compute the
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Fig. 10. Comparison of 3nite element results with the experimental results of Swadener et al. (2002) on
spherical indentation of iridium. The numerical results were computed using the tensile stress–strain data
(17) with ‘1 = 3 �m.

relation between H and the indenter contact radius a. The computations have been
carried out for the material speci3ed by Eq. (17).
The computed results for spherical indentation are shown in Fig. 10 along with the

experimental results of Swadener et al. (2002) for similar indenter radii. (Results for
an indenter with a radius of 1600 �m were not computed since they would be essen-
tially indistinguishable from those for an indenter of radius 318 �m.) In the attempt
to identify the applicable value of ‘1, results were computed for several values of ‘1
(with ‘2 = ‘3 = ‘1). The curves computed with ‘1 = 3 �m gave the reasonable 3t to
all the data seen in Fig. 10, and no further attempt was made iterate on ‘1 to obtain a
better 3t. All aspects of the experimental trends for spherical indentation appear to be
captured by the theory, although the spread between the theoretical results for R= 15
and 60 is larger than that seen for the experimental data. 1

The success of the theory is emphasized by the results in Fig. 11 for Berkovich
indentation of iridium, computed for a conical indenter with $ = 19:7◦ and plotted as
hardness versus indentation depth, h=a tan $. In this case, the choice of ‘1=3 �m was
made from the outset in the numerical calculations. Agreement with the experimental
data of Swadener et al. (2002) in Fig. 11 is remarkable. The agreement is probably
fortuitous at indentation depths below h = 0:1 �m since there is no evidence from
applications to other problems that the theory is valid at a scale below a few tenths of
a micron. (Note, however, that h = 0:1 �m corresponds to an indentation diameter of
2a=0:56 �m, which may be a more relevant measure of the size.) The data shown by
large circles was taken with a micro-indenter while that represented by small circles
was obtained with a nano-indenter. The smooth merge of the two sets of data speaks
to the consistency of the two hardness test methods.

1 The 3nite element mesh was re3ned several times to assure the accuracy of the results presented in
Fig. 10. The results shown are for the 3nest mesh, and these di6er only slightly from the results obtained
from the next 3nest mesh.
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Fig. 11. Comparison of 3nite element results (computed using the tensile stress–strain data (17) with
‘1 = 3 �m) with the experimental results of Swadener et al. (2002) on conical indentation of iridium.
Large circles are micro-indents; small circles are nano-indents.

7. Concluding remarks

The relation between indentation hardness and the stress–strain behavior is not sim-
ple, particularly for micron scale indents where size dependence becomes signi3cant.
Strain hardening, initial yield strain, indenter geometry, as well as indent size, are all
important. Spherical indentation is more complicated to characterize than conical in-
dentation. The spherical void approximation captures general trends reasonably well but
inaccuracies emerge, particularly in the case of spherical indentation. Agreement be-
tween theoretical predictions based on strain gradient plasticity and indentation tests on
iridium seen in Figs. 10 and 11 required detailed numerical computation. The spherical
void approximation was not suKciently accurate to bring out the excellent comparison
between theory and experiment seen in these 3gures.
Crude approximations can be obtained by extending the simple connection discussed

in Section 4.3, H ∼= 3�(
r), between hardness and the uniaxial stress–strain curve
proposed by Tabor (1951) to account for strain gradient e6ects. The idea is to replace
the representative strain, 
r , by an e6ective strain measure, EP, in a form suggested by
Eq. (1). The gradient of 
r should scale as c
r=a such that new representative strain is
Ep =

√

2r + (c‘1
r=a)2, where c can be adjusted to 3t data or numerical results. In this

formula, 
r is speci3ed by the Tabor formulas depending on the whether a conical or
spherical indenter is used. The trends that result from this formula are not unlike those
obtained by Swadener et al. (2002) from their dislocation model. Certain of the trends
are captured in an approximate manner, but the simple formula is incapable of accurate
predictions of the theory such as those obtained by the full numerical calculations in
Figs. 10 and 11.
Finally, both the spherical void approximation and the detailed 3nite element compu-

tations reveal that only one of the three material length parameters, ‘1, is important in
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indentation. Moreover, indentation is probably the best method for determining this pa-
rameter experimentally. For iridium, tested by Swadener et al. (2002), ‘1=3 �m. Other
metals, with higher initial yield strain and lower strain hardening, tend to have lower
values of ‘1, generally lying in the range from 0.25 to 1 �m (Begley and Hutchinson,
1998).
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Appendix A

A.1. Constitutive aspects of the ;nite element method

The variation of the functional de3ned in Eq. (5) with respect to (#ui, #
P) can be
put into the form

#�=
∫
V

{
�ij#
ij +

[
�(
P)
EP

(

P +

1
2
Bi
P; i + C
P

)
− �e

]
#
P

+
�(
P)
EP

(
Aij
P; j +

1
2
Bi
P

)
#
P; i

}
dV −

∫
ST
(T 0#ui + t0#
P) dS; (A.1)

where the notation is de3ned in Section 2. The variables used in formulating the 3nite
element scheme are (ui, 
P). CoeKcients Bi and C depend on mij;k which in turn
depend on the gradient of the stress deviator. To obtain sij; k in term of the strain
gradient quantities, 
ij; k and 
P; k , write the deviator stress in term of the elastic strain
deviator, sij = 2Geeij, with G as the elastic shear modulus and eij = 
ij − 1

3 
kk#ij as the
deviator strain. From this relation, solve for the deviator stress as

sij = Heij; (A.2)

where H = 2G=(1 + 3G
P=�e). A direct calculation then gives

sij; k = Heij;k − 3H 2

2�e
eij
P; k +

3H 2
P
2�2e

eij�e; k (A.3)

with

�e; k =
[
3Hsijeij; k

2
− 9H 2

4�e
sijeij
P; k

] [
�e − 9H 2
P

4�2e
sijeij

]−1

: (A.4)
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The components above must be converted to the components for axisymmetric prob-
lems in cylindrical coordinates. The solution is obtained by iteration based on the
variational equation, #� = 0. A 3nite element discretization of this equation is car-
ried out. In outline, the iterative process is as follows. At any load, take as the 3rst
iteration either the conventional deformation theory solution (obtained numerically)
or the converged solution at a neighboring load. Compute the stress gradient using
Eq. (A.3) and the coeKcients in the expression for EP. A linear iteration for incre-
ments in the nodal variables can be computed. Update the 
ij, 
P and their gradients,
and repeat the iteration process until convergence is achieved. The number of iterative
steps to achieve convergence (with relative change between successive steps falling
below 10−4) is typically about 150 for N = 0:1 and 120 for N = 0:2.
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