
ARTICLE IN PRESS
0022-5096/$ - se

doi:10.1016/j.jm

�Correspond
E-mail addr
Journal of the Mechanics and Physics of Solids 56 (2008) 215–229

www.elsevier.com/locate/jmps
Mode III effects on interface delamination

Viggo Tvergaarda,�, John W. Hutchinsonb

aDepartment of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
bDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Received 19 December 2006; received in revised form 24 April 2007; accepted 25 April 2007
Abstract

For crack growth along an interface between dissimilar materials the effect of combined modes I, II and III at the crack-

tip is investigated. First, in order to highlight situations where crack growth is affected by a mode III contribution,

examples of material configurations are discussed where mode III has an effect. Subsequently, the focus is on crack growth

along an interface between an elastic-plastic solid and an elastic substrate. The analyses are carried out for conditions of

small-scale yielding, with the fracture process at the interface represented by a cohesive zone model. Due to the mismatch

of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and this

solution is applied as boundary conditions on the outer edge of the region analyzed. For several combinations of modes I,

II and III crack growth resistance curves are calculated numerically in order to determine the steady-state fracture

toughness. For given values of KI and K II the minimum fracture toughness corresponds to K III ¼ 0 in most of the range

analyzed, but there is a range where the minimum occurs for a nonzero value of K III.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The fact that many interfaces are significantly tougher in the presence of a mode II component of stress
intensity is well established. Such behavior is represented by an interface cracking criterion of the form

G ¼ GCðcÞ with c ¼ tan�1ðK II=K IÞ, (1)

where G is the energy release rate for crack advance in the interface, K I and K II are the mode I and mode II
stress intensity factors (Fig. 1), and GCðcÞ is the mode dependent interface toughness. Enhanced mode II
toughness is associated with a function GCðcÞ which increases with jcj, and a wide variety of interfaces have
been observed whose toughness increases under increasing mode II. The most complete experimental
measurements have been for epoxy–glass interfaces by Liechti and Chai (1992) and Banks-Sills et al. (1999)
where the toughness for interface intensities approaching mode II is about 10 times that for mode I.
The physical origin of a mode II toughness enhancement depends on the interface and the materials it joins.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Conventions for three-mode stress intensities.
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For brittle materials, interface roughness can produce mode II interference between crack faces immediately
behind the crack-tip, shielding the tip (Evans and Hutchinson, 1989). When either, or both, of the materials
joined at the interface experience plastic deformation near the crack-tip, the mode II component produces
relatively more plastic dissipation than the mode I component, giving rise to increasing toughness with
increasing jcj (Tvergaard and Hutchinson, 1993). If the materials are joined by a thin adhesive layer in the
interface, the inelastic deformation of the adhesive layer itself can be mode dependent Yang and Thouless (2001).

There is little direct experimental evidence of the role of the mode III component of stress intensity in
interface fracture. One exception is the cut test (Jensen et al., 1990) in which a thin film of polyimide bonded to
a glass substrate and subject to an equi-biaxial tensile stress is cut along a straight line down to the substrate. If
an interface crack spreads from the cut, one possibility is that it arrests in the shape of the delamination shown
in Fig. 2. The crack edge experiences all three modes of stress intensity, and Jensen et al. showed that the
arrested shape is quite sensitive to the manner in which the interface toughness depends on the mode III
component. Mode mixity in thin film debond problems have also been considered by Chai (1990).

As preface to discussing this dependence and in preparation for the general discussion in this paper, the
three-mode interface toughness criterion proposed by Jensen et al. (1990) is introduced. At any point along the
edge of a three-dimensional interface crack, the energy release rate is

G ¼
1

2
ð1� b2Þ
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þ
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� �
ðK2
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� �
K2
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where E, m and n are Young’s modulus, shear modulus and Poisson’s ratio of the isotropic solid on the side of
the interface as labeled by the subscript. The second Dundurs’ parameter, b, is given in the next section. If
b ¼ 0, or if one neglects b2 compared to 1, the above relation can be written as

G ¼ GI þ GII þ GIII (3)

with
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The mixed mode criterion (1) can be generalized to include mode III as

G ¼ GCðc;jÞ, (5)

where c and j are the Euler angles in K-space shown in Fig. 1:

c ¼ tan�1ðK II=K IÞ,
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Fig. 2. Delaminations at the interface from a straight cut through a polyimide film bonded to a glass substrate (Jensen et al., 1990).
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The phenomenological three-mode interface fracture criterion used more than any other to date because of
its mathematical simplicity is

