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Abstract

A family of robust stretch-dominated bimaterial lattices is introduced which combines low (or

zero) thermal expansion with high stiffness, structural robustness over wide temperature ranges and

manufacturing facility. This combination of properties is unavailable through any other material

solution. The concept uses two constituents configured as adjoining sub-lattices. It accommodates

the thermal expansion through rotation of the members of one sub-lattice. Moreover, the lattice

exhibits large stiffness to weight because it is fully triangulated and does not rely on rotational

resistance at the joints for structural rigidity. A wide range of constituents can be used to build the

new lattices enabling many desirable properties to be incorporated, especially high strength and

toughness. Examples of both planar and volumetric lattices are presented, and their thermo-

mechanical properties derived. The results are verified by conducting experiments and finite element

simulations on a lattice fabricated using aluminium and titanium alloy constituents.
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1. Introduction

Structural systems that experience large temperature changes are susceptible to extreme
thermal stresses that activate failure by thermo-mechanical fatigue. To suppress such
failures, the material should have a low thermal expansion coefficient, a, over a wide range
of temperature. However, low a is not normally sufficient, but must be combined with
adequate stiffness, strength and robustness (ductility and toughness) to support in-plane
loads and bending moments. This combination of attributes cannot be found in any single-
constituent material.
The available choices are apparent from material property maps, such as Fig. 1, which

displays the known universe of robust materials in a=E (Young’s modulus) space. Solids
having low (or even negative) a exist, but all possess characteristics which limit their use in
applications which demand robustness and durability over large temperature changes. Invar
is robust, but has low expansion only between 0 and 100 �C (Fig. 2(a)). Zerodur (Schott
Optics, 2006) has low expansion over a larger temperature range (Fig. 2a), but it is a glass
ceramic and unsuitable for reliable load bearing structures. Composite materials incorporat-
ing carbon fibres have property combinations closest to the desired attributes. These fibres
have very low axial a. When incorporated into a matrix, the ensuing materials combine low a
with acceptable stiffness, but deficiencies have limited their application in demanding thermal
scenarios. Specifically, when incorporated into an organic matrix, the large difference in the
thermal expansion between the two constituents results in strains upon temperature cycling
that cause matrix cracking and thermal fatigue. This deficiency is partially circumvented by
using a carbon matrix. Such materials have low expansion up to 1500 �C (Fig. 2(b)), as well as
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Fig. 1. The universe of available structurally robust materials (ceramics are not included), plotted in the space of

stiffness and thermal expansion.
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Fig. 2. The relationship between a and temperature for three solid materials: Invar, Zerodur and carbon–carbon

composite; and three planar lattices composed of liquid crystal polymer (assuming that the anisotropy can be

controlled) and polycarbonate with 8:65� skewness, titanium and aluminium with 24� skewness and niobium

C-103 and Inconel 625 with 24� skewness.
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reasonable stiffness. However, they experience severe oxidation at high temperatures, as well
as robustness issues and manufacturing limitations.

The challenge to be pursued in this article is to begin with inherently robust constituents,
either metallic or polymeric, which individually have large a. Topology concepts will then be
used to generate a material having zero a over a large temperature range, combined with
acceptable stiffness, strength and resistance to thermal fatigue. The approach to be pursued
combines two disparate constituents to achieve properties outside the range attainable with
each separately. That is, two constituents with widely different individual a will be combined
with empty space to create a lattice material with low overall expansion. The original ideas for
materials having these characteristics emerged from concepts proposed by Sigmund and
Torquato (1996); Lakes (1996); Gibiansky and Torquato (1997); Sigmund and Torquato (1997)
and, more recently, by Jefferson (2006). The topologies examined are summarized in Fig. 3. The
bimaterial lattices presented in Fig. 3(a) (Lakes, 1996) and Fig. 3(c) (Jefferson, 2006) can be
designed to have zero expansion, but both have low stiffness and strength because of the
bending of one of the sub-lattices upon mechanical loading (that in black in Fig. 3(c)). This
stiffness deficiency is obviated by the Sigmund and Torquato (1996) design (Fig. 3(b)), obtained
by optimizing for combined zero expansion and maximum biaxial stiffness. The limitations of
this material are that it is geometrically too complex for manufacturing and has only modest in-
plane uniaxial stiffness. The goal here is to devise zero expansion lattices with topologies
amenable to manufacturing that are stretch- (not bending-) dominated upon mechanical
loading, enabling them achieve zero a while being relatively stiff and strong and resistant to
thermal fatigue. The rules governing stretch-dominated structures have been elucidated by
Gibson and Ashby (1997) and Deshpande et al. (2001b). Most notably, stretch-dominated
structures have stiffness that scales linearly with relative density, r̄, whereas their bending-
dominated analogs have stiffness which scales with r̄3 for planar structures and with r̄2 for
volumetric structures (Gibson and Ashby, 1997). Consequently, at the relative densities of
interest, 0:1pr̄p0:5, the stretch-dominated designs have at least a factor 2–10 larger stiffness.

