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a b s t r a c t

The failure process ahead of a mode I crack advancing in a ductile thin metal plate or sheet produces
plastic dissipation through a sequence of deformation steps that include necking well ahead of the crack
tip and shear localization followed by a slant fracture in the necked region somewhat closer to the tip.
The objective of this paper is to analyze this sequential process to characterize the tractioneseparation
behavior and the associated effective cohesive fracture energy of the entire failure process. The emphasis
is on what is often described as plane stress behavior taking place after the crack tip has advanced
a distance of one or two plate thicknesses. Tractioneseparation laws are an essential component of finite
element methods currently under development for analyzing fracture of large scale plate or shell
structures. The present study resolves the sequence of failure details using the Gurson constitutive law
based on the micromechanics of the ductile fracture process, including a recent extension that accounts
for damage growth in shear. The fracture process in front of an advancing crack, subject to overall mode
I loading, is approximated by a 2D plane strain finite element model, which allows for an intensive study
of the parameters influencing local necking, shear localization and the final slant failure. The deformation
history relevant to a cohesive zone for a large scale model is identified and the tractioneseparation
relation is determined, including the dissipated energy. For ductile structural materials, the dissipation
generated during necking prior to the onset of shear localization is the dominant contribution; it scales
with the plate thickness and is mesh-independent in the present numerical model. The energy associ-
ated with the shear localization and fracture is secondary; it scales with the width of the shear band, and
inherits the finite element mesh dependency of the Gurson model. The cohesive tractioneseparation
laws have been characterized for various material conditions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is widely recognized that finite element analysis to determine
extensive crack growth in large plate or shell structures cannot be
expected to resolve details of the fracture process. For tough ductile
structural alloys, meshes that are fine compared to the thickness of
the plate or shell would be required to capture necking behavior
prior to the onset of appreciable material damage. An accurate
resolution of the fracture process itself for ductile materials that fail
by the mechanism of void nucleation, growth and coalescence
typically would require the mesh to scale with the dominant void
spacing (e.g.w100 mm). Mesh resolution on this scale is possible for
test specimens and small components but not for larger structures.
The in-plane element size used in the analysis of large plate or shell
structures is usually at least several plate thicknesses and therefore
far larger than the size required to even resolve local necking. One

approach to bridging the multiple scales is to incorporate a Cohe-
sive ZoneModel in the large scale finite element formulationwhich
in the present context would characterize the failure process
beyond the onset of necking ahead of the advancing crack tip. The
utility of the cohesive zone for the analysis of large plate and shell
structures has been amply demonstrated and codes based on
newer X-FEM approaches that embed a cohesive zone are
becoming available.

The incorporation of a cohesive zone in a large scale computa-
tion requires the tractioneseparation law to provide a reasonable
approximation to the failure process zone associated with crack
advance. In principle, a cohesive zone model could be calibrated
against experimental crack propagation data or it could be theo-
retically modeled using a numerical method that resolves the
fracture process. In practice, it is likely that some combination of
experimental and theoretical methods will be required to establish
effective characterizations. This paper is an attempt to characterize
the cohesive zone for the analysis of extensive mode I crack
advance in plates comprised of tough ductile structural alloys. The
work here builds on earlier studies addressing tearing in thin metal

* Corresponding author. Tel.: þ1 617 495 2848.
E-mail address: hutchinson@husm.harvard.edu (J.W. Hutchinson).

Contents lists available at ScienceDirect

International Journal of Impact Engineering

journal homepage: www.elsevier .com/locate/ i j impeng

0734-743X/$ e see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijimpeng.2011.02.009

International Journal of Impact Engineering 48 (2012) 15e23



Author's personal copy

sheets and plates [1,2], including work which specifically addresses
the role of necking localization in contributing to plastic dissipation
in the effective cohesive zone [3] and work which applies a cohe-
sive zone for the analysis of extensive tearing under plane stress
conditions [4].