GI þ kIIGII þ kIIIGIII ¼ GIC, (7)

where GIC is the mode I toughness and GIC=kII and GIC=kIII are the corresponding toughness values for pure
mode II and III. The parameters, kII and kIII, adjust the mode dependence. Criterion (7) can also be expressed
as (5) with

GCðc;jÞ ¼ GIC½1þ ðkII � 1Þsin2 c sin2 jþ ðkIII � 1Þcos2 j��1. (8)

The cut test: The delamination shape of the polyimide/glass interface induced by the cut in Fig. 2 was closely
reproduced with kIII ¼ 0:3 (Jensen et al., 1990) corresponding to a mode III toughness about three times the
mode I toughness for this interface.

Delamination orientation of bi-axially stressed thin films: With reference to Fig. 3, consider a thin isotropic
elastic film bonded to a thick isotropic elastic substrate and subject to uniform in-plane stresses, s1 and s2.
Consider a straight delamination crack advancing in the film/substrate interface with orientation y. For most
orientations, the energy release rate has all three-mode components given by

GI þ GII ¼
ð1� n2Þh

8E
½ðs1 þ s2Þ

2
þ 2 cos 2yðs21 � s22Þ þ cos2 2yðs1 � s2Þ

2
�,

GIII ¼
ð1þ nÞh

4E
sin2 2yðs1 � s2Þ

2, (9)

where E and n are Young’s modulus and Poisson’s ratio of the film and h is its thickness. If the stress
component in the bonded film perpendicular to the crack front is tensile, i.e., s1 þ s24ðs1 � s2Þ cos 2y, the
mode I stress intensity factor is positive, the crack-tip is open, and c ¼ tan�1ðK II=K IÞ is given by plane strain
solutions (Hutchinson and Suo, 1992). If this stress component is compressive, the crack-tip is closed ðK I ¼ 0Þ
and (9) is only valid if there is no frictional interaction between the crack faces. A normalized energy release
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Fig. 3. Orientation dependence of the energy release rate of the delamination crack front for three in-plane biaxial stress states.
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can be written as

G

½ð1� n2Þs21h=ð2EÞ�
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with r ¼ s2=s1.
For s140, the normalized energy release rate is plotted as a function of the delamination orientation in

Fig. 3 for three stress states: uniaxial tension, r ¼ 0; equi-biaxial tension, r ¼ 1; and tension/compression with
r ¼ �1. All of these stress states can be achieved by combinations of residual or thermal stresses and
superimposed stresses induced by overall deformation of the film/substrate system, as illustrated by a series of
experiments conducted by Parry et al. (2004). There is no orientation dependence of G for equi-biaxial
stressing (the curve for r ¼ 1 is the horizontal line through 1 on the vertical scale). The surprising feature in
Fig. 3 is the existence of the large maximum energy release rate for the tension/compression state ðr ¼ �1Þ at
the orientation, y ¼ 45�, corresponding to a pure mode III delamination crack. For jyjo45�, K I40 and the
crack-tip is open, while for 45�oyo135�, the crack-tip is closed and K I ¼ 0.

The critical orientation of the delamination of a film in the tension/compression state ðr ¼ �1Þ provides an
interesting illustration of the role of the mode III component in interface fracture. By definition, the critical
orientation is the orientation in which the interface fracture criterion would first be attained if the stresses were
increased monotonically and proportionally (with r ¼ �1). If the interface toughness is mode-independent
with G ¼ GIC ðkII ¼ kIII ¼ 1Þ, the critical orientation would be y ¼ 45�. At the other extreme, if the interface is
assumed to be extremely tough in mode III with kIII51, the critical orientation would be y ¼ 0�. To determine
the critical orientation for arbitrary kII and kIII, impose (5) with GCðc;jÞ given by (8). From (6) and (9),
tanj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ=2

p
cot 2y. It can then be shown that the critical orientation, yC, is either 0� or 45� according

to
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as mapped in Fig. 4 for the case of no elastic mismatch between film and substrate which has c ¼ 52:1�

(Hutchinson and Suo, 1992). It should be possible to make use of the strong orientation dependence of the
delamination of films in the tension/compression state to infer information on kIII by observation of behavior
for specific interfaces.

