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Drainage channels are essential components of englacial
and subglacial hydrologic systems. Here we use the M in-
tegral, a path-independent integral of the equations of con-
tinuum mechanics for a class of media, to unify descriptions
of creep closure under a variety of stress states surrounding
drainage channels. The advantage of this approach is that
the M integral around the hydrologic channels is identical to
same integral evaluated in the far-field. In this way, the creep
closure on the channel wall can be determined as a function
of the far-field loading, e.g. involving antiplane shear as well
as overburden pressure. We start by analyzing the axisym-
metric case and show that the Nye solution for the creep clo-
sure of the channels is implied by the path-independence of
the M integral. We then examine the effects of superimposing
antiplane shear. We show that the creep closure of the chan-
nels acts as a perturbation in the far-field, which we explore
analytically and numerically. In this way, the creep closure
of channels can be succinctly written in terms of the path-
independent M integral and understanding the variation with
applied shear is useful for glacial hydrology models.

Nomenclature
A Ice softness
εi j Strain field
Ii Strain rate tensor invariants
M Path-independent integral
Ws Strain energy density
W Flow potential

∗Corresponding author

ui Displacement field
` Dimension, i.e. 2 or 3.
m Homogeneity degree, Ws = σi jεi j/m
n Rheological exponent, i.e. 3 for Glen’s law
p Isotropic ice pressure
vi Velocity field
xi Position field
Di j Strain rate field
σi j Stress field
σ′i j Deviatoric stress field, σi j + pδi j

DE Effective strain rate,
√

Di jDi j/2

τE Effective stress,
√

σ′i jσ
′
i j/2

Ik Invariant of strain rate tensor
a Channel radius
∆p Effective pressure
σ0 Ice overburden pressure, ρigH
ρi Ice density
g Acceleration due to gravity
H Ice thickness
p f Fluid pressure within channel
γ̇ f ar Far-field antiplane strain rate
S Strain rate ratio, γ̇ f ar/(A∆pn)

1 Introduction
Glacial melt water from surface ablation, precipitation,

and internal deformation drains via englacial conduits to the
base of the glacier where it is evacuated through a subglacial
hydrologic network of channels melted into the ice or cav-
ities in the sediments [1, 2, 3]. In this paper, we focus
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on channelized drainage through Röthlisberger channels [2],
where these channels are melted into the ice by the heat dis-
sipation of the turbulently flowing melt water and close by
viscous creep of the surrounding ice. We model these chan-
nels as very long straight conduits that are oriented along
the direction of glacier flow and we use a conserved integral
approach to derive the classical solution found by Nye [4]
for the radial, or in-plane, creep closure velocity of the ice
into the channel. We then show how the creep closure of
the channels increases when we take the downstream shear
present within the ice column, referred to as antiplane shear,
into account, such as in an ice stream shear margin.

Path-independent (conserved) integrals are important
mathematical tools that are often employed in mechanics as
a method of solution to the equations or as a supplemen-
tal constraint. Günther [5], and independently Knowles and
Sternberg [6], introduced a path-independent integral for lin-
ear elastic solid mechanics, which Budiansky and Rice [7]
called the M integral. Using the Noether [8] procedure, the
`-dimensional, linear elastic M integral is the conservation
integral that results from a self-similar scale change by the
infinitesimal factor γ, i.e.

x′α = xα + γxα and u′α(x
′) = uα(x)+

(
1− `

2

)
γuα(x),

That is, coordinates xα and displacements uα are self-
similarly scaled from the reference configuration [9]. In the
framework of linearized kinematics, the strain is equal to the
symmetric part of the displacement ui gradient tensor as εi j =
sym(∂ui/∂x j). We can then write a strain energy density Ws
as a product of stresses σi j and strains εi j by Ws = σi jεi j/2.
The general conserved integral resulting from the Noether
procedure, with yα = x′α− xα and fα(x) = u′α(x

′)−uα(x), is
given by

∮
Γ

{
Wsyαnα +σαknk

[
fα(x)− yβ

∂uα

∂xβ

]}
ds.

where this integral is a line integral for 2-dimensional prob-
lems and a surface integral for 3-dimensional problems. In
this way, the the M integral for a linear elastic material in two
dimensions with linearized kinematics is given as

M =
∮

Γ

{
Wsxαnα−σαknkxβ

∂uα

∂xβ

}
ds.

as written by [6].
Budiansky and Rice [7] extended the earlier definitions

of M to a generalized elastic material with a strain energy
density Ws that is homogeneous of degree m in the strains
εi j, and, therefore, Ws = σi jεi j/m. Unfortunately, the [7]
expression for the generalized M integral contains an error.
Whether it is typographical, conceptual, or due to the print-
ing process is unknown. He and Hutchinson [10] give a cor-
rect expression (although without derivation) for the three-
dimensional generalized M integral in a different geometry

than used here or in [7]: a closed 3-D void or flat crack
of axially symmetric shape, such that stresses vary with z
and

