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The role of substrate nonlinearity in the stability of
wrinkling of thin films bonded to compliant substrates
is investigated within the initial post-bifurcation range
when wrinkling first emerges. A fully nonlinear
neo-Hookean bilayer composed of a thin film on
a deep substrate is analysed for a wide range of
the film–substrate stiffness ratio, from films that
are very stiff compared with the substrate to those
only slightly stiffer. Substrate pre-stretch prior to
film attachment is shown to have a significant
effect on the nonlinearity relevant to wrinkling. Two
dimensionless parameters are identified that control
the stability and mode shape evolution of the bilayer:
one specifying arbitrary uniform substrate pre-stretch
and the other a stretch-modified modulus ratio. For
systems with film stiffness greater than about five
times that of the substrate the wrinkling bifurcation
is stable, whereas for systems with smaller relative
film stiffness bifurcation can be unstable, especially if
substrate pre-stretch is not tensile.

1. Introduction

For many film–substrate systems, compressive buckling
of the film into a wrinkling mode is a phenomenon
to be avoided. This view motivated much of the
early work on wrinkling such as that of Allen [1]
on structural composite panels having stiff outer
skins and thick compliant cores. In recent years, new
motivation for studying wrinkling has arisen wherein the
phenomenon has become a desirable means to generate
micrometre- to millimetre-scale surface patterns for a
wide range of applications involving soft materials.
The emphasis in studying wrinkling has shifted to
understanding the patterns that emerge and how they
can be selected and manipulated. Applications include
textured surfaces for biological applications, for altering
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wettability, adhesion and haptic characteristics, for flexible electronics, and for controlling fluid
flow within boundary layers. Overviews of recent developments related to wrinkling and some
of its applications are available [2,3].

Much of the recent thrust on wrinkling takes place within the context of research on
soft elastomeric substrate materials characterized by low stiffness and substantial elasticity.
Moreover, the range of stiffness of the materials being used, as measured by elastic modulus, is
extraordinary, greatly expanding the parameter space of wrinkle pattern design. Film/substrate
systems with metal or ceramic films deposited on polymers or elastomers can have a
film/substrate modulus ratio as large as 10 000. Systems formed by oxidizing the surface of a
material such as polydimethylsiloxane (PDMS) have silica-like films with modulus ratios in the
range from 1000 to 10 000 [4]. Systems having polymer films bonded to elastomer substrates
will have lower modulus ratios. For example, lower modulus ratios have been produced and
studied by Yin et al. [5] with films chemically deposited on PDMS: a ratio of four for hydroxyethyl
methacrylate films and 17 for ethylene glycol diacrylate films. Biological systems often have skins
with a modulus only slightly above that of the underlying substrate [2,6].

The earlier-mentioned observations motivate one aspect of this study: the investigation of
wrinkling over a range of film/substrate stiffness ratio from only slightly greater than unity to
very large. This aspect builds on earlier studies by Cai & Fu [7] and Cao & Hutchinson [8] where
bifurcation of a neo-Hookean bilayer was studied over the full range of modulus ratios. Here,
the emphasis is on the stability of the wrinkling bifurcation, and the evolution of the wrinkle
mode shape as the system is compressed beyond the critical bifurcation strain. Under plane strain
compression, models based on a linear substrate response predict stable wrinkling behaviour
with no evolution in mode shape. Substrate nonlinearity underlies the main concerns of interest
in this paper. The paper begins by presenting some generally applicable analytical results on
the nonlinear response of a pre-stretched neo-Hookean half-space subject to sinusoidal surface
loadings. As further background, a brief summary is presented in §3 of the classical results on
plane strain wrinkling behaviour based on the widely adopted model for stiff films attached to
compliant linear substrates. Section 4 presents the results of the initial post-bifurcation analysis
of the neo-Hookean bilayer, with calculation details provided in appendix A. The analysis
accounts for the possibility of a general uniform pre-stretch imposed on the substrate prior to
film attachment. The release of tensile substrate pre-stretch is commonly used as a technique to
generate film compression. It will be seen that substrate pre-stretch can have a significant effect
on wrinkling behaviour, owing to its effect on nonlinearity, and is thus another potential means
of manipulating wrinkling patterns.