Critical conditions for propagation of corner interface flaws of thin films

Begley and Ambrico (2001) determined the energy release rate and the mode mix along the edge of a circular
interface crack at the corner of the film/substrate system shown in Fig. 5. They restricted attention to systems
whose second Dundurs’ parameter can be neglected ðb ¼ 0Þ. The film is stressed by thermal expansion
mismatch with the substrate such that well away from the edge the state of stress in the interior of the film is
equi-biaxial tension, s. The energy release rate, G, at the centerline of the semi-circular crack and at one film
thickness, h, from the free surface is plotted in Fig. 5 as a function of the normalized crack radius, a=h, for
several values of the first Dundurs’ parameter. The distribution of the mode mix around the crack edge is also
plotted for two values of a=h (K I is positive around the entire circumference of the crack if s40). Two features
stand out. The energy release rate is greatest in the vicinity where the crack intersects the free surface, and the
mode III component contributes significantly to the energy release rate near this location. Begley and Ambrico
(2001) also determined G and mode mix at the corner crack of a film that is bonded to the interior of the
substrate surface (i.e., the film edge is not flush with the substrate edge) and for a half-penny shaped interface
crack at the edge of a film bonded to a substrate. The qualitative features noted for the flush corner flaw in
Fig. 5 pertain to these other cases as well.

If the crack propagation condition is based on a critical energy release rate, G ¼ GIC, independent
of the mode combination, the critical condition for interface crack propagation would first be attained
where the corner flaw meets the free surface. However, if the interface is relatively tough in mode III
(i.e., kIII51Þ, then the critical location for the onset of propagation will be some interior location along the
crack edge.

Mode III effects in the presence of plastic yielding: When delamination occurs along an interface between an
elastic-plastic material and an elastic substrate, the plastic yielding of the adjacent material is expected to have
a strong effect on crack growth. For homogeneous elastic-plastic materials studies of mode I, II and III crack-
tip fields for stationary cracks have been carried out by Pan and Shih (1992), and ductile crack growth in
mixed-mode I/III has been analyzed by Gao and Shih (1998), where the underlying mechanism is void growth.
In the present paper for mixed-mode crack growth along an interface between dissimilar materials, the
fracture mechanism at the interface is represented by a cohesive zone model.
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Fig. 5. Results of Begley and Ambrico (2001) for the energy release rate at two locations and the distribution of mode mix for a corner

penny-shaped crack at the interface between a film and substrate for three values of the Dundurs’ mismatch parameter, a. The film is under

equi-biaxial tension s well away from the edges. The phase angle measure for mode III in this figure is tan�1ðKIII=KIÞ. (Begely and

Ambrico employ a different definition of j than the present one.) Mode III is the dominant intensity contribution over the crack front near

the edge.
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2. Problem formulation and analysis

The interface crack growth analyses under mixed modes I, II and III loading are carried out for conditions
of small-scale yielding. The substrate (see Fig. 6) is taken to be elastic with Young’s modulus E2 and Poisson’s
ratio n2, while material no. 1 above the interface is elastic-plastic, with the elastic properties E1 and n1, the
uniaxial yield stress sY1 and the strain hardening exponent N1. This material is described by a finite strain
generalization of J2-flow theory (Hutchinson, 1973), with the uniaxial true stress-natural strain curve
represented by a piecewise power law

� ¼

s
E

spsY1;

sY1

E

s
sY1

� �1=N1

s4sY1:

8>><
>>:

(12)

The plane strain elastic mixed modes I and II interface crack problem was solved long ago by many authors
(e.g. England, 1965). The plane strain solution remains relevant here, since the transverse strain in the
x3-direction is taken to be zero. Following the formulation of Rice (1988) (see also Tvergaard and Hutchinson,
1993), the crack has tractions acting on the interface in the x1–x2-plane, which are given in terms of the two
stress intensity factor components, K I and K II, by

s22 þ is12 ¼ ðK I þ iK IIÞð2prÞ�1=2ri�. (13)
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Fig. 6. Interface crack with elastic-plastic material properties above the interface and elastic properties below.
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Here, r is the distance from the tip, i ¼
ffiffiffiffiffiffiffi
�1
p