√
x2 + y2. Rice [9] gives the correct Noether invariant

transformation to generate the `-dimensional M integral for
a power law solid, although, subsequently, only writes the
expression of the M integral for the linear (m = 2) material
in two dimensions. To set the record straight, the generalized
M integral in two dimensions with combined in-plane and
antiplane straining in the y-z plane, and with void aligned in
the x direction, is

M =
∮

Γ

{
Wsxknk +σiknk

[(
m−2

m

)
ui− x j

∂ui

∂x j

]}
ds, (1)

where ni is the unit outer normal to the closed contour Γ

and s is arc length anti-clockwise around the path, such
that n1ds = dx2 and n2ds = −dx1, where the tensor sub-
scripts correspond as (x,y,z) = (x1,x2,x3) and (u,v,w) =
(u1,u2,u3). Figure 1 shows the domain, the coordinate sys-
tem, and a path of integration about a void.

The generalized definition of M for a power-law nonlin-
ear elastic solid is exactly equivalent to the definition for a
power-law nonlinear viscous fluid, where the displacement
ui is replaced by the velocity vi, and the strain εi j by the
strain rate Di j [11]. The strain rate is the symmetric part of
the velocity gradient tensor, as Di j = sym(∂vi/∂x j). Under
the definition for a power-law viscous fluid, the elastic strain
energy density Ws is a replaced by a function called the flow
potential W . Just as dWs = σi jdDi j is an exact differential in
generalised elasticity, dW is also an exact differential, satis-
fying dW = σiidDi j. From here on, we will use the notation
related to the flow of a viscous fluid. This change of notation
and extension to viscous fluids allow us to apply the M inte-
gral to the flow of ice in glaciers. In the notation of viscous
fluids, the 2-dimensional M integral is written as

M =
∮

Γ

{
Wxknk +σiknk

[(
m−2

m

)
vi− x j

∂vi

∂x j

]}
ds. (2)

We include a proof of the path independence of Equation (2)
in appendix A.

The flow potential W for a viscous fluid is given as

∂W
∂Di j

= σi j + pδi j, W =
1
m

σi jDi j, and dW = σi jdDi j,

where p (= −σkk/3) is the isotropic pressure (understood
here as a Lagrange multiplier to enforce mass conservation,
εkk = 0) and dW is an exact differential. The strain rates are
defined in terms of derivatives of the velocity vi as

Di j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
with

∂vk

∂xk
= 0,

where the first condition shows that Di j is symmetric and by
the second condition (mass conservation for an incompress-
ible substance) Di j is trace free.
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Fig. 1. Schematic of the path-independent M integral around a
void. The path of integration is Γ and the vector normal to this in-
tegration path is ~n. The down glacier component is x which points
out of the page, i.e. antiplane, the in-plane coordinates are y (across
glacier) and z (depth).

1.1 Ice Rheology
Here we describe how the rheology sets the value for the

parameter m. In glaciology, a commonly assumed rheology
is Glen’s law,

DE = Aτ
n
E , (3)

where DE is a function of the second invariant of the strain
rate tensor, i.e. DE =

√
Di jDi j/2, τE is defined in the same

way for the deviatoric stress tensor σ′i j = σi j + pδi j, and the
subscript E stands for effective. The two parameters are A,
the ice softness, and n, the rheological exponent. The stan-
dard value used in glaciology is n = 3 and is called Glen’s
law, which is appropriate for the typical values of stress and
strain rate encountered in the field [12]. Now relating devia-
toric stress and strain rate tensors using Equation (3) implies
that

Di j = Aτ
n−1
E (σi j + pδi j) . (4)

Using this rheology the flow potential W can be determined
as

W =
∫

σi jdDi j =
n

n+1
σi jDi j =

1
m

σi jDi j,

and, thus, m = 1+ 1/n. From here on we will use the rhe-
ological exponent n instead of m; for a Newtonian viscous
fluid (or in linear elasticity), n = 1 and, therefore, m = 2, so
the term proportional to vi in Equation (2) will disappear.

In appendix B we show the general class of incompress-
ible viscous fluids for which a flow potential W exists, which
is required for the M integral. All purely viscous incompress-
ible fluids fall into the general class of Reiner-Rivlin fluids,
which have a rheology given by

σi j =−pδi j +φ1(I2, I3)Di j +φ2(I2, I3)DinDn j,

where Ik is the kth invariant of the tensor Di j [13]. For a
three-dimensional flow, the three invariants are

I1 = Dkk, I2 =
1
2

DlmDml , I3 =
1
3

DlmDmnDnl .

For a fluid that is incompressible,

I1 = 0.