2. Nonlinear response of a neo-Hookean substrate to sinusoidal loadings

In this section, the results of a perturbation analysis are presented characterizing the nonlinear
response of a semi-infinite neo-Hookean substrate subject to a combination of uniform pre-stretch
and periodic surface tractions. The central results, which will be used to interpret thin film
wrinkling, are presented in this section, with details of the analysis given in appendix A. The
geometry and notation are shown in figure 1. Lagrangian coordinates, (x1, x2, x3), associated with
locations of material points in the undeformed state are used throughout this paper with vector
and tensor components defined relative to the corresponding Cartesian base vectors. The surface
of the undeformed half-space coincides with the plane x2 = 0 with the substrate lying below.
A uniform pre-stretch characterized by (λ1, λ2, λ3) with λ1λ2λ3 = 1 is imposed on the substrate
with displacements ui = (λi − 1)xi (no sum on i) such that the surface remains coincident with the
plane x2 = 0. In addition to the pre-stretch, the loading produces plane strain deformations of the
substrate that are periodic with period � with respect to x1 and decay to zero as x2 → −∞. The
total displacements are

u1 = (λ1 − 1)x1 + U1(x1, x2), u2 = (λ2 − 1)x2 + U2(x1, x2) and u3 = (λ3 − 1)x3. (2.1)
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Figure 1. Geometry and conventions for the problems in §§2 and 4: (a) substrate problem (§2); (b) bilayer problem (§4). (Online
version in colour.)

Throughout this paper, λ3 is taken as fixed, and λ1 is regarded as the prescribed stretch such that
the ratio r = λ2/λ1 = 1/λ2

1λ3 is determined by λ1.
The neo-Hookean substrate material is incompressible with ground state shear modulus μS.

Nominal tractions acting on the substrate surface (force per undeformed area) are denoted by
Tα(x1) (α = 1, 2), and these have zero average and period � with respect to the coordinate x1. The
change in energy of the loaded substrate (per unit distance x3 and per wavelength �) from that in
the uniformly pre-stretched state is [9]

Φ(λi, U, Q) = μS

∫ �

0

∫ 0

−∞
I(λi, U, Q)dx2dx1 −

∫ �

0
TαUαdx1, (2.2)

with

I(λi, U, Q) = 1
2

(U2
1,1 + U2

2,2 + U2
1,2 + U2

2,1) − Q(λ2U1,1 + λ1U2,2)

− (r + Q)(U1,1U2,2 − U1,2U2,1). (2.3)

In (2.2), the tractions are regarded as prescribed, and Q is a Lagrangian multiplier introduced to
enforce the incompressibility condition:

λ2U1,1 + λ1U2,2 + U1,1U2,2 − U1,2U2,1 = 0. (2.4)

The Euler equations obtained by rendering Φ stationary with respect to (U, Q) are (2.4) and

∇2U1 − λ2Q,1 − Q,1U2,2 + Q,2U2,1 = 0 (2.5)

and

∇2U2 − λ1Q,2 − Q,2U1,1 + Q,1U1,2 = 0. (2.6)

The surface tractions are given by

T1 = μS(U1,2 + (r + Q)U2,1)x2=0 and T2 = μS(U2,2 − (r + Q)U1,1 − λ1Q)x2=0. (2.7)
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The form of the equations based on coordinates defined with respect to the undeformed state

will be used to produce the solutions in this paper. Nevertheless, the following change of variables
reveals that the solution to the traction boundary value problem depends on the single pre-
stretch parameter, r = λ2/λ1 = 1/λ2

1λ3, together with a stretch-modified shear modulus, μS/λ3.
Specifically, define coordinates with respect to material points in the uniform pre-stretched state
by x̄i = λixi (no sum). The energy change defined in (2.2) is

Φ(λi, U, Q) = λ3

{
μSλ

−1
3

∫ �̄

0

∫ 0

−∞
Ī(r, U, Q)r−1dx̄1dx̄2 −

∫ �̄

0
T̄αUαdx̄1

}
,

where �̄ = λ1�, T̄α = Tα/λ1λ3 is the nominal traction per pre-stretched area, and

Ī(r, U, Q) = 1
2

(U2
1;1 + r2U2

2;2 + r2U2
1;2 + U2

2;1) − Qr(U1;1 + U2;2)

− r(r + Q)(U1;1U2;2 − U1;2U2;1),

with ( );j = ∂( )/∂ x̄j. Thus, any (Uα , Q, T̄α) rendering Φ stationary will depend only on r and μS/λ3.
At various points in this paper it will be useful to switch between variables defined with respect
to the undeformed state and those defined with respect to the pre-stretched state.