, � is the oscillation index

� ¼
1

2p
ln

1� b
1þ b

� �
(14)

and b is the second Dundurs’ parameter

b ¼
1

2

m1ð1� 2n2Þ � m2ð1� 2n1Þ
m1ð1� n2Þ þ m2ð1� n1Þ

, (15)

where the shear moduli are m1 ¼ E1=ð2ð1þ n1ÞÞ and m2 ¼ E2=ð2ð1þ n2ÞÞ.
The elastic stresses corresponding to the mode III problem are uncoupled to the in-plane components (13),

and the corresponding tractions on the interface are

s23 ¼ K IIIð2prÞ�1=2. (16)

The relation between the energy release rate and the magnitudes of the stress intensity factors is given by (2).
It will subsequently be convenient to let

jK j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

q
. (17)

With a reference length L chosen to characterize the remote field, an L-dependent measure of I–II mode
mixity c is defined by

tanc ¼
Im½ðK I þ iK IIÞL

i��

Re½ðK I þ iK IIÞL
i��
, (18)

which reduces to the more familiar measure, tanc ¼ K II=K I, when � ¼ 0. The displacement components
associated with the I–II singularity field, with amplitude jK j, are specified in Tvergaard and Hutchinson
(1993), and the displacement fields corresponding to mode III are

u3 ¼
2K III

mi

ðr=2pÞ1=2 sinðy=2Þ, (19)

where mi equals m1 or m2, above or below the interface. It is noted that inside a short cohesive zone the
oscillation form of (13) has little effect, but this oscillation form still exists in the outer fields.

The x1-axis is in the crack plane and the initial crack-tip is located at x1 ¼ x2 ¼ 0 (see Fig. 6). The
traction–separation relation used to model the fracture process (Fig. 7) is specified everywhere on the
boundary x140; x2 ¼ 0 of the region analyzed, while zero tractions are specified for x1p0; x2 ¼ 0.

The traction–separation law used by Tvergaard and Hutchinson (1993) is a special version of that proposed
by Tvergaard (1990) as a generalization of the model of Needleman (1987). Here, the model is further
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Fig. 7. Specification of traction–separation relation.
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extended to account for tangential separation in two perpendicular directions, so that dn, dt1 and dt3 denote
the normal and tangential components of the relative displacement of the crack faces across the interface in
the zone where the fracture processes are occurring (Fig. 7). Here, dt3 denotes the tangential separation in the
direction parallel to the crack front. When dcn, d

c
t1 and dct3 are critical values of these displacement components

and a single nondimensional separation measure is defined as l ¼ ½ðdn=d
c
nÞ

2
þ ðdt1=d

c
t1Þ

2
þ ðdt3=d

c
t3Þ

2
�1=2 the

tractions drop to zero when l ¼ 1. With sðlÞ displayed in Fig. 7, a potential from which the tractions are
derived is defined as

Fðdn; dt1; dt3Þ ¼ dcn

Z l

0

sðl0Þdl0. (20)

The normal component and the two tangential components of the traction acting on the interface in the
fracture process zone are given by

Tn ¼
qF
qdn

¼
sðlÞ
l

dn

dcn
; Tt1 ¼

qF
qdt1
¼

sðlÞ
l

dt1

dct1

dcn
dct1
; Tt3 ¼

qF
qdt3
¼

sðlÞ
l

dt3

dct3

dcn
dct3

. (21)

The peak normal traction under pure normal separation is ŝ, and the peak shear tractions are ðdcn=d
c
t1Þŝ or

ðdcn=d
c
t3Þŝ in pure tangential separation in the x1 or the x3-directions, respectively. The work of separation per

unit area of interface is given by Eq. (20) with l ¼ 1, and for the separation function sðlÞ in Fig. 7 the work is

G0 ¼
1
2
ŝdcnð1� l1 þ l2Þ. (22)

It has been found in Tvergaard and Hutchinson (1992, 1993) that the two most important parameters
characterizing the fracture process in this model are G0 and ŝ. Scheider and Brocks (2003) have found cases
where also differences in the shape of the separation law have an important effect.

Here the interest is in metal–ceramic interfaces, but the parameter values to be used in the cohesive zone
model (20)–(22) are not based on direct measurements. For glass–epoxy interfaces there has been more
detailed experimental studies (Liechti et al., 1992). In a recent study of a sapphire–epoxy interface with the
sapphire enhanced by coating (Mello and Liechti, 2006) it has been found that the toughness G0 varies with the
mode mix, in contrast to the assumption in (20)–(22). Such mode dependent toughness has also been found for
adhesives (Högberg, 2006), and it is noted that this possibility is incorporated in the model of Tvergaard
(1990).