After the crack tip has advanced by one or two plate thicknesses,
the failure process ahead of a mode I crack propagating in a ductile
thin metal plate or sheet produces plastic dissipation through
a sequence of deformation steps that includes local necking well
ahead of the tip, a smaller scale localization in the neck somewhat
closer to the tip in the form of a shear band or a “bath tub” band
leading to final separation just ahead of the tip [3]. The sequence
considered in this paper is depicted in Fig. 1 and gives rise to the
commonly observed slant fracture. The final slant fracture of
a tearing test is seen in Fig. 2. This picture was taken from the paper
by Simonsen and Törnqvist [5] who carried out a set of large scale
tests for mode I crack advance in ductile aluminum and steel plates
with cracks propagating up to 30e40 times the plate thickness. The
objective of this paper is to analyze the sequential process gov-
erning this failure mode and thereby to characterize the trac-
tioneseparation behavior and associated cohesive fracture energy
of the entire failure process. The phenomenon seen in Fig. 2 in
which the fracture slant “flips” back and forth from one roughly 45�

orientation to the other, after growth on the order of 10 times the
plate thickness, has not been resolved in the present study.
However, the numerical results will show a second “inactive” shear
band co-existing with the band governing the crack advance which
may be relevant.

The initiation of crack advance from a blunted tip is not
addressed in this paper. Rather, it is imagined that the crack tip has
already advanced by several plate thicknesses such that the steady-
state deformation/fracture sequence ahead of the tip depicted in
Fig.1 is fully established. The present study resolves the sequence of
failure details using a finite strain version of the Gurson [6]
constitutive law for the ductile damage process, including
a recent extension accounting for damage growth in shear [7]. The
fracture process in front of an advancing crack, subject to mode I
loading, is approximated by a 2D plane strain finite element model.
The portion of the deformation history relevant to the cohesive
zone for a large scale model is identified and the tractionesepa-
ration relation and the dissipated energy are determined. In addi-
tion, two distinct contributions to the dissipated energy will be
identified and computed: the first due to necking, and the second
due to shear localization and fracture. For ductile structural plate

materials, the dissipation generated during necking prior to the
onset of shear localization will be found to be the dominant
contribution. It is significant that this contribution will be seen to
be mesh-independent in the numerical model and to scale
precisely with the plate thickness. The smaller dissipation contri-
bution associated with shear localization and shear fracture scales
with the element size, and this mesh sensitivity will be addressed.

The paper is structured as follows. The material model and the
plane strain finite element model are outlined in Section 2. Results
are presented in Section 3, including a comparison of the onset of
shear localization from the finite element analysis and that from an
analytical shear band analysis. Conclusions are given in Section 4
along with discussion of information that will be required to
implement cohesive zone modeling in addition to the present
results.

2. Material and finite element models

Finite strain, plane strain finite element simulations have been
reported in the literature for many years. The present work builds
upon simulations of necking, shear band localization and fracture of
ductile metals under tensile loading, as addressed, for example, in
Refs. [8-13], with specific application to the characterization of
cohesive zones for plates and shells as described in Introduction.
Where clarity of the paper is not sacrificed, previously published
details of the constitutive model and the finite strain elasticeplastic
formulation will be omitted and cited.

2.1. Material model

The central features of the model presented by Gurson [6] and
extended in Ref. [7] to account for damage growth in shear are as
follows. The model is an isotropic formulation that employs the
three invariants of the Cartesian components of the Cauchy (true)
stress, sij: the mean stress, sm¼ skk/3, the effective stress,
seh

ffiffiffiffiffiffiffi
3J2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

q
, where sij¼ sij� 1/3skkdij is the stress

deviator, and a third invariant defined below in Eq. (4). The yield
surface is specified by

Fig. 1. Sequential fracture process governing crack advance in ductile sheet metal
subject to mode I loading, (a) onset of local necking, (b) local thinning, (c) shear
localization and (d) slant failure.

Fig. 2. A 10 mm thick plate of A5083 aluminum tested by Simonsen and Törnqvist [5].
The crack was initiated at the edge notch located on the left edge of the plate. Flipping
of the slant fracture from one 45� orientation to the other is evident.
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where the current state is characterized by f, the damage parameter
which can be interpreted as an effective void volume fraction, and
sM is the current effective true stress governing flow of the damage-
free base material which is specified below. The fitting parameters,
q1 and q2, were introduced in Refs. [8,14]. All quantities not labeled
with the subscript M represent overall quantities associated with
the damaged material. Normality implies that the plastic strain
rate, DP

ij, is given by

DP
ij ¼

1
h
PijPkl _skl (2)

where

Pij ¼
vF
vsij

¼ 3sij
s2M

þ fq1q2
sM

sinh
�
3q2sm
2sM

�
dij (3)

In finite strain formulations, _sij is identified with the Cartesian
components of the Jaumann rate of stress. The expression for the
hardening modulus, h, is given in the references cited above.