In the solution below, ξ is the dimensionless amplitude of the lead term in the perturbation
expansion of sinusoidal surface tractions and displacements. Displacements are normalized by
the only length parameter in the problem, the wavelength � of the period in x1. The expansion
developed in appendix A and given below is symmetric with respect to x1 = 0. It is exact to order
ξ2. The displacements and tractions at the surface are

U1 =
(

�

2π

)[
ξ û(1)

1 sin
(

2πx1

�

)
+ ξ2û(2)

1 sin
(

4πx1

�

)]
,

U2 =
(

�

2π

)[
ξ û(1)

2 cos
(

2πx1

�

)
+ ξ2

(
û(2)

2 cos
(

4πx1

�

)
− û(1)

1 û(1)
2

2λ1

)]
,

T1 = μS

[
ξ t̂(1)

1 sin
(

2πx1

�

)
+ ξ2 t̂(2)

1 sin
(

4πx1

�

)]

and T2 = μS

[
ξ t̂(1)

2 cos
(

2πx1

�

)
+ ξ2 t̂(2)

2 cos
(

4πx1

�

)]
.

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

For prescribed displacements on the surface, the four dimensionless amplitude factors û(1)
α and

û(2)
α can be prescribed arbitrarily, as long they are independent of ξ and at least one of the first-

order components û(1)
α is non-zero. The term û(1)

1 û(1)
2 /(2λ1) in the second-order contribution to U2

arises owing to the incompressibility constraint. Alternatively, for prescribed surface tractions, the
four factors t̂(1)

α and t̂(2)
α can be prescribed arbitrarily if at least one of the first-order components

t̂(1)
α is non-zero.

The amplitude factors in (2.8) are related by

t̂(1)
α = Cαβ (r)û(1)

β and t̂(2)
α = 2Cαβ (r)û(2)

β − 1
λ1

Cαβγ (r)û(1)
β û(1)

γ , (2.9)

or, in inverted form, by

û(1)
α = Dαβ (r)t̂(1)

β and û(2)
α = 1

2
Dαβ (r)t̂(2)

β + 1
2λ1

Dαβγ (r)t̂(1)
β t̂(1)

γ . (2.10)

Here,

Cαβ =
(

r + 1 1 − r
1 − r r−1(r + 1)

)
(2.11)

and

Dαβ = C−1
αβ = 1

(1 + r + 3r2 − r3)

(
r + 1 r(r − 1)

r(r − 1) r(r + 1)

)
. (2.12)
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Figure 2. Dimensionless coefficients in (2.9) and (2.14) characterizing the lowest-order nonlinear traction–displacement

relation of a semi-infinite, incompressible neo-Hookean substrate that has been subject to an initial pre-stretch (λ1, λ2, λ3).

The coefficients depend only on r = λ2/λ1 = 1/λ2
1λ3 and are listed in table 1. (Online version in colour.)

Table 1. Values of coefficients (Cαβγ (r)).

r C111 C122 C112 C211 C222 C212
0.2 0.1469 −2.266 0.1406 −0.2407 1.797 −0.4220

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 0.2334 −1.167 0.0583 −0.5283 0.4291 −0.5749
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 0.3240 −0.7934 0.0318 −0.7045 0.1592 −0.5396
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.8 0.4125 −0.6093 0.0138 −0.8580 0.0524 −0.5156
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.0 0.5000 −0.5000 0 −1.000 0 −0.5000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 0.5876 −0.4270 −0.0114 −1.134 −0.0285 −0.4896
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 0.6755 −0.3746 −0.0210 −1.263 −0.0450 −0.4825
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.6 0.7640 −0.3350 −0.0292 −1.388 −0.0548 −0.4775
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.8 0.8531 −0.3038 −0.0365 −1.509 −0.0608 −0.4740
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.0 0.9429 −0.2786 −0.0429 −1.629 −0.0643 −0.4714
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 1.033 −0.2576 −0.0486 −1.746 −0.0663 −0.4696
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 1.124 −0.2400 −0.0538 −1.861 −0.0672 −0.4684
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.6 1.216 −0.2248 −0.0584 −1.975 −0.0674 −0.4675
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.8 1.308 −0.2116 −0.0627 −2.088 −0.0672 −0.4670
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.0 1.400 −0.2000 −0.0667 −2.200 −0.0667 −0.4667
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The six coefficients, Cαβγ = Cαγβ , which depend only on r = λ2/λ1, have not been obtained
analytically but they have been computed to high accuracy (appendix A) and are plotted
in figure 2 and listed in table 1. The other set of coefficients is given by Dαβγ = Dαγβ =
DαμDβνDγ κCμνκ .