Truesdell and Noll [14] assert that there is little exper-
imental evidence for fluids with φ2 6= 0. This assertion is
based on Markovitz and Williamson [15], who find the poly-
meric data collected by [16] to be incompatible with φ2 6= 0.
In glaciology, it is not fully resolved whether Glen’s law
should be expanded to include a dependence on I3 or φ2 6= 0.
Glen [17] describes ice as a Reiner-Rivlin fluid and con-
cludes that the experimental data show sufficient scatter to
warrant further study. Baker [18] reviews the subsequent ex-
periments in determining the effects of the third invariant on
the flow of ice and compares the results with his own ex-
perimental set-up, which show that there is a significant de-
pendence on I3. Still there appears to be little evidence that
φ2 6= 0 in ice. Such a fluid, as [17] notes, would to susceptible
to swelling or contraction in the direction perpendicular to
the plane of shear. Schoof and Clarke [19] exploit this gen-
eration of deviatoric normal stress and use a Reiner-Rivlin
fluid to model subglacial flutes by way of a secondary trans-
verse flow. Here we show that only Reiner-Rivlin fluids that
are independent of I3 with φ2 = 0 have a flow potential W ,
unless

∂φ1

∂I3
=

∂φ2

∂I2
.

Therefore, our analysis primarily applies for ice modeled us-
ing a power-law rheology for ice, such as Glen’s law.

2 Analysis
To analyze the creep closure of an drainage channel, it

is convenient to write M in polar coordinates and adopt a



circular path of radius r (ds = rdθ) as

M =
∫ 2π

0

{
Wr−

(
n−1
n+1

)
[σrrvr +σrθvθ +σrxvx]

−
[

σrr
∂vr

∂r
+σrθ

∂vθ

∂r
+σrx

∂vx

∂r

]
r
}

rdθ. (5)

In this expression there are two types of terms: in-plane and
antiplane. The in-plane terms are those in the r and θ direc-
tion, such as vr, vθ, and σrθ. The antiplane terms, quantities
with a subscript x, represent motion into and out of page as a
function of only the in-plane coordinates (using the standard
glaciology coordinate system with z vertical, y across glacier,
and x down glacier). We consider a very long channel with
constant ice thickness and, in this way, we can reduce a three
dimensional problem to two dimensions where the quantities
are homogeneous along x.

2.1 Nye solution
Nye [4] derived the rate of closure of a circular channel

in a Glen rheology subject to a stress σrr(r = a) =−pw (wa-
ter pressure) applied at the channel and the stress σrr(r →
∞) = −σ0 = −ρigH (overburden ice pressure for a glacier
of height H and density ρi) far away. By adding a uniform
tensile stress σ0 to the mass of ice, we transform our prob-
lem and apply a tensile stress σrr(r = a) = σ0− pw = ∆p at
the channel wall and a traction free condition at infinity. We
are able to do this without changing the problem because of
incompressibility and the pressure independence of Glen’s
law. Thus, the boundary conditions are

σrr(r = a) = σ0− pw = ∆p and σrr(r→ ∞) = 0.

The set-up for the problem and these conditions can be seen
in Figure 2. What is also evident is that the problem is purely
in-plane and, therefore, we disregard the antiplane terms in
Equation (5). Furthermore, the problem is axisymmetric and
so we can neglect the in-plane shear terms. Hence, we have
the integral

M =
∫ 2π

0

{
Wr2−

(
n−1
n+1

)
σrrvrr−σrr

dvr

dr
r2
}

dθ. (6)

Mass conservation gives that

dvr

dr
+

vr

r
= 0,

and, therefore, we can simplify terms in Equation (6) as

M =
∫ 2π

0

{
Wr2 +

2σrrvr

n+1
r
}

dθ. (7)

r = a r→ ∞

σrr|r=a = ∆p

σrr|r→∞
= 0

~Ur

Fig. 2. Nye problem set-up and boundary conditions. Blue arrows
indicate the creep closure of the ice (~Ur) and the turbulence in the
channel is suggested by the warm colors. (turbulent pipe flow simu-
lation by [20]. photo credit: Noel Fitzpatrick)

For in-plane, axisymmetric motion, the flow potential W can
be written as

W =
2n

n+1
A−

1
n D1+1/n

E =
2n

n+1
A−

1
n

∣∣∣∣dvr

dr

∣∣∣∣1+1/n

.

This can be inserted into Equation (7). Then, using the fact
that M is path independent, we can evaluate two contours:
first, along r = a and, second, around r → ∞. These two
contours are chosen because these are the locations where the
boundary conditions are applied. Starting with the latter, we
can see from mass conservation that dvr/dr→ 0 as r→ ∞.
This means that the flow potential W also decays to zero in
the far-field. Although vrr is a constant as r→ ∞, the stress
σrr(r→ ∞) = 0 (boundary condition) and, therefore, M = 0
as r→ ∞.

Thus, the M integral around the channel must also be
zero. Using the boundary condition σrr(r = a) = ∆p, mass
conservation, and the expression for the flow potential, we
can write Equation (7) as

M =
2a

n+1

∫ 2π

0

{
nA−

1
n |−vr|1+1/n a−1/n +∆pvr

}
dθ = 0.