A preview of these concepts gives further context (Fig. 2). In the temperature range
0–300 �C (Fig. 2(a)), near-zero average a can be obtained with an all-metallic lattice that
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Fig. 3. Unit cells of planar lattices. (a) The Lakes configuration for arbitrary thermal expansion (Lakes, 1996). (b)

A high-stiffness, zero thermal expansion lattice calculated using a topology optimization code (Sigmund and

Torquato, 1996). (c) A low thermal expansion lattice proposed by Jefferson (2006). For each of these bimaterial

lattices, the black constituent has a low coefficient of thermal expansion, while the grey constituent has a high

coefficient of thermal expansion.
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combines aluminium and titanium alloys, as well as an all-polymeric lattice that combines
polycarbonate with liquid crystal polymer. Over a wider temperature range, 0–1000 �C
(Fig. 2(b)), the new concept can realize near-zero average a with another all-metallic system
that combines nickel and niobium alloys. The only competition is a carbon/carbon
composite having the aforementioned limitations. To validate the concept and to
demonstrate that these new materials can be manufactured in a practical manner, a lattice
made from commercial aluminium and titanium alloys has been produced and tested.
The article is organized in the following manner: stretch-dominated planar lattices are

devised that combine low a with high stiffness. The mechanics governing the thermal expansion
and the stiffness are presented for pin-jointed lattices with slender members. It will be shown
that these lattices can be designed to achieve zero thermal expansion coefficient, but also have
stiffness close to the theoretical bounds. Next, to validate the theory, thermal expansion
measurements are presented for a pinned planar lattice made from aluminium and titanium
alloys. Additional validation is provided by finite element analysis of a bonded system. This
same analysis is used to ascertain stresses induced around the bimaterial nodes during a
temperature excursion to ensure that the lattice concept provides adequate resistance to thermal
fatigue. Finally, the extension of the concept to a volumetric lattice is examined and the effective
properties of these new materials are situated with respect to the universe of available materials.
2. Properties of stretch-dominated planar lattices

2.1. Topology

The following features characterize a family of planar lattices which combines low
expansion with good strength and stiffness:
(i)
 It must incorporate at least two constituents with different a. Constituent 1 with the
lower value, a1, forms a continuous periodic lattice network composed of identical
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polyhedral unit cells, configured as skewed versions of regular polyhedra. The
skewness is essential to the attainment of zero expansion. Constituent 2, having the
larger expansion, a2, is arranged as discontinuous polyhedra contained within the unit
cells of constituent 1. The polydedron of constituent 2 has the same number of vertices
and sides as the unskewed analogue of the polyhedron of constituent 1.
(ii)
 The periodic structure contains two categories of nodes: (a) lattice nodes at which the
unit cells of constituent 1 are connected and (b) expansion nodes where constituent 2 is
connected to constituent 1.
(iii)
 The lattice must be fully triangulated within each unit cell so that the structure is
stretch-dominated.
(iv)
 The topology should enable the length changes to be accommodated by a rotation
(angle change) at the nodes, when pin-jointed. Such configurations provide high
stiffness and strength. Structures with these characteristics based upon equilateral
triangles, squares and hexagons are shown in Fig. 4.
We note that while the structural performance of the lattice is dependent upon the
particular configuration of the constituent 2 component, the thermal behaviour is not;
provided that constituent 2 is isotropic and simply connected, the overall lattice thermal
properties depend only upon the configuration of the type 1 component and the location of
the expansion nodes.