The above-mentioned relations are valid for any pre-stretch having r < 3.383. The matrices C
and D are singular for r = rBiot ≡ 3.383 (i.e. when 1 + r + 3r2 − r3 = 0). This is Biot’s bifurcation
condition for surface wrinkling of a traction-free neo-Hookean half-space [10]. Reference will be
made later to the Biot condition and to the condition for finite amplitude surface creasing at
r = rcrease ≡ 2.38 [11,12].
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The solution is readily converted to variables defined relative to the pre-stretched state. With

the replacements x1 → x̄1/λ1, � → �̄/λ1, Tα → λ1λ3T̄α and μS → μS/λ3 in (2.8), the expansion in
the pre-stretched state has the general form

U1 =
(

�̄

2π

)[
ξ̄ û(1)

1 sin
(

2π x̄1

�̄

)
+ ξ̄2û(2)

1 sin
(

4π x̄1

�̄

)]
,

U2 =
(

�̄

2π

)[
ξ̄ û(1)

2 cos
(

2π x̄1

�̄

)
+ ξ̄2

(
û(2)

2 cos
(

4π x̄1

�̄

)
− û(1)

1 û(1)
2

2

)]
,

T̄1 =
(

μS

λ3

)[
ξ̄ t̂(1)

1 sin
(

2π x̄1

�̄

)
+ ξ̄2 t̂(2)

1 sin
(

4π x̄1

�̄

)]

and T̄2 =
(

μS

λ3

)[
ξ̄ t̂(1)

2 cos
(

2π x̄1

�̄

)
+ ξ̄2 t̂(2)

2 cos
(

4π x̄1

�̄

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

The connections now become

t̂(1)
α = Cαβ (r)û(1)

β and t̂(2)
α = 2Cαβ (r)û(2)

β − Cαβγ (r)û(1)
β û(1)

γ (2.14)

and

û(1)
α = Dαβ (r)t̂(1)

β and û(2)
α = 1

2
Dαβ (r)t̂(2)

β + 1
2

Dαβγ (r)t̂(1)
β t̂(1)

γ , (2.15)

with no changes in the Cs and Ds. There is no explicit λ1-dependence in the second-order
contributions when the pre-stretched state is used.

To illustrate pre-stretch influence on nonlinear substrate traction–deflection behaviour, two
limiting cases are presented that have relevance to film wrinkling. The representation in the pre-
stretched state is used, and a pure sinusoidal normal traction is imposed on the surface of the
substrate:

T̄2(x1) = T̄2(0) cos
(

2π x̄1

�̄

)
, i.e. ξ t̂(1)

2 = T̄2(0)
(μS/λ3)

, t̂(2)
2 = 0. (2.16)

Case 1 has no tangential traction constraint: T̄1 = 0 (t̂(1)
1 = 0, t̂(2)

1 = 0). Case 2 has tangential

displacement constraint, U1 = 0, such that t̂(1)
1 = −D12 t̂(1)

2 /D11 and t̂(2)
1 = D1βγ t̂(1)

β t̂(1)
β /D11. In both

cases, the normal displacement U2(x1) is given by the second equation in (2.13) where û(1)
2 and

û(2)
2 are expressed in terms of t̂(1)

α and t̂(2)
α by (2.15).

A dimensionless relation between the normal displacement at x̄1 = 0, U2(0), and the
corresponding normal traction amplitude is obtained for the cases prescribed earlier:

U2(0)
�̄

=
(

T̄(0)

2πμS/(D̄22λ3)

)
− K

(
T̄(0)

2πμS/(D̄22λ3)

)2

. (2.17)

For case 1, D̄22 = D22 and K = π (D222 − D12D22)/D2
22; for case 2, D̄22 = (D22 − D2

12/D11) and

K = π
(D211 + (D12/D22)D111)(D12/D11)2 − 2(D212 + (D12/D22)D112)(D12/D11) + (D222 + (D12/D22)D122)

D̄2
22

.