The original Gurson model predicts no damage growth and
monotonic hardening in pure shear. The extension outlined below
was proposed in Ref. [7] to account for damage growth and soft-
ening in shear. In addition to sm and se, the extended model
employs the third stress invariant

J3 ¼ detðsÞ ¼ 1
3
sijsiksjk ¼ ðsI � smÞðsII � smÞðsIII � smÞ (4)

where the expression on the right is couched in terms of principal
stresses, assumed to be ordered as sI� sII� sIII. The non-dimen-
sional invariant,

uðsÞ ¼ 1�
�
27J3
2s3e

�2
; (5)

lies in the range, 0�u� 1, with u¼ 0 for all axi-symmetric stress
states,

sI � sII ¼ sIII or sI ¼ sII � sIII; (6)

and u¼ 1 for all states comprised of a pure shear stress plus
a hydrostatic contribution,

sI ¼ sþ sm; sII ¼ sm; sIII ¼ �sþ sm ðs > 0Þ (7)

The original Gurson model was formulated and calibrated based
on themechanics of void growth under axi-symmetric stress states.
The extension does not alter the model for these states, nor does it
alter the yield condition Eq. (1). The extension modifies the pre-
dicted growth of the damage parameter, f, for states with non-zero
u(s). In particular, a contribution to damage growth under pure
shear stress states is accounted for in the extension whereas the
original Gurson model predicts no change in damage for states
having sm¼ 0. The extension of the Gurson model posits

_f ¼ ð1� f ÞDp
kk þ kufuðsÞ

sijD
p
ij

se
(8)

The first contribution is that incorporated in the original model
while the second is the crux of the extension. In a state of pure
shear, Eq. (8) gives _f ¼ kuf _g

P=
ffiffiffi
3

p
, where _gP is the plastic shear

strain rate and ku is the shear damage coefficient, the sole new
parameter in the extended model. In the extension, f is no longer
directly tied to the plastic volume change. Instead, it must be

regarded either as an effective void volume fraction or simply as
a damage parameter, as it has been, for example, when the Gurson
model is applied to materials with distinctly non-spherical voids.
Further discussion and illustrations of the extension are given in
Refs. [7,14,15]. Included is the specification of the widely used
technique that accelerates damage from f¼ fc to f¼ ff, at which
point the material element is eliminated [12]. The equations above
fully specify the constitutive model of the material; the remaining
equations specifying for example the incremental moduli are listed
in Ref. [7] using the same notation as in this paper.1 The primary
damage parameters are the initial void volume fraction, f0, and the
shear damage coefficient, ku; thesewill be varied in the simulations
presented in the sections on results.

The uniaxial true stress versus logarithmic strain curve for the
undamaged material is taken as

e ¼

8>><
>>:

sM
E
; sM < sy

sy
E

�
sM
sy

�1=N

; sM � sy
(9)

with sy as the initial yield stress. The material parameters used in
the simulations are given in Table 1.

2.2. Finite strain formulation

A Lagrangian framework is used for the finite strain formulation
with the un-deformed body as reference and coordinates in the
deformed state denoted by xi, as detailed, for example, by
Refs. [16,17]. Using a convected coordinate formulation of the
governing equations, the components of vectors and tensors are
obtained by dot products with the appropriate base vectors. The
constitutive relation provides the incremental relation between
the contravariant components of the Kirchhoff stress rate, _sij, and
the covariant components of the Lagrangian strain rate, _hij, as

_sij ¼ Lijkl _hkl (10)

with plastic loading and elastic unloading branches for the incre-
mental moduli, Lijkl. The principle of virtual work for the incre-
mental problem is

Z
V

�
_sijdhij þ sij _uk;iduk;j

�
dV ¼

Z
S

_T
i
duidS�

2
4 Z

V

sijdhijdV

�
Z
S

TiduidS

3
5 (11)

Here, ui and ui are the contravariant and covariant components of
the displacement vector, Ti is the surface traction vector per original
area and the comma denotes covariant differentiation. The term in
the square brackets in Eq. (11) is included as a means to eliminate
residual equilibrium errors in the finite element formulation.