Now, due to axisymmetry, the integrand must be independent
of θ and is therefore equal to zero. Taking care with the
absolute value term, we can rearrange the integrand to find

vr(a) =−Aa
(

∆p
n

)n

, (8)

which is the Nye solution for the creep closure rate at the
edge of the channel [4, 21].



This analysis can be easily extended to the case where
the outer boundary is finite, i.e. where r = b on the outer
edge in Figure 2. Following the same method, and using
Dθθ = vr/r from geometry and Dθθ =−Drr from mass con-
servation, we have that

M =
2na2

n+1

∫ 2π

0

{
A−

1
n

∣∣∣∣−vr(a)
a

∣∣∣∣1+ 1
n

+
∆pvr(a)

na

}
dθ,

=
2nb2

n+1

∫ 2π

0
A−

1
n

∣∣∣∣−vr(b)
b

∣∣∣∣1+ 1
n

dθ. (9)

Now the M integral around the outer edge of the domain is
no longer zero. Since there is a constant volume flux through
any radius, i.e. 2πrvr = constant, we can related the radial
velocity at vr(r = a) to vr(r = a) as

avr(a) = bvr(b).

Solving for the creep closure rate at the edge of the channel
vr(r = a) using Equation (9), we find that the finite domain
Nye solution is given as

vr(a) =−
Aa

[1− (a/b)2/n]n

(
∆p
n

)n

,

which corroborates [22] and, also, reduces to the standard
result as b→ ∞.

2.2 Antiplane shear
A natural extension for the M integral around an

englacial or subglacial channel is to include antiplane terms.
These are the terms in Equation (5) that include x depen-
dence. In glaciology, the antiplane terms can represent the
shear flow of ice downstream, which is often ignored in the
creep closure of channels [23, 24, 25]. However, the down-
stream flow decreases the effective viscosity of the ice, due
to the fact that Glen’s law is a shear-thinning rheology, and
channels close more quickly than in environments free of an-
tiplane stress. Nye [4] and Glen [26] compare the Nye so-
lution to tunnel closure measurements in the field and find
that some tunnels close much faster than predicted. Thus,
the coupling between the in-plane creep closure and the an-
tiplane motion of the glacier may be important in modeling
subglacial hydrologic systems.

Ice stream shear margins are also examples of where an-
tiplane effects can affect the size of drainage channels. Perol
et al. [27] give theoretical arguments for the existence of sub-
glacial channels beneath ice stream shear margins which is
backed up by observations of running water at the base of the
dormant Kamb ice stream [28]. Figure 3 shows a schematic
for an idealized ice stream shear margin, where the veloc-
ity transitions from the fast flowing centerline to the nearly
stagnant ridge. In the margin we have schematically drawn a
Röthlisberger [2] subglacial channel. Meyer et al. [29] show

α

R Channel Ice StreamRidge

x

y
z

Fig. 3. Schemcatic for an idealized ice stream shear margin with a
Röthlisberger [2] subglacial channel. Surface ice velocity increases
away from the margin and is nearly stagnant in the ridge (adapted
from [29]).

that the shear in the margin leads to faster closure velocities
of drainage channels than would be predicted by the Nye so-
lution, due to a decrease in effective viscosity from adding
the antiplane shear.

The problem set-up for including antiplane shear fol-
lows Figure 2 with the additional boundary conditions

σrx|r=a = 0 and vx|r→∞
= γ̇ f arr cos(θ), (10)

which define the antiplane field. Using these boundary con-
ditions, we evaluate the M integral around two contours: the
channel wall r = a as well as in the far-field r→ ∞.

2.2.1 Evaluation of the M integral at the channel
We start by evaluating M at the channel. We cancel the

in-plane shear terms (e.g. σrθ) and antiplane terms in Equa-
tion (5), due to the boundary conditions in Equation (10).
Thus, we arrive at

M =
∫ 2π

0

{
Wr2−

(
n−1
n+1

)
σrrvrr−σrr

∂vr

∂r
r2
}

dθ.

Using mass conservation, we can write the radial velocity
derivative as

∂vr

∂r
=−vr

r
− 1

r
∂vθ

∂θ
.