For the normalization used in (2.17), the coefficient characterizing the lowest-order influence of
nonlinearity, K, depends on pre-stretch only through r for both cases. This dependence is plotted
in figure 3, which makes clear the significant effect of both the pre-stretch and the tangential
constraint. The normalized traction–displacement relation (2.17) is plotted in figure 4 for several
values of pre-stretch for case 1.

The plots in figures 3 and 4 reveal the important aspects of the role of pre-stretch in
substrate nonlinearity. A nonlinear softening or stiffening response depends on the pre-stretch
only through r = λ2/λ1 = 1/λ2

1λ3. If r < 1, softening occurs for upward deflections and stiffening
occurs for downward deflections. Conversely, r > 1 produces stiffening for upward deflections
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r = 1/(l2
1 l3)

0.5 1.0 1.5 2.0 2.5 3.0

Figure 3. The coefficient in equation (2.17) governing the lowest-order nonlinear traction response of a pre-stretched substrate

to an imposed normal sinusoidal surface traction. One curve applies to a substrate whose surface has tangential displacement

constraint (U1 = 0) while the other curve applies for no tangential constraint (T1 = 0). The plot holds for any combination of

uniform pre-stretch specified by r. (Online version in colour.)

–0.10 0.10–0.05 0.050

–0.05

0

0.05

0.10

2pmS/(D22l3)

T
–
2(0)

U2(0)/l
-

r = 0.25,0.50,1.00,1.50,2.00

r = 0.25,0.50,1.00,1.50,2.00

Figure 4. The effect of pre-stretch asmeasured by r = λ2/λ1 = 1/λ2
1λ3 on the normalized nonlinear traction–displacement

behaviour in (2.17) for a neo-Hookean substrate subject to an imposed normal sinusoidal surface traction T̄2(x1)=
T̄2(0) cos(2π x̄1/�̄) with T̄1 = 0. Here, �̄ = λ1� is the wavelength of the imposed traction in the pre-stretched state. If r < 1, a

softening response occurs for upward deflections and a stiffening response occurs for deflections into the substrate. Conversely,

r > 1 produces stiffening for upward deflections and softening for downward deflections. To the order computed, this relation

is linear if there is no pre-stretch (r = 1). (Online version in colour.)

and softening for downward deflections. The coefficient K vanishes if r = 1 corresponding to no
pre-stretch. Thus, the lowest-order nonlinearity without pre-stretch is cubic while otherwise it
is quadratic. These same trends hold for case 2 with tangential displacements constrained to
be zero. For plane strain, λ3 = 1, pre-compression (λ1 < 1) results in a stiffening response for
upward deflections and a softening response for downward deflections; pre-tension (λ1 > 1) has
the opposite effect. These trends for plane strain are in accord with earlier observations based on
the finite-element calculations of Zang et al. [13].
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3. Stiff films on linearized pre-stretched substrates

To set the stage for this study, it is useful to summarize the wrinkling behaviour of very stiff
linear elastic films bonded to compliant, but linear, elastic substrates. Allen [1] presented one
of the earliest analyses of these systems with the film modelled by nonlinear plate theory, and
the substrate taken to be a linear elastic half-space. Recent work relevant to this study has
extended such analyses by accounting for the effect of pre-stretch of neo-Hookean substrates on
the linearized stiffness of the half-space [8,14], and it is this work that will be summarized.

If the film is assumed to constrain the tangential displacement of the substrate interface
to be zero, then the linearized response of a neo-Hookean substrate to a sinusoidal normal
displacement, U2 = U2(0) cos(2π x̄1/�̄), is T̄2 = T̄2(0) cos(2π x̄1/�̄), where from the results of the
previous section, T̄2(0) = 2π (μS/λ3)C22(r)(U2(0)/�̄). The barred quantities are defined with respect
to the pre-stretched state of the substrate. This provides the linearized stiffness of the half-space
in the model as dependent on the substrate pre-stretch specified by μS/λ3 and r = 1/λ2

1λ3. An
unstretched film of thickness h is bonded to the pre-stretched substrate and, subsequently, the
film/substrate system is subject to plane strain compression. For an incompressible film with
elastic shear modulus, μF, the compressive strain in the film at bifurcation and the wavelength of
the critical mode are

εC = 1
4

(
3μS

2λ3μF
(1 + r−1)

)2/3
and �̄C = 2πh

(
3μS

2λ3μF
(1 + r−1)

)−1/3
. (3.1)

These formulae accurately capture the effect of pre-stretch on bifurcation for film/substrate
stiffness ratios satisfying λ3μF/μS ≥ 100 [8].