2.3. Problem formulation

After the onset of necking ahead of an advancing crack tip, the
material above and below the neck will unload elastically enforcing
plane strain conditions, i.e. enforcing essentially zero additional
straining in the direction parallel to the crack ð _h33y0Þ. Thus, the
sequence of deformation states depicted in Fig. 1 can be well

1 The sign of the second term on the right hand side of Eq. (13) in [7] should be
minus not plus.
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approximated by considering the 2D plane strain problem set up in
Fig. 3. Two sets of boundary conditions are considered in this study
as shown in Fig. 3: (i) an unconstrained condition in Fig. 3a with
zero horizontal tractions on the top (x2¼ L0/2) and bottom
(x2¼�L0/2) edges, where only the middle node at x1¼ x2¼ 0 is
constraint to prevent free body motion, and (ii) a constrained
condition in Fig. 3b for which horizontal displacements of above
and below the failure process zone are constrained. These condi-
tions are modeled by imposing zero horizontal displacement along
the centerline of the upper and lower parts of the section. This is
intended to model the maximum possible constraint on out-of-
plane deflection imposed by the larger structure. For both sets of
boundary conditions, the section is loaded by applying uniform
increments of the vertical displacement, D/2, along the top
and, �D/2, along bottom edges, while the resultant vertical force
per unit depth, F, which is work conjugate to D is computed.

The geometry and loadings depicted in Fig. 3 are symmetric
with respect to both the x1-axis and the x2-axis. If the material
properties strictly shared these same symmetries, localization
would first occur as a symmetric Considère neck. As the neck
develops, a second localization into two equally active symmetric
shear bands occurs inside the neck region [10]. The symmetric
situation almost immediately gives way to asymmetric localization
into one of the two bands promoted by exceedingly small pertur-
bations or imperfections. In the present study, to promote failure in
a single shear band, a very small asymmetric imperfection in the
yield stress distribution has been introduced within a narrow band

of width b oriented at 45� to the centerline.With reference to Fig. 3,
the distribution in the band is chosen as

sbyðx1; x2Þ ¼ sy

�
1� b

1
2

�
1þ cos

�
p
x2 � x1

2b

���

for x1 � b � x2 � x2 þ b ð12Þ
Here, sy is the initial yield stress of thematerial everywhere outside
the band, b¼ 0.001 is the amplitude of the imperfection, and
b¼W0/10 is the width of the imperfection. In the band, sby is
substituted for sy in Eq. (9). The imperfection is solely introduced to
promote the localization into a single shear band. Its amplitude is
sufficiently small such that it does not otherwise effect the incli-
nation of the shear band or the computed tractioneseparation
behavior.

The notation and a representative mesh are shown in Fig. 3 for
the full section. The height and width of the un-deformed section
are L0 and W0, respectively, with L0/W0¼ 3 for all results presented
in this study. A uniformmesh of square elements of size L(e)� L(e) is
used within the region that undergoes necking, shear localization
and slant fracture. The effect of element size will be investigated

Fig. 3. Schematic illustrating boundary conditions, notation and mesh, (a) uncon-
strained condition, (b) constrained condition, and (c) representative mesh (element
size L(e)¼W0/64).

Table 1
Material properties and damage parameters.

Parameters Notation Value

Youngs modulus E 210 GPa
Poisson ratio n 0.3
Yield stress sy 630 (210e1050) MPa
Strain hardening N 0.05e0.2
Initial porosity f0 0.005e0.02
Yield surface constants q1, q2 1.5, 1
Critical void volume fraction fc 0.15
Final void volume fraction ff 0.40
Shear coefficient ku 0e2

Fig. 4. (a) Normalized overall loadedeflection curve for the metal sheet section
considered, and (b) tractioneseparation curve for the cohesive zone extracted from (a),
with indicated fracture energy associated with necking, GI, and shear localization and
fracture, GII, respectively.
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and the element size will be reported as a fraction of the sheet
thickness, W0. Isoparametric 8 node plane elements are employed,
using reduced Gaussian quadrature (2� 2 Gauss points) for the
integration.