The second term in this expression can be neglected because
it will always be zero when integrated around a closed loop
for a constant boundary stress. If we insert the effective pres-
sure ∆p for the radial stress, we find that

M =
∫ 2π

0

{
Wa2 +

2∆p
n+1

vra
}

dθ, (11)



which is nearly identical to Equation (7) in symbols. The dif-
ference is in the value of W . Along r = a with superimposed
antiplane shear, we have that

Wr=a =
2n

n+1
A−1/nD1+1/n

E

∣∣∣∣
r=a

,

=
2n

n+1
A−

1
n

√(∂vr

∂r

)2

+

(
1
2a

∂vx

∂θ

)2
1+1/n

,

where the shear term ∂vx/∂r was neglected due to the bound-
ary condition specified in Equation (10). Inserting this ex-
pression for Wr=a into Equation (11), we find that

M =
2a2∆p
n+1

∫ 2π

0

{
nA−

1
n

∆p

[(
∂vr

∂r

)2

+

(
1
2a

∂vx

∂θ

)2
] n+1

2n

+
vr

a

}
dθ. (12)

2.2.2 Evaluation of M in the far-field
Following the derivation of the Nye solution, we seek to

determine the value of M by evaluating the contour as r→∞.
Starting from Equation (5), we now cancel all the in-plane
terms, as they must decay as r→ ∞. This leaves us with

M =
∫ 2π

0

{
Wr2−

(
n−1
n+1

)
σrxvxr−σrx

∂vx

∂r
r2
}

dθ.

We star by assuming that the antiplane fields are given by the
boundary conditions, we have that

vx = γ̇ f arr cos(θ) and σrx = A−1/n(γ̇ f ar/2)1/n cos(θ),

which is a state of constant strain rate. Inserting these ex-
pressions into M gives

M =
∫ 2π

0

{
W − 2n

n+1
(2A)−1/n

γ̇
1+1/n
f ar cos2(θ)

}
r2 dθ.

Evaluating W as r→ ∞ gives

W |r→∞
=

2n
n+1

A−1/n (γ̇ f ar/2)1+1/n .

Thus, the integral for M as r→ ∞ reduces to

M =
n

n+1
(2A)−1/n

γ̇
1+1/n
f ar

∫ 2π

0

{
1−2cos2(θ)

}
r2 dθ = 0,

using the half-angle formula for cos(θ). In order for M to
be finite, this integral must be zero because of the r2 term in

the integrand. However, this integral does not represent the
full far-field contributions to M. The boundary conditions
represent a constant strain rate, a situation where M = 0 and
this evaluation of M in the far-field disregards the coupling
between the antiplane and in-plane motion. Therefore, we
must retain a small perturbation away from a constant back-
ground strain rate.

2.2.3 Far-field perturbation
In the far-field, we consider a perturbation from the con-

stant antiplane strain rate boundary condition. We write the
far-field velocities in Cartesian coordinates as

vx = γ̇ f ary+εh(y,z), vy = εg(y,z), and vz = ε f (y,z).

Here ε is an unknown small parameter and f (y,z), g(y,z),
and h(y,z) are unknown functions. To first order in ε, the
effective strain rate is given as

DE =
γ̇ f ar

2

√
1+

2ε

γ̇ f ar

∂h
∂y

+O(ε2).

Consequently, the antiplane problem in the far-field is cou-
pled to the in-plane motions through ε and we are able to
ignore the velocities v and w. Thus, we concentrate on writ-
ing an equation for h(y,z). The antiplane stresses are given
by

σyx = A−1/nD(1−n)/n
E

(
γ̇ f ar

2
+

ε

2
∂h
∂y

)
σzx = A−1/nD(1−n)/n

E
ε

2
∂h
∂z

.

Inserting the effective strain rate and linearizing the stress
about ε gives

σyx =

[
A

2γ̇ f ar

]1/n(
1+

ε

nγ̇ f ar

∂h
∂y

)
,

σzx =

[
A

2γ̇ f ar

]1/n
ε

γ̇ f ar

∂h
∂z

.

We then insert the linearized stress into the force balance
equation

∂σxy

∂y
+

∂σyz

∂z
= 0,

and we find that

1
n

∂2h
∂y2 +

∂2h
∂z2 = 0.



By making the transformation, η =
√

ny, we can write this
equation as

∇̂
2h = 0,

i.e. Laplace’s equation with ∇̂ = (∂η,∂z). If we return to
polar coordinates, now with

r̂ =
√

η2 + z2 and θ̂ = arctan
(

z
η

)
,

we can write

h = r̂λ f (θ̂).

Inserting this ansatz into Laplace’s equation for h, we find
that

f = Bcos(kθ̂) and λ =±k,

where k is some unknown integer. The term proportional
to sin(kθ̂) can be ignored due to symmetry and the positive
solutions for λ can be disregarded as they are singular as r→
∞. The term that decays the slowest is k =−1 and, therefore,
we have

h =
B
r̂

cos(θ̂) =
B
r

 cos
(

arctan
(

tan(θ)√
n

))
√

1+(n−1)cos2(θ)

 , (13)

which we refer to as

h(r,θ) =
B
r

χ(θ).