The post-bifurcation problem for the model with a fully nonlinear von Karman plate on the
linear substrate can be solved exactly in closed form [15]. The shape and wavelength of the vertical
deflection of the film in the bifurcation mode, U2 = ξh cos(2π x̄1/�̄C), do not change as ε increases
above εC, and the dimensionless amplitude of the mode increases as

ξ =
√

ε

εC
− 1 or ε = εC(1 + ξ2). (3.2)

The post-bifurcation behaviour is highly stable according to this model with the deflection
increasing monotonically (3.2) as the compression is increased. The results, (3.1) and (3.2), which
are limited to large λ3μF/μS and, thus, relatively small ε, will be compared with exact results for
a neo-Hookean bilayer in §4.

4. Initial post-wrinkling behaviour of a neo-Hookean bilayer

In this section, wrinkling of a thin neo-Hookean film bonded to a deep compliant neo-
Hookean substrate is studied for films attached to substrates that have been pre-stretched.
The film/substrate system is then subject to plane strain compression. The stability and initial
evolution of the wrinkling mode is investigated using an initial post-bifurcation analysis along
the lines originally formulated by Koiter [16,17] and further developed and promulgated by
Thompson [18] and Thompson & Hunt [19] for a wide class of elastic systems. The primary focus
will be on the stability of the wrinkling bifurcation, and the evolution of the wrinkling mode
shape immediately following bifurcation in the range when the perturbation expansion retains
its accuracy.

The substrate is semi-infinite with ground state modulus μS. The film has initial thickness, h,
with ground state modulus μF. Attention is limited to systems with μF > μS. The uniform pre-
stretch in the substrate is now denoted by (λ0

1, λ0
2, λ0

3), and the unstretched film is bonded to the
substrate in this state. Following film attachment, the system is subject to a uniform plane strain
compression by imposing a compressive strain in the x1 direction, ε, with no additional straining
in the out-of-plane direction. The top surface of the film is traction-free. The fundamental solution
characterizing the pre-bifurcation state has uniform stretches in the film and in the substrate. With
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λF

i denoting the stretches in the film in the fundamental solution relative to its unstretched state,
the imposed nominal overall compressive strain is ε ≡ −(λF

1 − 1). With λS
i denoting the stretches

in the substrate in the fundamental solution relative to its undeformed state, the following
dependencies on ε hold:

λF
1 = 1 − ε, λF

2 = 1
1 − ε

, λF
3 = 1 with rF = 1

(1 − ε)2 (4.1)

and

λS
1 = λ0

1(1 − ε), λS
2 = λ0

2
1 − ε

, λS
3 = λ0

3 with rS = r0
S

(1 − ε)2 , (4.2)

where r0
S = λ0

2/λ
0
1 = 1/λ02

1 λ0
3.

Two sets of Lagrangian coordinates are used: one for the film and the other for the substrate.
Each is defined with respect to the undeformed state in that layer, and each will be denoted by xi,
but due regard will be made for the difference in definition from one layer to the other owing to
the fact that the substrate is pre-stretched. In each layer, x3 lies in the out-of-plane direction and
x2 = 0 coincides with the film–substrate interface. The periodic bifurcation and post-bifurcations
solutions sought have the form

u1 = (λ1 − 1)x1 + U1(x1, x2), u2 = (λ2 − 1)x2 + U2(x1, x2), u3 = (λ3 − 1)x3, (4.3)

where the stretches in each layer are given by (4.1) or (4.2), and the coordinate definition switches
from layer to layer. The fundamental solution is given with U = 0 and it is fully characterized by
the substrate pre-stretches, λ0

i , and the overall compressive strain, ε.
The energy change in the film/substrate system from that in the fundamental solution (now

defined per wavelength per unit x3 in the film) is

Φ(λ0
i , ε, U, Q) = μF

∫ �F

0

∫ h

0
I(λF

i , U, Q)dx2dx1 +
(

μS

λ0
3

) ∫ �S

0

∫ 0

−∞
I(λS

i , U, Q)dx2dx1. (4.4)