The boundary value problem posed above, including the initial
distribution of yield stress, and its solution possess 180� rotational
symmetry about the x3-axis such that only the region above the x1-
axis needs to be meshed. Consistent with the rotational symmetry,
the boundary conditions along x2¼ 0 for the upper part of the finite
element mesh in Fig. 3c are: u1(x1,0)¼�u1(�x1,0) and u2(x1,0)¼�
u2(�x1,0). These boundary conditions are applicable to strictly
symmetric and anti-symmetric deformations, as well as the present
mixed problem.2 These conditions are imposed in the finite
element code using a standard penalty approach [19].

3. Results: necking, shear localization and failure

3.1. Identification of tractioneseparation relation for cohesive zone

To set the stage for the presentation of results characterizing the
cohesive zone, a representative computed result in the form of the
dimensionless load/depth, F/(syW0), as a function of the normalized
overall elongation, D/L0, is given in Fig. 4a. As is well known,
necking begins at the maximum load. In plane strain tension the
onset of necking occurs at the Considère condition, which for the
present material is when the logarithmic strain attains, 3LOG¼N.
Since N¼ 0.1 in this example, 3LOG, and the overall engineering
strain, D/L0, differ only slightly prior to necking, and thus the onset
of necking is at DC/L0y 0.1. Beyond the Considère point, continuing
deformation is localized to the neck which initially extends roughly
one width, W0, above and below the horizontal centerline of the
section. As the neck develops under increasing D/L0, the load falls
gradually until the onset of shear localization noted in Fig. 4a,
whereupon the load begins to fall abruptly with relatively little

further overall elongation. In this last stage, continuing deforma-
tion is now localized to the shear band with almost no additional
deformation in the neck outside the band. The problem studied in

Fig. 5. Effective plastic strain at shear localization based on (a, c) bifurcation analysis in plane strain tension, and comparison with the local effective plastic strain predicted using
the FE-model at (x1,x2)¼ (0,0), for (b) ku¼ 0 for N˛ [0.05,0.2] and f0˛ [0.005,0.02] and (d) ku˛ [0,2] for N¼ 0.1 and f0˛ [0.005,0.02]. (sy/E¼ 0.003).

Fig. 6. Effect of the out-of-plane deflection constraint across the fracture zone: (a)
normalized overall load-deflection curves for constrained and unconstrained sections
and (b) associated cohesive energy, G0¼ GIþ GII, for f0˛ [0.005,0.02], N¼ 0.1, ku¼ 0
and sy/E¼ 0.003.

2 Analogous boundary conditions were exploited by Tvergaard [18] in his study
of necking and shear localization in three-dimensional bars pulled in tension.
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this paper is thus characterized by two fundamental localization
phenomena, necking and shear banding, the latter contained
within the former. As shearing progresses in the band, damage
increases until shear failure occurs with complete separation.

The following issue is now addressed: What part of the load-
elongation behavior in Fig. 4a is relevant to the characterization of the
cohesive zone? The cohesive zone in a large scale finite element
model should represent that part of the behavior that the elements
cannot capture. Plate or shell elements ahead of a long crack can
capture behavior up to the onset of necking and they can correctly
represent elastic unloading once necking begins. But, they cannot
capture the sequence of deformations in the neck beyond the onset
of the necking localization. It is this part of the load-elongation
behavior in Fig. 4a which must be employed to characterize the
cohesive zone. The tractioneseparation curve for the cohesive zone
extracted from Fig. 4a is plotted in Fig. 4b as F/(syW0) (normalized
traction per original area) as a function of the additional normalized
separation, d/W0, with d¼D�DC. The nominal Considère stress is
sC¼ FMAX/W0. Note that the relation between F/(syW0) and d/W0
will be independent of the height, L0, of the section if one ignores the
elastic unloading contraction of the sections above and below the
neck after the onset of necking. The elastic unloading contraction
can be subtracted off but it is so small that its influence is negligible.

This example, which is typical for tough ductile alloys, already
makes it clear that the cohesive work of separation,

R
Tddh

G0 ¼ GI þ GII (with T as the nominal traction) is primarily due to
the energy dissipated between the onset of necking and the onset

of shear localization, GI. The dissipation occurring subsequent to the
onset of shear localization, GII, is relatively small. These findingswill
be elaborated below.