The examples to be evaluated are planar periodic lattices based upon an equilateral
triangle (Fig. 5), which have isotropic planar thermal expansion and stiffness. From a
thermal expansion perspective, this triangle can be open or solid. Members of constituent 1
have modulus, density and undeformed length denoted by E1, r1 and ‘1, respectively. The
corresponding quantities for the members of constituent 2 are: E2, r2 and ‘2. The member
cross-sections are solid and have areas A1 and A2. The overall geometry is determined by
the length of the unit cell, L, and the skewness from an equilateral triangle, y; see Fig. 5.
With these geometric parameters, the undeformed lengths of the constituent members are

‘1 ¼
L

2 cos y
; ‘2 ¼

L

2
ð1þ

ffiffiffi
3
p

tan yÞ (1)

such that

d‘1 ¼
‘1 dL

L
þ

L sin ydy
2cos2y

; d‘2 ¼
‘2 dL

L
þ

ffiffiffi
3
p

Ldy
2cos2y

. (2)
Triangular Square Hexagonal

4. Unit cells of planar lattices which are stretch-dominated and which can have low or zero net thermal

nsion. The grey constituent has high a while the black constituent has low a.
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2.2. Thermal expansion

For homogeneous temperature changes, these lattices are isotropic in-plane. The
lattice has thermal expansion ā defined such that an increment in temperature dT causes a
length change dL ¼ āLdT . When the lattice is pin-jointed, absent external stress, the
members exhibit length changes d‘1 ¼ a1‘1dT and d‘2 ¼ a2‘2 dT . The expansion
coefficient is thus

ā
a1
¼

1� 1
2
ða2=a1Þ sinð2yÞ 1ffiffi

3
p þ tan y
� �

1� 1
2 sinð2yÞ

1ffiffi
3
p þ tan y
� � . (3)

This relation is plotted in Fig. 6. It is apparent that the lattice has zero net thermal
expansion within a realizable window of skewness, y, and thermal expansion ratio,
S ¼ a2=a1. Specifically, when S � 2:5, zero thermal expansion emerges for skewness
y � 25�. It is important to note that the thermal expansion behaviour is a function only of
the geometry of the lattice composed of constituent 1 and the locations of the expansion
nodes; that is, the configuration of constituent 2 has no effect on the thermal behaviour of
the lattice provided that constituent 2 expands isotropically. The structural behaviour of
the lattice is, of course, dependent upon the configuration of constituent 2.
When the joints are pinned, no internal stresses are induced by a homogeneous

temperature change. When bonded, they resist rotation and the members bend, generating
internal stresses during thermal expansion. Finite element models have been created to
assess their magnitude, as discussed below.
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2.3. Stiffness

Biaxial stiffness. The lattice is isotropic in-plane with biaxial stretching stiffness:

Nb ¼ Sb�̄, (4)

where Nb is the average force per unit length imposed on the structure in equibiaxial
tension and �̄ is the resulting average strain (�̄11 ¼ �̄22 ¼ �̄). When pin-jointed, the forces F

in the members are

F1 ¼
NbL

2 cosðp=6þ yÞ
; F2 ¼ �

NbL sin yffiffiffi
3
p

cos p=6þ y
� � . (5)

Using (2) with �1 ¼ d‘1=‘1 ¼ F 1=E1A1 and �2 ¼ d‘2=‘2 ¼ F2=E2A2, the strain becomes

�̄ ¼
F1

E1A1
�

2 sin y sinðp=6þ yÞffiffiffi
3
p

F2

E2A2

� �	
1�

2 sin y sinðp=6þ yÞffiffiffi
3
p

� �
. (6)

Setting Q ¼ E2A2=E1A1 and using (5) and definition (4), the structural stiffness in
equibiaxial loading is

Sb ¼
E2A2

L

cosðp=6þ yÞð3� 2
ffiffiffi
3
p

sin y sinðp=6þ yÞÞ

3Qþ 2sin2y sinðp=6þ yÞ
. (7)

The structural efficiency, P, under biaxial loading can be ascertained from (7) upon noting
that the mass M per unit area of the lattice is

M ¼
6r1‘1A1 þ 3r2‘2A2ffiffiffi

3
p

L2=2
, (8)

such that

P �
Sbr1
ME1

¼
Q cos y cosðp=6þ yÞð3� 2

ffiffiffi
3
p

sin y sinðp=6þ yÞÞffiffiffi
3
p
ð3Qþ 4sin2y sinðp=6þ yÞÞð1þ ðr2E1=r1E2ÞQ sinðp=6þ yÞÞ

. (9)
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This is plotted in Fig. 7(a) for r2E1=r1E2 ¼ 1. To give context, the maximum possible
structural efficiency, which arises for a triangulated lattice (skewness y ¼ 0� and A2 ¼ 0), is
Pmax ¼

1
2
. Even for large skewness (y! 30�), the lattice retains 10% of Pmax.