Here, I is defined in (2.3), with due regard for variable changes from layer to layer; �F and �S =
�F/λ0

1 are the period wavelengths in the respective coordinate systems.
The detailed bifurcation and initial post-bifurcation analysis is presented in appendix A. The

central findings obtained from the perturbation expansion about the critical strain at bifurcation,
εC, will be presented in this section. The vertical deflection of the upper surface of the film is

U2

h
= ξ cos

(
2πx1

�F

)
+ ξ2

[
û(2)

2 cos
(

4πx1

�F

)
+ û(2)

0

]
, (4.5)

and the relation between the dimensionless mode amplitude, ξ , and the overall imposed
compressive strain is

ε = εC(1 + bξ2). (4.6)

The expansions are exact to order ξ2; higher-order terms are not listed. Using variable changes
similar to those discussed for the substrate in §2, it can be shown that εC, �F/h, b, û(2)

0 and û(2)
2

depend only on two dimensionless parameters:

r0
S = λ0

2

λ0
1

= 1

(λ0
1)2λ0

3

and μR = μS

λ0
3μF

. (4.7)

The reduction in the number of essential parameters makes it possible to present relatively
complete results for all combinations of moduli and pre-stretch.

The critical strain, εC, and the normalized wavelength, �F/h, are presented in figure 5 as a
function of λ3μF/μS for four values of r0

S. These results are in complete agreement with the results
for plane strain pre-stretch presented by Cao & Hutchinson [8], who did not note the parametric
dependence reduction allowed by (4.7). More extensive results for the bifurcation problem have
been presented in that reference with comparisons to (3.1) from the simpler model in §3.
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Figure 5. (a) The compressive nominal strain at bifurcation and (b) the normalizedmodewavelength as a function of 1/μR for

several combinations of substrate pre-stretch as measured by r0S . (Online version in colour.)
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Figure 6. The initial post-bifurcation coefficient b determining the stability of the bifurcation results in figure 5. (Online version
in colour.)

The initial post-bifurcation coefficient, b, governing the relation between the mode amplitude
and the imposed compression in (4.6) is plotted in figure 6. By (3.2), the simpler model
for a stiff film on a linear substrate predicts b = 1. For λ3μF/μS > 100, the fully nonlinear
results for b in figure 6 are only slightly below unity, and thus the initial post-bifurcation
expansion confirms the simpler model’s prediction that the wrinkling bifurcation is stable for
sufficiently large λ3μF/μS. Complete agreement between the two predictions should not be
expected, even asymptotically for large λ3μF/μS, because, not only does the simpler model not
account for substrate nonlinearity, it does not fulfil all the conditions on continuity across the
film/substrate interface.

As seen in figure 6, b decreases for smaller λ3μF/μS and can become negative. Bifurcation
is unstable if b < 0. As depicted in bifurcation plot in figure 7, if b < 0, no wrinkling solution
exists in the vicinity of the bifurcation point when the imposed compressive strain is increased
above εC. A perfect film/substrate system having b < 0 becomes unstable when ε attains εC and
would snap dynamically into a finite amplitude wrinkling mode, which the present perturbation
analysis cannot predict. Included in figure 7 is a plot of the boundary between stable and unstable
bifurcation in the parameter plane (r0

S, 1/μR). Over most of the parameter range considered in
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Figure 7. (a) The relation between the mode amplitude and the compressive strain in the initial post-bifurcation regime.
(b) The boundary between stable bifurcation (b> 0) and unstable bifurcation (b< 0) in the space of the two parameters

characterizing the bilayer. (Online version in colour.)

this paper, bilayer wrinkling is stable in the initial post-bifurcation regime. Unstable wrinkling
bifurcation is predicted only when the modulus parameter, λ3μF/μS, is less than about 5. Tensile
pre-stretch of the substrate (r0

S < 1) can suppress the bifurcation instability. With no pre-stretch
(r0

S = 1), bifurcation is unstable only for λ0
3μF/μS < 1.73. Nevertheless, sharply reduced values

of b occur for λ3μF/μS < 10, especially if the substrate is subject to pre-compression with r0
S ≥ 1.

Reduced values of b imply that wrinkles develop more rapidly as the overall compression is
increased above εC.