3.2. The onset of shear localization

Rice [20] established the analytical condition for the onset of
shear localization as a bifurcation condition depending on the local
state of deformation and stress. The curves in Fig. 5a and c are
predictions for effective plastic strain at the onset of shear band
bifurcation from the state of plane strain tension as a function of f0,
ku and N. The details of the calculations underlying these results
have been given in Ref. [7] and will not be repeated here. The band
orientation is within one or two degrees from 45� to the tensile
axis. These results are compared to the finite element model in
Fig. 5b and d by mapping the circular data points in Fig. 5a and
c from the shear band bifurcation analysis onto the predicted
effective plastic strain evolution in an element at the center of the
neck where shear localization begins. As seen in Fig. 5b and d, the
element undergoes an abrupt increase in plastic strain at the onset
of shear localization. The agreement between the analytical bifur-
cation condition for a shear band and the onset of the localization
band in the finite element calculation is remarkably good even
though the state of deformation at the center of the neck in the
finite element model prior to shear localization is not precisely
plane strain tension. Some additional stress triaxiality develops
during necking in the finite element model which accelerates the

Fig. 7. Mesh dependence: (a) element size effect on tractioneseparation curve, and associated failure modes for element of size (b) L(e)¼W0/32, (c) L(e)¼W0/48, (d) L(e)¼W0/64,
and (e) L(e)¼W0/96 (sy¼ 630 MPa, N¼ 0.1, ku¼ 0, f0¼ 0.01).
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onset of shear localization. For the cases in Fig. 5c and d, the
additional triaxiality accounts for the small discrepancy between
the bifurcation prediction and the finite element results.

After the shear band forms in the center of the neck it spreads
towards edges in a direction at roughly 45� to the centerline. Once
theband reaches theedges, plastic strainingbecomes almost entirely
localized to the band such that the overall elongation is abruptly
curtailed (c.f. Fig. 4). In the present finite element model, the thick-
ness of theband is set by the size of theelementswithin theneck. The
band is essentially one element thick, as elements on either side of
thebandundergo elastic unloading. The element size-dependenceof
the tractioneseparation behavior will be explored in Section 3.4.

3.3. Two boundary conditions and initial imperfections

The two limiting boundary constraints introduced in Section 2.3
and depicted in Fig. 3 have been considered to provide insight into
conditions that will be encountered in applying a cohesive zone
model for the fracture analysis of large plate structures. The con-
strained case represents the limit where the sections of the plate
and the supporting structure above and below the cohesive zone do
not permit any overall out-of-plane displacement across the zone,
while the unconstrained case is the limit where there is no resis-
tance to an overall out-of-plane displacement across the zone. In
the present model, these limiting conditions will depend on L0, but
there is very little difference in the overall tractionedisplacement
behavior for the two limits when L0/W0¼ 3, as seen in Fig. 6. Prior
to the onset of shear localization, the responses for the two cases
are indistinguishable. Following shear localization, more energy is
dissipated in the constrained case, but the difference is very small.
This outcome is fortunate for applications of cohesive models to
ductile plates because it implies that the zone characteristics can be
specified without regard for the out-of-plane constraint. All the
following results have been computed with the unconstrained
boundary conditions.

3.4. Tractioneseparation and cohesive energy

The maximum nominal traction, TMAX¼ FMAX/W0, can be identi-
fied as the Considère load per original area at the onset of necking,
where the cohesive separation process begins, d¼ 0. As can be seen in
Figs. 4 and 6, the traction falls gradually until the onset of shear
localization where it begins a precipitous fall. In most applications of
cohesive tractioneseparation laws, the two most important features
are themaximum traction and thework/original area of the tractions,
G0 ¼ GI þ GII ¼ R

Tdd. But, as discussed in Ref. [21], the exact details
of T versus d will generally not be essential as long TMAX and G0 are
accurately reproduced and the functional form is faithful to the
general features seen in Figs. 4 and 6. In the remainder of this paper,
the results presented will highlight the dimensionless cohesive
dissipation energy, G0/(syW0), while TMAX can be computed by
elementarymethods. For the power-lawhardeningmaterial in Eq. (9)
withnodamage, theConsidère condition forplane strain tensiongives

TMAX
sy

¼ 2ffiffiffi
3

p
�

2ffiffiffi
3

p NE
sy

�N

e�N (13)

if elastic compressibility is ignored. Damage reduces the maximum
traction but only slightly as will be seen in the results presented
below.