Uniaxial stiffness. When loaded uniaxially, most pin-jointed lattices (such as Fig. 3(c))
have internal mechanisms, with stiffness reliant on the bending and rotational resistance of
the members and joints. In the new configuration, loads are carried exclusively by stretching

or compressing the lattice members. The uniaxial stretching stiffness, Su, is defined by
Nu ¼ Su�̄, where Nu is the uniaxial force per length acting in any direction and �̄ is the
associated overall strain in that direction. The expressions arising from the determination
of the uniaxial stiffness are cumbersome, and hence are not presented here. Symmetries
consistent with the solution periodicities are imposed on the unit of the lattice used in
carrying out the calculation. The ensuing structural efficiencies are plotted in Fig. 7(b) and
compared with the maximum for the triangulated lattice, Pmax ¼

1
3
. Again, the lattice

retains 15% of its maximum efficiency at large skewness.
In summary, this pin-jointed, planar lattice has the characteristic that, while realizing low

or zero net expansion, it exhibits excellent stiffness in both biaxial and uniaxial loading.
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2.4. Comparison with the Gibiansky– Torquato bound on biaxial stiffness

Gibiansky and Torquato (1997) have obtained the tightest bounds on the coefficient of
thermal expansion of isotropic planar, three-phase systems when the overall in-plane
biaxial modulus, Sb, is prescribed. These bounds can be applied to the present lattice
material by identifying the respective members with phases 1 and 2 and invoking
rectangular cross-sections with unit thickness and in-plane widths, h1 and h2. The member
area fractions, c1 ¼ 6h1=3L cos y and c2 ¼ 3h2ð1þ 3 tan yÞ=L, as well as E1, n1, a1, E2, n2
and a2 are prescribed. The third phase is the void space having area fraction,
c3 ¼ 1� c1 � c2. As illustrated by Sigmund and Torquato (1997), for materials with ā
prescribed to be zero, the lower of the two Gibiansky–Torquato bounds provides an upper
bound on Sb.

The biaxial modulus, Sb, computed for the pin-jointed lattice with the ratio of the two
phase area fractions fixed ðh1 ¼ h2Þ, plotted in Fig. 8, is compared with the upper bound
calculated with the formulae provided by Sigmund and Torquato (1997).1 While the results
at larger area fractions ðc1 þ c2Þ become suspect (because the formulas (3) and (7) tacitly
assume slender members), the closeness of the bound at low area fractions suggests the
present lattice material may be optimal. (Note that while the result for the present lattice in
Fig. 8 does not depend on the Poisson ratios, n1 and n2, the bound does. Nevertheless, by
computing results for various combinations of n1 and n2, we have established that the
bound is weakly dependent on the Poisson ratios.)

We have performed similar comparisons for the ā ¼ 0 planar materials considered by
Sigmund and Torquato (1997), using E2=E1 ¼ 1 , a2=a1 ¼ 10, n1 ¼ n2 ¼ 0:3 and c1 ¼ c2. In
their assessment, topology optimization was used to generate an isotropic planar material
1The formulae listed by Sigmund and Torquato (1997), while fairly complicated, are misprint-free. We have

reproduced their figures with the formulae they provide.
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that maximizes Sb for the case c1 ¼ c2 ¼ 0:25 (the result is shown here in Fig. 3(b)). Their
material had biaxial stiffness 15% below the Gibiansky–Torquato bound, comparable to
the present lattice material. However, their material has in-plane Poisson ratio n̄ ¼ 0:54,
implying a uniaxial to biaxial stiffness ratio, Su=Sb ¼ 0:46. The present lattice material has
Su=Sb ffi 1 and is thus about twice as stiff in uniaxial stressing. In a very recent
development, Sigmund (2006) has used the lattice in Fig. 5 with c1 ¼ c2 ¼ 0:25 as a starting
shape in the Sigmund–Torquato optimization program and performed search computa-
tions for an isotropic material with ā ¼ 0 for two different cases: maximization of Sb, and
maximization of Su. In both cases, the search produced a lattice-type structure similar to
that in Fig. 5 having Sb close to the bound as well as high values of Su. An interesting
feature of this latest topology optimization is that the ends of members 2 (but not
members 1) taper to a small section suggesting that these ends are effectively pinned in the
optimal structure.
3. Experimental validation for the planar lattice