Now inserting the perturbation ansatz h = εrλχ(θ) into the
M integral in the far-field, we find that

M = ε

[
γ̇ f ar

2A

]1/n

rλ+1
∫ 2π

0

{
λcos(θ)χ− sin(θ)χ′

}
−2(n−1)

n+1

[
λcos3(θ)χ− 1

2
cos(θ)sin(2θ)χ′

]
−n−1

n+1
(λ+1)cos(θ)χ+2λcos(θ)χ dθ,

where we have incorporated the unknown factor B into ε as
the unknown far-field amplitude. We know that λ =−1 and,
therefore, we have that

M = ε

[
γ̇ f ar

2A

]1/n ∫ 2π

0

2(n−1)
n+1

[
cos3(θ)χ

+sin(θ)cos2(θ)χ′
]
+2cos(θ)χ dθ,

which is of the form

M = ε

[
γ̇ f ar

2A

]1/n

IM(n),

where IM(n) is given by

∫ 2π

0

2(n−1)
n+1

[
cos3(θ)χ +sin(θ)cos2(θ)χ′

]
+2cos(θ)χ dθ,

Inserting our expression for χ(θ) from Equation (13), we
can integrate over θ numerical to find IM(n). For n = 3, i.e.
Glen’s law for ice, we find that

I(3) =−0.113 . . .

This integral should be negative because in vx = γ̇ f ary +
εh(y,z) the antiplane velocity should be less than the bound-
ary value as it approaches the edge.

Now, to determine the far-field amplitude factor ε, we
need to know the behavior of vz for small r, which requires
solving the fully coupled (in-plane and antiplane) PDE. Si-
multaneously, the path independence of the M integral relates
the perturbation integral in the far-field to the integral around
the channel, i.e. Equation (12). This gives

M =
2a2∆p
n+1

∫ 2π

0

{
nA−

1
n

∆p

[(
∂vr

∂r

)2

+

(
1

2a
∂vx

∂θ

)2
] n+1

2n

+
vr

a

}
dθ.

= ε

[
γ̇ f ar

2A

]1/n

IM(n). (14)

Thus, the perturbation amplitude ε is related to the unknown
strain rates at the edge of the channel. Furthermore, we can
see that that if vx = 0 (or if vx is a function of r only), then
this integral reduces to the integral for the Nye solution and
ε = 0.

2.2.4 Nondimensional equations and numerics
We now write the expression for M in far-field nondi-

mensionally. The natural lengthscale is the channel radius
and, therefore, we write r = aR, where R is the nondimen-
sional radial coordinate (using capital letters to denote nondi-
mensional variables). We proceed by using the boundary
conditions to scale the stress and velocity. For the in-plane
components of stress, ∆p is a sensible scaling. This leads to
a scaling for the in-plane velocity, by dimensional arguments
alone, that is reminiscent of the Nye solution (Equation (8)),
i.e. vr = Aa∆pnVr. From the antiplane boundary conditions
we can see that vx = γ̇ f araVx. It is evident immediately that
the in-plane and antiplane velocities do not scale in the same
manner and, thus, a logical control parameter for the system
is their ratio S, which is

S =
γ̇ f ar

A∆pn ,
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Fig. 4. Numerical evaluation of M at the edge of the channel Minner
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lead to negative values for Minner when S is small, therefore these
simulations are omitted but yield absolute values close to Mouter .

and represents the importance of antiplane shearing to in-
plane creep closure [29]. Using S we can rewrite the an-
tiplane velocity as vx = Aa∆pnSVx.

Using these scalings we can rewrite M as

M = a2A∆pn+1M̂,

where we immediately drop the variable hat. Thus, Equation
14 gives

M =
2

n+1

∫ 2π

0

{
n

[(
∂Vr

∂R

)2

+
S2

4

(
∂Vx

∂θ

)2
] n+1

2n

+Vr

}
dθ,

=
ε

a2A∆pn

(
S
2

)1/n

IM(n). (15)

When the far-field of the domain is dominated by anitplane
shear, we have that S� 1 and the appropriate scaling for ε is

ε = κγ̇ f ara2,

where κ is now a constant related to the unknown strain rates
at the edge of the channel. When S� 1, we scale ε using
the Nye strain rate as ε = κA∆pna2. From this definition of
ε, we can see that M in the far-field is either

M =
κIM(n)

21/n S1/n (S� 1) or
κIM(n)

21/n S(n+1)/n (S� 1).

Although we cannot solve for the constant κ analyti-
cally, we can its value by numerical simulations. We im-
plement the numerical method described in Meyer et al. [29]

in the existing finite element software COMSOL [30]. These
simulations allows us to compute the value of M as a func-
tion of the strainrate ratio S, which is shown in figure 4. The
two regimes, where M scales as M ∼ S1/n for S � 1 and
M ∼ S1/n for S� 1 are clearly visible. The best-fit value of
κ determined from the simulations is given by

κ =−2.45 (S� 1) or κ =−86.97 (S� 1).

These results show that as amount of antiplane shear with
respect to in-plane shear is increased, as measured by an in-
crease in the strain rate ratio S, the M integral also increases.
This is due to a simultaneous increase in both the creep clo-
sure velocity Vr as well as the antiplane straining along the
edge of the channel. The increase in channel closure veloc-
ity is due to a decrease in effective viscosity, as described in
Meyer et al. [29].