For KIII ¼ 0, a reference stress intensity factor is defined as

K0 ¼
1� n21

E1
þ

1� n22
E2

� ��1=2
2G0

1� b2

� �1=2

, (23)

which is the value of jK j needed to advance the interface crack in the absence of any plasticity. This value is
independent of c since a potential is used to generate the relation of tractions to crack face displacements of
the interface. A length quantity R0, which scales with the size of the plastic zone in material no. 1 (when
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jKj ffi K0 and KIII ¼ 0Þ, is defined by

R0 ¼
1

3p
K0

sY1

� �2

¼
2

3p
1� n21

E1
þ

1� n22
E2

� ��1 G0

ð1� b2Þs2Y1

, (24)

while the mode I–II mixity measure c refers to the distance L from the tip, it is natural to define a reference
measure of mixity, c0, based on the reference length R0. The relation between c0 and c is

c0 ¼ cþ � lnðR0=LÞ. (25)

3. Numerical method

Finite strains are accounted for in the numerical analyses, using a Lagrangian convected coordinate
formulation of the field equations. In this formulation, a material point is identified in the reference
configuration by xi. The contravariant components of the Cauchy stress tensor sij and the Kirchhoff stress
tensor tij are related by tij ¼

ffiffiffiffiffiffiffiffiffi
G=g

p
sij . The metric tensors in the current and the reference configuration are

denoted by Gij and gij , with the determinants G and g, respectively, and the incremental stress–strain
relationship is of the form _tij ¼ Lijkl _Zkl , where Lijkl are the instantaneous moduli.

The Lagrangian strain tensor is given in terms of the displacement components ui on the reference base
vectors by

Zij ¼
1
2
ðui;j þ uj;i þ uk

;iuk;jÞ, (26)

where ð Þ;j denotes covariant differentiation in the reference frame. Numerical solutions are obtained by a
linear incremental solution procedure, by expanding the principle of virtual work about the current state. The
incremental equation is, to lowest order, equal toZ

V

fDtijdZij þ tijDuk
;iduk;jgdV ¼

Z
A

DTidui dA�

Z
V

tijdZij dV �

Z
A

Tidui dA

� �
. (27)

Here, V and A are, respectively, the volume and surface of the body in the reference configuration, Dtij and
DZij are the stress and strain increments, Ti are contravariant components of the nominal surface tractions,
etc. The bracketed terms are equilibrium corrections. More details of the crack growth procedure can be found
in Tvergaard and Hutchinson (1993) and Tvergaard (2001).

The displacement fields are approximated in terms of special planar 8-noded isoparametric elements, with
three degrees of freedom in each nodal point, but with the transverse strain in the x3-direction taken to be
zero. The volume integral in Eq. (27) is carried out by using 2� 2 integration points within each element.

A circular region with radius A0 is analyzed numerically. Fig. 8 illustrates the initial near-tip mesh in the
center of the region analyzed, with 80� 4 uniform quadrilaterals along the interface in the range where crack
growth is studied. The length of one square element inside the uniform mesh is denoted D0, and the initial
Fig. 8. Mesh used for some of the crack growth analyses.
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crack-tip is located at x1 ¼ 0. The outer radius is chosen to be A0 ¼ 800 000D0, in order that the plastic zone
size should be well below A0=10.

4. Results

The crack growth analyses carried out here consider an elastic-plastic material no. 1 characterized by the
parameters sY1=E1 ¼ 0:003, n1 ¼ 1

3
and N1 ¼ 0:1, while the elastic substrate has E2=E1 ¼ 2 and n2 ¼ 1

3
in the

first analyses. In the traction–separation law the values dcn=d
c
t1 ¼ 1, dcn=d

c
t2 ¼ 1, dcn ¼ 0:1D0, l1 ¼ 0:15 and

l2 ¼ 0:50 are used, while ŝ=sY1 is varied. Also, in all the cases analyzed, the load is applied in such a manner
that stress intensity ratio K III=jK j remains constant. The load is applied on the outer boundary in the form of
displacements according to the elastic singularity field.