In this section, the practicality of a planar lattice design made from robust, all-metallic
constituents is explored and combined with a preliminary validation of the thermal
expansion characteristics. For this purpose, two constituent materials are selected having
thermal expansion ratio in the range, S � a2=a1 ¼ 2! 3 (Fig. 6). A combination of a
titanium alloy (Ti–6Al–4V) as constituent 1 with an aluminium alloy (7075-T6) as
constituent 2 satisfies this requirement. Over the range 20 –250 �C, the average thermal
expansions are 10.3 and 25.6 ppm/C for the titanium and aluminium alloys, respectively,
giving an overall average S ¼ 2.5 (Table 1). For this assessment, solid triangles of
aluminium were used for ease of manufacturing and because, thermally, the solid is
equivalent to a triangular truss. Predictions of the influence of skewness on the lattice
thermal expansion for this material combination (Fig. 9) guide the experimental design.
Note that the critical skewness giving zero average thermal expansion is, yzero � 25�. Unit
cells have been made with both bonded and pinned joints (Fig. 10). Those with the bonded
joints have skewness, y ¼ yzero. The specimens were manufactured using protocols
established for lattice materials (Wadley et al., 2003); namely, by laser cutting from sheets
of the constituent materials, then assembled and finally bonded by either brazing or laser
welding.
Table 1

Material properties for the titanium and aluminium alloys used in the numerical simulations, including the

variation of yield strength and thermal expansion with temperature

Material Young’s modulus (GPa) Yield strength Thermal expansion

sY (MPa) Tð�CÞ a (ppm/C) Tð�CÞ

Al alloy 70 434 20 24.0 0

7075-T6 391 200

339 300 27.2 300

Ti alloy 110 1100 20 9.9 20

Ti–6Al–4V 858 300 10.6 300
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Fig. 10. (a) A pinned planar experimental specimen composed of titanium 6Al–4V and aluminium 7075-T6 with

relative density r̄ � 0:25. (b) An example of a bonded unit cell of the same materials; r̄ � 0:12. The relative

densities are calculated based upon the geometry of the constituent 1 members using equation (10).
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The configuration with the pinned joints has been used to validate Fig. 9 by performing
tests over the skewness range 14�pyp28�. The specimens were heated slowly between
ambient and 250 �C in a furnace and allowed to air cool. The temperature was determined
using thermocouples located on both the aluminium and the titanium, while the
displacement between adjacent lattice nodes was measured with a scanning laser
extensometer. Two types of experiment were conducted. (i) The average values of thermal
expansion coefficient for the lattice over this temperature range were determined from the
recorded data and plotted in Fig. 9. (ii) Since the thermal expansion coefficients of both
alloys are temperature dependent (Table 1), the variation of ā with temperature was
measured for fixed skewness, using values close to yzero (both 20� and 24�). The results are
plotted in Fig. 11, along with the predictions. The correspondence between both sets of
measurements and the predictions affirms the analysis and verifies the existence of all-
metallic lattices having near zero thermal expansion over an appreciable range of
temperature.
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4. Stress concentrations at bonded joints

Actual structures typically use bonded attachments made by brazing or electron beam
welding (Wadley et al., 2003). Bonded connections generate a rotational resistance at the
joints and induce bending of the lattice members. The moment resistance of a member is a
function of the slenderness ratio r=L, which, for square members and when A1 ¼ A2, is
related to the relative density r̄ through

r̄ ¼
r

L

2ð1þ cos yþ
ffiffiffi
3
p

sin yÞ
cos y

. (10)

Here the relative density is expressed in terms of relative areas. The calculation of the
uniaxial structural efficiency (Appendix A, Fig. 14(b)) reveals that at skewness close to
yzero the stiffness can increase markedly as the members become stubbier ðr=L40:04Þ. This
increase in stiffness has two consequences. (i) The requisite skewness angle for zero
expansion deviates from yzero. (ii) Bending stresses are induced that might cause yielding.
Additionally, at the nodes, the thermal misfit between the constituents produces stress
concentrations that might also induce yielding.
To examine these issues, finite element calculations have been performed for the lattice

depicted on Fig. 12, chosen to have skewness angle close to yzero. The 1
6
unit cell has been

used. Note that, to fit the cells together, a section AC is required having inclination
differing from that along DC. Periodic boundary conditions are imposed as follows (see
Fig. 12). Point E is fixed to avoid rigid body displacements. The segments EF and AB are
prohibited from displacing in the x-direction but can displace vertically. The section ED is
prohibited from displacing along its normal, but elongation along its length is allowed so
that D can displace outward and upward (ux sin 60

� ¼ uy cos 60
�). The segment AC

displaces uniformly along its normal, with displacement in the y-direction compatible with
the displacement of A. The segment can also elongate. Subject to these boundary
conditions, calculations are conducted with the finite element code ABAQUS (HKS, 2005),
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Fig. 12. The bonded planar lattice used in the finite element simulations. Due to the symmetries of the lattice, 1
6
of

a unit cell is modeled, shown with the imposed boundary conditions.
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using the material properties from Table 1, for two values of skewness, y ¼ 20�; 24�.
A typical mesh includes about 1000 8-node generalized plane strain elements.