We now describe the evolution of the creep closure ve-
locity as a function of S. When there is very little antiplane
motion as compared to in-plane straining, the creep closure
velocity is given by the Nye solution, Equation (8), which is
written nondimensionally as

Vr =−
n−n

R
.

When the deformation is dominated by antiplane motion, i.e.
S� 1, the effective strain rate scales as εE ∼ S. The radial
force balance gives that the averaged creep closure velocity
around the channel is given as

Vr ∼−S(n−1)/n, (16)

where more details are provided in [29]. In figure 5, we show
the two limits of the creep closure velocity: for S� 1, the
simulations approach the Nye solution and for S � 1, we
verify the scaling given in Equation (16).

This increase in creep closure velocity due to the ad-
dition of antiplane shear is consistent with the increase in
tunnel closure velocities observed by Nye [4] and Glen [26]
due to changes in the glacier stress state. Furthermore, the
increase in creep closure velocity due to antiplane straining
is analogous to the Rice and Tracey [31] effect where the
growth of voids is strongly enhanced by triaxiality. Intu-
itively, the in-plane creep closure velocity for large S grows
less than linearly with S as the antiplane field only influences
the in-plane motion through the viscosity. The consequence
is that the dominant balance for large S in Equation (15) is
still between the perturbation in the far field and the antiplane
shear at the channel wall.

3 Concluding remarks
In this paper, we apply the path-independent M integral

to the creep of ice around subglacial and englacial channels.
We correct a longstanding error in the implementation of the
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Fig. 5. Numerical simulations showing the nondimensional channel
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M integral to problems in generalized elasticity and non-
Newtonian power-law fluids. We then use this integral to
derive the Nye solution for the creep closure of an englacial
or subglacial channel. Building on this solution, we consider
applications where the flow of ice is not entirely in-plane and
axisymmetric but includes components of flow down glacier
(i.e. parallel to the channel axis). Using a simple far-field
shear as a representation for ice stream shear margins, we
find that an in-plane perturbation exists in the far-field. We
solve for the perturbation explicitly, up to a constant factor
ε. Then, using the M integral, we are able to relate this per-
turbation back to the in-plane strain rates at the channel. We
show that the factor ε exhibits two scaling regimes based on
the size of the strain rate ratio S≡ γ̇ f ar/(A∆pn): for small an-
tiplane velocity relative to in-plane creep closure, ε is a con-
stant and the M integral approaches zero as M∼ S1/n for van-
ishingly small S. In the other limit, where antiplane strain-
ing dominates, M grows as M ∼ S(n+1)/n. These two scaling
regimes are also present in creep closure velocity where for
small S we retrieve the Nye solution and for S� 1, the clo-
sure velocity increases as Vr ∼ −S(n−1)/n due to a decrease
in ice viscosity. Thus, M provides a succinct description of
the processes affecting channel closure with superimposed
antiplane shear.
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Appendix A: Proof of the path independence of M

Here we start with the two dimensional generalized M
integral as written in Equation (2) with m = 1+1/n, i.e.

M =
∮

Γ

{
Wxknk−σiknk

[(
n−1
n+1

)
vi + x j

∂vi

∂x j

]}
ds,

where Γ is a closed path, as shown in Figure 1. We use the
divergence theorem to write this integral as

M =
∮

Ω

∂

∂xk

(
Wxk−σik

[(
n−1
n+1

)
vi + x j

∂vi

∂x j

])
dA.

The M integral is path independent if the terms inside the
area integral are zero. That is, if

∂

∂xk

(
Wxk−σik

[(
n−1
n+1

)
vi + x j

∂vi

∂x j

])
= 0.

Taking the derivatives we find that

∂W
∂xk

xk +W
∂xk

∂xk
− ∂σik

∂xk

[(
n−1
n+1

)
vi + x j

∂vi

∂x j

]
−σik

[(
n−1
n+1

)
∂vi

∂xk
+

∂x j

∂xk

∂vi

∂x j
+ x j

∂2vi

∂x j∂xk

]
= 0. (17)

The equilibrium equations are

∂σik

∂xk
= 0,

which allow us to cancel the third group of terms in Equation
(17) and, therefore, write

∂W
∂xk

xk+W
∂xk

∂xk
−σik

[(
n−1
n+1

)
∂vi

∂xk
+

∂x j

∂xk

∂vi

∂x j
+ x j

∂2vi

∂x j∂xk

]
= 0.

The derivatives of coordinates lead to Kronecker delta func-
tions as

∂xi

∂x j
= δi j,

where in two dimensions, δkk = 2 and thus,

∂W
∂xk

xk+2W−σik

[(
n−1
n+1

)
∂vi

∂xk
+δ jk

∂vi

∂x j
+ x j

∂2vi

∂x j∂xk

]
= 0.