The role of the finite element mesh on the results of interest is
brought out by Fig. 7a where the tractioneseparation behavior is
presented for one specific material case (N¼ 0.1, f0¼ 0.01 and
ku¼ 0) and for four meshes with square elements of dimensions,
L(e)� L(e), using the normalization, L(e)/W0. Prior to shear

localization, there is essentially no mesh dependence because all
four meshes are fine enough to accurately predict the necking
response. Similarly, assuming the stresses and strains in the neck to
be adequately resolved, the onset of shear localization at the center
of the neck is not very sensitive to meshing, because the onset
condition depends on local stresses and strains and not on their
gradients. However, the subsequent growth of the shear localiza-
tion and shear failure is directly tied to element size, as discussed
earlier. No length scale has been introduced in the material model
that would limit strain gradients. The shear band has essentially
one element across its width and thus has an approximate thick-
ness, L(e). Fig. 7bee clearly indicates that the final stage of the
tractioneseparation process depends strongly on the element
sizedthe larger the element, the thicker the localization band and
the more energy is dissipated. The mesh in Fig. 7b with the largest
elements is too crude to even qualitatively capture the formation of
a realistic shear band.

A systematic study of the dependence of the cohesive work of
separation on L(e)/W0 is presented in Fig. 8. The limit as L(e)/W0/ 0
in Fig. 8 is obtained by extrapolation of the computed points as

Fig. 8. Cohesive energy dependency on element size during sheet necking, shear
localization and fracture, showing the effect of (a) initial porosity f0˛ [0.005,0.02] with
N¼ 0.1, and (b) Strain hardening N˛ [0.05,0.2] with f0¼ 0.01. The other parameters are
the same as those specified in Fig. 7.

K.L. Nielsen, J.W. Hutchinson / International Journal of Impact Engineering 48 (2012) 15e23 21



Author's personal copy

indicated. This limit is the prediction for GI/(syW0) obtained as the
area under the tractioneseparation curve computed between the
onset of necking and the onset of shear localization at the center of
the neck. Included in Fig. 8 as square points on the ordinate are the
predictions from an estimate of GI computed in uniform plane
strain tension for the energy absorbed between the Considère load
and the onset of shear localization from the shear band analysis.
Mainly due to the triaxiality increase above plane strain tension,
the extrapolated results for GI from the finite element calculations
fall below the estimates, but the difference is quite small. As noted
earlier, GI is insensitive to the finite element mesh as long as it
resolves the neck. The cohesive energy can be partitioned precisely
into the contribution, GI, between the onset of necking (the inter-
cept on the ordinate) and the onset of shear localization, and the
mesh-dependent contribution, GII, from the final stage following
the onset of shear localization. From Fig. 8 it can be seen that GII/(sy
W0)y aL(e)/W0 where a lies between 1 and 2. This implies
GIIy asyL

(e), consistent with the expectation that the energy/area
dissipated in the final stage is on the order of sy� a strain of order
unity� the thickness of the shear band. It is also evident that the
dominant contribution to the cohesive energy is from the onset of

Fig. 10. (a) Normalized overall loadedeflection curves for metal sheet section showing
the effect of sy/E. (b) Cohesive energy normalized using the yield stress, and (c)
cohesive energy normalized using the nominal Considère stress, sC (N˛ [0.05,0.2],
ku¼ 0, f0¼ 0.01).

Fig. 9. Cohesive energy as a function of initial void volume fraction showing the effect
of (a) strain hardening N˛ [0.05,0.2] with ku¼ 0 and (b) the shear damage coefficient
ku˛ [0,2] with N¼ 0.1. The other parameters are the same as those specified in Fig. 7.
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necking to the onset of shear localization. Moreover, this dominant
contribution scales precisely with the thickness of the plate.