For all temperature variations within the operating ranges, the stresses induced in the
members during a thermal excursion are found to be extremely small, except for those
concentrated at bonded interfaces. A preliminary step in the analysis adjusts the contact
length AC of the joints (Fig. 12) to find geometries that minimize the mismatch. Contours
of the local Mises stresses at maximum temperature are shown in Fig. 13. For the design
shown, the ratio of the Mises stress to the yield strength, which is largest in the aluminium
alloy, remains below unity everywhere. Since both materials remain elastic, the thermal
expansion of the lattice is found to be invariant with thermal cycling.

For different material combinations or larger thermal excursions, the yield strength of
one or both of the materials may be surpassed, causing local plastic flow. The plastic
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Fig. 13. The local Mises stresses at the aluminium/titanium interface in the lattice shown in Fig. 12 due to a

temperature increase from 20–250 �C.
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deformation will redistribute the stresses (analogous to stress effects at notches; see Hult
and McClintock, 1957) and that, in some cases, shakedown will occur (Bree, 1967). To
ascertain the associated limitations, these phenomena must be explored further, both
experimentally and with finite element simulations.

5. Situating the lattices within the universe of available materials

The low a lattices provide a combination of characteristics previously unattainable:
good stiffness and strength in an easily manufactured geometry with low (or zero) net
thermal expansion over large temperature ranges. Moreover, by extending the concept to a
volumetric lattice (see Appendix B), a material can be envisaged that occupies a large gap
in stiffness–thermal expansion space (see Fig. 1). (Note that the low expansion of Invar is
restricted to a small range of operational temperatures.) Since the new lattices can be
constructed using metals (or plastics), it is possible to build robust materials with
unprecedented thermo-mechanical properties.
Some specifics have been illustrated by Fig. 2 using two metallic and one polymer

lattice, as well as one low a ceramic, one metal and one composite. Each curve is
terminated at the maximum use temperature. In general, a for solid materials increases
with temperature, while a for the lattices declines with temperature. As a consequence, the
skewness of the lattice structure can be chosen to provide zero net expansion over the
desired temperature range. It is also significant that, by choosing the correct combination
of materials and skewness, lattice structures can be designed to perform better than all
other materials over any temperature range for which the constituents retain structural
stiffness.
Finally, other unusual combinations of properties can be achieved. For example, a

material with low thermal expansion and high thermal or electrical conductivity could be
designed. Again, this combination of properties is unattainable using conventional
materials. Moreover, negative a materials can be created, as well as those with very high a.
The primary restriction is finding two materials with sufficiently different a, which are
mechanically and chemically compatible and can be joined effectively.

6. Concluding remarks

A family of lattices with low thermal expansion and high structural stiffness has
been introduced. The thermal expansion of the members is accommodated by rotations
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at the nodes. The high structural stiffness arises because the mechanical response
of the lattices is dominated by stretching, rather than bending. By appropriate
selection of the constituents and the skewness y, a lattice with any desired a can be
created. This permits the design of a coefficient of thermal expansion that
precisely matches the application. Importantly, because these lattices can be fabricated
from a wide range of constituents, they can be designed to exhibit high strength and
toughness. Not only can the lattices be designed for zero expansion, they also have
biaxial and uniaxial stiffness close to the theoretical bounds and are thus superior to all
previously known concepts. Extension of these lattices into three dimensions is
straightforward, involving a skewed tetrahedral unit cell containing a regular octahedron
(see Appendix B).

An experimental program has been initiated to validate the performance of these
lattices. Pinned planar lattices with a range of y and S have been constructed and are being
subjected to large temperature excursions; preliminary results have been presented here. To
assess the effects of rigid connections, test pieces with rigidly bonded joints are being
tested. These tests will determine the extent of plasticity due to thermal mismatch and
member bending, as well as the net geometric changes due to thermal cycling. The
experimental program will be coupled with a series of finite element calculations to
determine geometries which exhibit shakedown rather than ratcheting.