We can simplify this expression slightly by multiplying
through by the stress and combining like terms as

∂W
∂xk

xk +2W − 2n
n+1

σik
∂vi

∂xk
−σikx j

∂2vi

∂x j∂xk
= 0.

The strain rate energy density function W can be related to
the stress and strain rates as

W =
n

n+1
σi jDi j =

n
n+1

σi j
∂vi

∂x j
.



This allows us to write

∂W
∂xk

xk +2W −2W −σi j
∂2vi

∂xk∂x j
xk = 0.

Canceling the 2W terms, we can use the chain rule to relate
spatial derivatives on W to derivatives of strain as

∂W
∂Di j

∂Di j

∂xk
xk−σi j

∂2vi

∂xk∂x j
xk = 0.

If W is written to depend symmetrically on Di j, with con-
straint Dkk = 0, then

σi j + pδi j =
∂W
∂Di j

,

and thus, the integrand is

σi j
∂Di j

∂xk
xk−σi j

∂2vi

∂xk∂x j
xk = 0,

where the isotropic components of the stress tensor cancel
when multiplied by ∂Di j/∂xk because ∂Dll/∂xk = 0. Now,
using the symmetry of the stress tensor, we have that

σi j
∂2vi

∂xk∂x j
xk−σi j

∂2vi

∂xk∂x j
xk = 0,

which is zero. Thus, we have shown that the M integral,
written as

M =
∮

Γ

{
Wxknk−σiknk

[(
n−1
n+1

)
vi + x j

∂vi

∂x j

]}
ds,

is path independent.

Appendix B: Flow potential for a Reiner-Rivlin fluid
A Reiner-Rivlin fluid is an incompressible fluid (I1 =

Dkk = 0) for which

σi j =−pδi j +φ1(I2, I3)Di j +φ2(I2, I3)DinDn j, (18)

where σi j is the stress tensor, Di j is the symmetric part of the
velocity gradient tensor, p is the isotropic pressure, and Ik is
the kth invariant of the tensor Di j [13]. By writing the stress
as an isotropic matrix function of Di j, assuming a symmetric
dependence on Di j and D ji, and expanding this function of
as a power series, we can use the Cayley-Hamilton theorem
to show that the stress is a quadratic polynomial in Di j with
coefficients that are functions of the invariants of Di j. For an

incompressible fluid with isotropic pressure, this reduces to
Equation (18).

Here we ask what is the most general fluid rheology that
still posses a flow potential, i.e. where dW is a perfect differ-
ential of σi jdDi j. This requires that

∂σi j

∂Dkl
=

∂σkl

∂Di j
, (19)

which is called Maxwell reciprocity. For an incompressible
fluid, we include pressure as a Lagrange multiplier to enforce
mass conservation, and write that

∂

(
σ′i j + pδi j

)
∂Dkl

=
∂
(
σ′kl + pδi j

)
∂Di j

,

where the isotropic pressure p is independent of the strain
rate. This shows that the deviatoric stress also satisfies
Maxwell reciprocity.

If we insert the Reiner-Rivlin fluid rheology into Equa-
tion (19), we find that

(
∂φ1

∂I3
− ∂φ2

∂I2

)
(Di jDknDnl−DklDinDn j) = 0.

Now since Di jDknDnl 6= DklDinDn j for all i, j, k, and l, the
only way for this condition to be satisfied for all flows is for

∂φ1

∂I3
=

∂φ2

∂I2
. (20)

This condition also arises from an equality requirement
of the mixed partial derivatives of the flow potential W . If we
start with the invariants of Di j, given as

I1 = Dkk, I2 =
1
2

DlmDml , I3 =
1
3

DlmDmnDnl ,

we can write the relationship between the flow potential and
the stress as

σi j + pδi j =
∂W
∂Di j

=
∂W
∂I2

∂I2

∂Di j
+

∂W
∂I3

∂I3

∂Di j
. (21)

Now using the facts that

∂Di j

∂Dkl
= δikδ jl ,

∂I2

∂Dkl
= Dkl and

∂I3

∂Dkl
= DknDnl ,

we have that

σi j + pδi j =
∂W
∂Di j

=
∂W
∂I2

Di j +
∂W
∂I3

DinDn j. (22)



from which we can see that Equation (22) is Reiner-Rivlin
fluid with

φ1 =
∂W
∂I2

and φ2 =
∂W
∂I3

.

Thus, a requirement for W to exist, and to be a perfect dif-
ferential of σi jdDi j as is required to write Equation (21), is
that

∂2W
∂I2∂I3

=
∂2W

∂I3∂I2
,

which implies that

∂φ1

∂I3
=

∂φ2

∂I2
,

just as was found in Equation (20).
A class of Reiner-Rivlin fluids that always satisfies the

condition in Equation (20) are those for which φ1 is a func-
tion of I2 solely and φ2 = 0. This is the rheological structure
of Glen’s law in glaciology and, therefore, a flow potential
W will always exist.
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