Fig. 9 shows examples of crack growth resistance curves for ŝ=sY1 ¼ 3:0, c0 ¼ �2:2
� and different values of

K III=jK j. In relation to the near-tip mesh in Fig. 8 it is noted that here R0=D0 ¼ 10:82. The curves show the
energy release rate G according to (2) vs. the amount of crack growth Da, normalized by G0 and R0,
respectively. It is seen that here the lowest fracture toughness occurs for K III ¼ 0, and the fracture toughness
increases as the value of K III=jK j is increased. For all three curves, very shallow maxima occur in the vicinity
of Da=R0 � 0:4.

Variations of the steady-state toughness Gss=G0 vs. K III=jK j are shown in Fig. 10 for the material
parameters also considered in Fig. 9. The values of Gss=G0 are calculated as the maxima of the corresponding
crack growth resistance curves, and thus the curve for c0 ¼ �2:2

� in Fig. 10 contains the maxima of the curves
in Fig. 9. For c0 ¼ 15:0� the fracture toughness increases more rapidly as a function of KIII=jK j, but for
c0 ¼ �10:8

� the fracture toughness increases less rapidly. For c0 ¼ �19:4
� the value of Gss=G0 first decays

slightly, and then starts to increase strongly, as the value of K III=jK j increases from zero, and the same type of
behavior is even more pronounced for c0 ¼ �28:0

�. Results are only shown for positive values of K III=jK j, as
the curves are symmetric with respect to the vertical axis in Fig. 10.

The five points shown in Fig. 10 as intersections of the curves with the vertical axis, i.e., values for
K III=jK j ¼ 0, are the plane strain results, as has been investigated previously (Tvergaard and Hutchinson,
1993; Tvergaard, 2001). In agreement with the earlier results it is seen that the smallest value occurs for
c0 ¼ �2:2

�, where the conditions at the crack-tip are near mode I, and that the fracture toughness grows when
the contribution of K II is increased, both in the positive and negative directions.

The behavior found for c0 ¼ �19:4
� in Fig. 10 is further investigated in Fig. 11 by varying the value of

dcn=d
c
t1, while dct2 ¼ dct1. Thus, for d

c
n=d

c
t1 ¼ 2 the peak stress in pure tangential separation is two times that in

pure normal separation, according to (21), and it is seen in Fig. 11 that this gives a somewhat higher fracture
toughness. For dcn=d

c
t1 ¼

1
2
the peak stress in pure tangential separation is half that in pure normal separation,
Fig. 9. Interface crack growth resistance curves for ŝ=sY1 ¼ 3:0, E2=E1 ¼ 2, c0 ¼ �2:2
� and different values of K III=jKj.
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Fig. 10. Steady-state interface toughness as a function of K III=jK j, for five different values of the local mixity measure c0. The elastic

modulus mismatch is specified by E2=E1 ¼ 2 and the interface strength is ŝ=sY1 ¼ 3:0.

Fig. 11. Steady-state interface toughness as a function of K III=jKj, for c0 ¼ �19:4
� and for three different values of dcn=d

c
t1. For d

c
n=d

c
t1 ¼ 2

the peak stress in pure tangential separation is two times that in pure normal separation, while for dcn=d
c
t1 ¼

1
2
the tangential peak stress is

half that in normal separation. Other interface parameters are E2=E1 ¼ 2 and ŝ=sY1 ¼ 3:0.
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leading to a lower fracture toughness. But in both cases the curves follow the general shape of that for
dcn=d

c
t1 ¼ 1, and thus the occurrence of the minimum fracture toughness for a nonzero value of KIII=jK j does not

depend on choosing the same traction–separation relation in pure tangential separation as that in pure normal
separation. It is noted that a variation of dcn=d

c
t1 was also considered in Tvergaard and Hutchinson (1993) for the
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plane strain problem, where it was also found that the fracture toughness was more reduced by taking dcn=d
c
t1 ¼

1
2

than increased by taking a ratio much higher than 2.
In Fig. 12, a higher mismatch of the elastic moduli is considered, E2=E1 ¼ 6, but otherwise all material

parameters and interface parameters are the same as those considered in Fig. 10. It is seen that the higher
mismatch gives generally higher fracture toughnesses, as was also found for the plane strain problem
(Tvergaard, 2001). Qualitatively, the trends agree with those found in Fig. 10, in that the fracture toughness
increases rapidly with increasing value of K III=jK j for c0 ¼ 15:2�. For smaller values of c0 this increase
becomes weaker, and for c0 ¼ �19:1

� the toughness reaches a minimum at K III=jK j � 0:3 before the increase
starts. Again, for the plane strain problem, K III=jK j ¼ 0, the smallest fracture toughness is reached at
c0 ¼ 0:3�, near pure mode I conditions at the crack-tip, while an increased influence of K II gives higher
toughness.