In summary, the lattice materials introduced here provide the unique combination of
low thermal expansion with high stiffness in an easily manufacturable, yet structurally
robust, geometry. Single-constituent materials may have low a, but are either brittle
(ceramics), have a narrow range of low expansion (Invar) or have manufacturing or usage
limitations (carbon/carbon composites).
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Appendix A. Properties of bonded planar lattices

Connecting the lattice members with joints capable of carrying moments, either by
welding or another form of bonding, changes the thermal and mechanical properties of the
lattice. The members have second moments: I1 ¼ A1r21 and I2 ¼ A2r22 and slenderness
ratios r1=L and r2=L.
A.1. Thermal expansion

With the parameter C1 ¼ A1‘1=I1 representing the bending stiffness of the members, the
normalized ā of the bonded planar lattice is

ā
a1
¼ 1�

ðC1 tan y� 12
ffiffiffi
3
p
Þ ðcos yþ

ffiffiffi
3
p

sin yÞða2=a1 � 1Þ

C1ð
ffiffiffi
3
p

cos y� sin yÞ þ 12ð
ffiffiffi
3
p
þ 2E1A1=E2A2Þðcos yþ

ffiffiffi
3
p

sin yÞ
(A.1)
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which in the limit as the slenderness ratio r1=L! 0 reduces to the result for pinned lattices.
Sample results for this calculation are shown in Fig. 14(a). The effect of bonding the joints
is to increase ā above that expected for pinned joints comprising the same constituent
materials and geometry. Consequently, yzero for the pinned lattice must be reassessed when
the joints are bonded to assure an accurate choice.
A.2. Stiffness

The uniaxial stiffness of the bonded planar lattice is dependent upon the bending
stiffness of the constituent members, and can be determined by constructing the structural
stiffness matrix. The stiffness matrix K is related to the force vector F and the deflection
vector u through the relation Ku ¼ F . Results for the bonded lattice loaded uniaxially are
shown in Fig. 14(b). The stiffness calculation reduces to that of the pin-connected lattice
when I1 ¼ I2 ¼ 0.
S
ti
ff
n
e
s
s
 I
n
d
e
x
, 
S

u
ρ 1

/M
E

1

Skewness, θ (degrees)

α/
α 1

E1A1/E2A2=1

E1A1/E2A2=1

α2/α1=2.5

0 5 10 15 20 25 30
0.05

0.10

0.15

0.20

0.25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

r/L = 0.04

r/L = 0.04

0.020

0.020

ρ1E2/ρ2E1=1

Fig. 14. (a) Normalized net coefficient of thermal expansion for the bonded planar lattice with a2=a1 ¼ 2:5 and

E1A1=E2A2 ¼ 1 for a range of slenderness ratios (r=L) of the members; r=L ¼ 0 is for the pinned structure.

(b) Dimensionless uniaxial stiffness for the bonded planar lattice for r1E2=r2E1 ¼ 1 and E1A1=E2A2 ¼ 1. The

lattice unit cell shown in Fig. 10(b) has r=L ¼ 0:02.
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Appendix B. Properties of stretch-dominated volumetric lattices

B.1. Topology

Three-dimensional periodic lattice structures comprise a skewed polyhedral solid of low-a
constituent 1 connected to form a volumetric lattice in which each cell contains a high-a
polyhedron of constituent 2. In contrast to the two-dimensional case, the polyhedron of
constituent 2 has twice the number of sides as that for constituent 1. We describe an example
based upon a skewed tetrahedron of constituent 1, containing an octahedron of constituent 2
(Fig. 15). The unit cell of this configuration contains four lattice nodes and six expansion
nodes. The full lattice geometry has the same underlying structure as the octet
(octahedron–tetrahedron) truss described by Fuller (1961), Deshpande et al. (2001a) and
Christensen (2004) with the skewed tetrahedra of Fig. 15(b) replacing the regular tetrahedra of
the octet truss. The length of the cell is L and the skewness, y, is defined as the angle projected
onto a plane between a regular tetrahedron and the constituent 1 lattice members. This
definition of y is chosen so that for both the planar and volumetric cases, 0�pyo30�, and is
shown in Fig. 15(c). Given these definitions, the lengths of the two constituent members are