The three most important material parameters influencing the
cohesive energy areN, f0 and ku. Trends showing the dependence on
N and ku are presented in Fig. 9 for a mesh with L(e)¼W0/96. For
materials with the tensile stressestrain behavior Eq. (9), the only
other dimensionless parameters affecting the tractioneseparation
behavior are sy/E, fC and ff. The influence of sy/E is displayed in
Fig.10a and b. The dependence is directly related to the dependence
of the maximum load on sy/E as reflected by Eq. (13). This depen-
dence can be captured quite accurately if oneuses thenominal stress
Eq. (13) at the Considère condition, sCh TMAX, in place of sy in the
normalization of the traction, i.e. F/(sCA0). This assertion is demon-
strated in Fig. 10c where the curves for G0/(sCA0), with the strain
hardening N˛ [0.05,0.2], show little dependence on sy/E. This could
also be seen from the tractioneseparation curves as they nearly
collapse to a single curve when this alternative normalization was
used, for a given strain hardening,N. A few additional calculations in
which the coalescence parameters fC and ff are varied over the
ranges, 0.1� fC� 0.2 and 0.35� ff� 0.45, have been carried out to
assess their influence. The maximum variation of GII is approxi-
mately 20%. Because GII is such a small fraction of the total work of
separation, G0, one concludes that the primary results of interest in
this study depend very weakly on the coalescence parameters.

4. Conclusions and extensions

The energy/area, G0, associated with a cohesive zone model of
ductile plates subject to mode I tearing has been identified as the
energy dissipated during necking, shear localization and slant
fracture following the onset of necking in the zone ahead of the
crack tip. The present work provides a detailed treatment of this
sequence of plane stress crack growth which fits into the frame-
work of plane stress growth consideredmore broadly in Ref. [3]. For
the sequence considered here, it is shown that the energy/area can
be partitioned as G0¼GIþ GII with GI as the energy/area dissipated
between the onset of necking and the onset of shear localization
and GII as that dissipated in shear localization and shear fracture.
The first contribution, GI, dominates the total energy dissipated
during crack advance and it scales exactly with the plate thickness,
W0, according to GIf syW0. For a 1-cm thick plate made of a ductile
metal with yield stress sy¼ 300 MPa, GIw 1 MJm�2. By contrast,
the second contribution scales as GIIf sy[ where [ is the thickness
of the shear localization band, which scales with the element size in
the presented FE analysis; for sy¼ 300 MPa and [¼ 30 mm,
GIIw 0.01 MJm�2. This numerical example highlights the fact that,
because plasticity constitutes the major portion of the dissipation
for both contributions, each of them is huge compared to the
atomistic work of separation, which is typically only several J m�2.
Furthermore, this example clearly demonstrates that GI[GII.

The cohesive zone characterized in this paper is associated with
a mode I crack that has propagated several plate thicknesses such
that the zone ahead of the crack tip is fully developed and is
advancing under nominally steady-state tearing conditions. If the
crack is initially sharpwhen it begins to first propagate, the relevant
initial toughness will be closer to the plane strain toughness than to
the “plane stress” toughness that is the focus here. The work of
separation for a tough ductile alloy under plane strain conditions
scales according to G0w sYD where D is the spacing of the voids
that dominate the fracture process. For plates thick enough such
that the plane strain toughness (or some approximation to this
toughness) governs the initiation of crack growth, the initial frac-
ture energy is likely to be much smaller than the plane stress
fracture energy. This almost certainly implies that a cohesive zone
representation expected to capture behavior initiating from an

initial sharp crack will require a transition from an initial propa-
gation phase with lower separation energy to the steady-state level
with higher separation energy. It also remains for further work to
determine cohesive zone parameters capable of charactering crack
initiation from a stress concentration such as a notch. Furthermore,
it remains for future work to extend the characterization of
a cohesive zone model for ductile plates for mixed mode in-plane
tearing under conditions where the crack path will be curved. For
ductile plates, the cohesive zone is likely to follow the path created
by the incipient neck as it propagates ahead of the advancing crack
tip. Results for the onset of sheet necking under conditions other
than plane strain tension will be needed; these are available in the
form of sheet metal forming limits. Finally, to be generally appli-
cable in a large finite element code for structural analysis of plates
and shells, the cohesive zone representation will have to incorpo-
rate the effects of bendingmoments and, possibly transverse forces,
on the generalized tractioneseparation behavior.
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