Fig. 13 has all material parameters identical to those in Fig. 12, except that the peak stress in the traction
separation law for the interface is reduced, ŝ=sY1 ¼ 2:5. This reduces the general level of the fracture
toughnesses below those in Fig. 12, and also below those in Fig. 10. The dependence on different values of c0

agrees with the results in the previous figures. For the smallest value, c0 ¼ �22:6
�, the curve has become very

flat, indicating that a minimum of G would be found at a nonzero value of KIII if a larger negative value of c0

was considered.
We further investigate the local minimum of Gss=G0 at a finite value of K III=jK j found in Figs. 10–13 that for

larger negative values of c0. Results for a homogeneous solid are illustrated in Fig. 14. Thus, material nos. 1
and 2 are identical, elastic-plastic, with E2=E1 ¼ 1, sY2=sY1 ¼ 1, etc. and with sY1=E1 ¼ 0:003, n1 ¼ 1

3

and N1 ¼ 0:1, Only crack growth on the initial crack plane is permitted. The curves in Fig. 14 are obtained
for c0 ¼ �22:92

�, where the previous figures show a local minimum at a finite value of K III=jK j. However, in
Fig. 14 the fracture toughness increases monotonically as a function of KIII=jK j. Also, in the homogeneous
solid the behavior found for a negative value of c0, as in Fig. 14, is necessarily identical to the behavior found
for the same positive value of c0. This indicates that the strong differences between positive and negative
values of c0 in Figs. 10–13 are a result of the asymmetry associated with the material mismatch along
the interface, which gives strong differences in the elastic-plastic near-tip fields in material no. 1, while the
substrate remains elastic.
Fig. 12. Steady-state interface toughness as a function of K III=jK j, for four different values of the local mixity measure c0. The elastic

modulus mismatch is specified by E2=E1 ¼ 6 and the interface strength is ŝ=sY1 ¼ 3:0.
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Fig. 14. Results for a homogeneous solid, E2=E1 ¼ 1 and sY2=sY1 ¼ 1. Steady-state toughness as a function of K III=jK j, for three

different values of ŝ=sY1, when c0 ¼ �22:92
�.

Fig. 13. Steady-state interface toughness as a function of K III=jKj, for four different values of the local mixity measure c0. The elastic

modulus mismatch is specified by E2=E1 ¼ 6 and the interface strength is ŝ=sY1 ¼ 2:5.
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5. Summary

In this paper, trends in toughness of interfaces as dependent on the mode III stress intensity factor have
been explored using a model that employs mixed mode cohesive separation along the interface. The focus is on
interfaces joining elastic and elastic-plastic solids subject to mixed mode loadings with all three components of
stress intensity present. Interface loadings are considered with all three components increased proportionally.
Examples discussed in the Introduction illustrate that mode III makes a significant contribution to the energy
release in a number of thin film delamination problems, particularly at cuts, edges and corners. The
dependence of the interface toughness on the mode III component determines whether or not these locations
are the critical for initiating delamination: a strong positive dependence on mode III deters local criticality,
while a weak or negative dependence leads to local susceptibility.

If the materials on either side of the interface are identical elastic-plastic solids, the model predicts that the
presence of a mode III component gives rise to a tougher interface for all mixed mode combinations
investigated. The presence of mode III also increases interface toughness for combined loading of the interface
in which one material is elastic and the other is elastic-plastic when the mode II component is nonnegative
(c0X0, with the elastic-plastic material above the interface as in Fig. 6). However, the toughness of such
interfaces is lowered due to mode III for negative mode II components ðc0o0Þ. Thus, there are cases in which
the presence of a mode III component will weaken the interface, making it more susceptible to delamination in
locations where mode III is present. The asymmetry with respect to the sign of mode II is a consequence of the
asymmetry of the materials across the interface since the behavior is independent of the sign of the mode II
component when identical materials lie above and below the interface. It is noted that cases where the fracture
toughness is reduced in the presence of a mode III component have also been found by Gao and Shih (1998),
based on a void growth fracture mechanism.
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