‘1 ¼
L

2
1þ

tan2y
cos2a

� �1=2

; ‘2 ¼
L

2
1þ

ffiffiffi
3
p

tan y
� �

, (B.1)

where a ¼ 1
2
tan�1ð2

ffiffiffi
2
p
Þ.
Fig. 15. A three-dimensional periodic lattice with a low coefficient of thermal expansion. The dark grey members

of constituent 1 have low a while the light grey members of constituent 2 have high a. (a) The lattice structure,

similar to an octet truss, and how the individual unit cells are connected. (b) The unit cell, and the loading

configuration and constraints for the uniaxial stiffness. (c) A view normal to the plane of three lattice nodes

showing the skewness y and unit cell length L. Note that y is defined by the projection of the constituent 1

members onto a plane.
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B.2. Thermal expansion

For a homogeneous temperature change, the thermal expansion of the
volumetric lattice is isotropic, and is defined such that an increment in tempe-
rature dT produces a length change dL ¼ āLdT . Following the same procedure outlined
above for the planar lattice, the net thermal expansion ā of the volumetric lattice is
given by

ā
a1
¼

ffiffiffi
3
p
ðcos2aþ tan2yÞ � ða2=a1Þ tan yð1þ

ffiffiffi
3
p

tan yÞffiffiffi
3
p

cos2a� tan y
(B.2)

This relation is plotted in Fig. 16. Again, for realizable skewness, there is an opportunity to
create structures with very small net thermal expansion. Comparison with Fig. 6 shows
that the requirements for low ā volumetric structures are slightly less stringent than for
the planar structures; that is, volumetric structures require lower skewness to attain
equivalent a.
B.3. Stiffness

Hydrostatic stiffness. The hydrostatic stiffness Sh of the volumetric truss is defined by
Nh ¼ Sh�̄ where Nh is the hydrostatic stress and �̄ is defined as dL=L:Sh is three times the

bulk modulus. It is convenient to calculate the hydrostatic stiffness of the pin-jointed
volumetric lattice using the method of virtual work. For an applied hydrostatic stress
Nh ¼ 2P=

ffiffiffi
3
p

L2, the member forces in the constituent 1 and constituent 2 members are,
respectively,

F 1 ¼
P

3 sinðb� cÞ
; F2 ¼ �

P

3
ffiffiffi
3
p

1

tanðb� cÞ
�

1

tanðbÞ

� �
, (B.3)
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where b ¼ tan�1
ffiffiffi
2
p

and c ¼ tan�1ðtan y= cos aÞ. The displacement at each tetrahedral
vertex is

u ¼
3‘1F 1dF 1

A1E1dP
þ

3‘2F2dF2

A2E2dP
, (B.4)

for virtual nodal forces dP which induce virtual member forces dF . The hydrostatic
stiffness Sh is then given by

Sh ¼
Pffiffiffi
2
p

Lu
. (B.5)

The mass per unit volume of the unit cell is given by

M ¼
12A1‘1r1 þ 12A2‘2r2

L3=
ffiffiffi
3
p . (B.6)
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.
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A plot of the structural efficiency, P ¼ Shr1=ME1, for a range of skewness (Fig. 17(a)),
reveals that the structure retains approximately 5–10% of the maximum achievable
efficiency, Pmax ¼

1
3
, found for a perfect tetrahedron (y ¼ 0) of constituent 1 members.

Uniaxial stiffness. The pin-jointed volumetric lattice has the same cubic symmetry as the
octet truss, and hence is not mechanically isotropic. The maximum stiffness occurs for
loadings applied normal to a plane containing three of the lattice nodes (Deshpande et al.,
2001a). The corresponding uniaxial stiffness for the low a volumetric lattice has been
calculated by finite elements (using ABAQUS beam elements) for a structure idealized as a
simply supported set of pin-connected truss members loaded at one tetrahedral vertex.
Specifically, the unit cell is loaded at one lattice node in a direction normal to a plane
containing the other three lattice nodes. The loaded node is permitted to displace freely,
while the other three nodes are constrained in, respectively, one, two and three orthogonal
directions (see Fig. 15(b)). These conditions reproduce the symmetries in the complete
volume-filling lattice. The uniaxial modulus Su calculated with this set of loads and
boundary conditions is equivalent to the overall Young’s modulus in this direction. The
trends in uniaxial structural efficiency are plotted in Fig. 17(b). For a perfect tetrahedron
(y ¼ 0 and A2 ¼ 0) the maximum structural efficiency is Pmax ¼

1
5
, which duplicates the

result of Deshpande et al. (2001a) for the octet truss without the members of constituent 2.
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