The film in this study experiences plane strain deformation. For the entire set of parameters for
which results have been presented in this paper, the compressive strain at bifurcation in the film,
εC, is below the strain required for the existence of finite amplitude crease, εcrease = 0.35, and well
below the Biot strain for surface wrinkles, εBiot = 0.458. The wavelength of bifurcation mode in all
cases is many times the film thickness (cf. figure 5), and the mode has no resemblance to a crease or
a short-wavelength Biot surface mode within the film. It is also true that in all cases the essential
stretch ratio in the substrate at bifurcation, rS = λS

2/λ
S
1 = r0

S/(1 − ε)2, never exceeds rBiot = 3.383
corresponding to a singular substrate stiffness matrix as discussed in §2. However, rS does exceed
rcrease = 2.38 when λ3μF/μS is sufficiently small for pre-stretch with r0

S > 1. This is illustrated in
figure 8 where the values of rF and rS at bifurcation are plotted as a function of λ3μF/μS for values
of r0

S corresponding to the instability boundary in figure 7. While the film ratio, rF, is always below
rcrease, the substrate ratio, rS, exceeds rcrease on most of the instability boundary. The implications
of rS > rcrease are not obvious. As long as rS < rBiot, the analysis carried out here is well behaved.
However, if rcrease < rS < rBiot, it is possible that energetically favourable finite amplitude crease-
like modes for the bilayer may exist at compressive strains below the bifurcation strain predicted
here. If so, these modes would not emerge as a bifurcation but would have to be triggered by
an initial imperfection. In their analysis, Hohlfeld & Mahadevan [11] attached to the substrate
a very thin film having bending stiffness but no stretching stiffness to regularize the substrate
crease problem. The fact that these authors find crease modes when the film bending stiffness is
sufficient small suggests that there may be a range of λ3μF/μS for which such finite amplitude
crease-like modes may supersede wrinkling for the bilayer. It is also possible that the bilayer
system snaps into a crease-like mode in the regime when bifurcation is unstable. The existence of
these modes is beyond the scope of this study.

The evolution of the shape of the wrinkle after bifurcation is determined by (4.5) and,
specifically, by û(2)

2 , which is plotted in figure 9. For λ3μF/μS ≥ 100, û(2)
2 is relatively small and

positive. However, for sufficiently small λ3μF/μS, û(2)
2 changes sign and becomes increasingly
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Figure 8. Values of r0S , (rF)C and (rS)C along the instability boundary in figure 7 as a function of 1/μR = λ0
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the substrate exceed the surface creasing condition if r0S > 1. (Online version in colour.)
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Figure 9. The dependence of the initial post-bifurcation coefficient û(2)2 on substrate pre-stretch, r0S , and modulus parameter,
1/μR = λ0

3μF/μS. (Online version in colour.)

negative as λ3μF/μS decreases, depending strongly on the pre-stretch parameter, r0
S. The influence

of û(2)
2 on the wrinkle shape evolution is illustrated in figure 10. A positive û(2)

2 , which is promoted
by large λ3μF/μS and pre-stretch with r0

S < 1, gives rise to amplification of the wrinkle peaks
and a flattening of the valleys. This is in accord with softening for upward deflections and
stiffening deflections noted in §2 for the nonlinear behaviour of the substrate when rS < 1.
Conversely, negative û(2)

2 , which is promoted by smaller λ3μF/μS and pre-stretch with r0
S > 1,

gives rise to flattening of the peaks and sharpening of the valleys. This, again, is in accord with
the expectation noted in §2 for substrates with rS > 1. Thus, the initial post-bifurcation analysis
points to the possibility of the wrinkling mode evolving towards either ridges when û(2)

2 > 0 or

folds when û(2)
2 < 0. Ridges [8,13,20] and folds [14,21] are advanced post-buckling modes that

form at compressive strains that can be many times εC and well outside the range of validity of
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Figure 10. The evolution of the shape of the normal deflection of the wrinkle mode at the top of the film surface as the mode

amplitude, ξ , increases, for (a) û(2)2 = 0.2 and (b) û(2)2 = −0.2. The shape plotted is given by U2/h= ξ cos(2π x1/�F) +
ξ 2û(2)2 cos(4π x1/�F). The x1-independent term in (4.5), û(2)0 , does not affect the shape. (Online version in colour.)

the perturbation expansions developed here. Nevertheless, the tendency towards the two types of
advanced modes is evident in the perturbation of the sinusoidal bifurcation mode. Moreover, this
tendency is in general agreement with the role of stretch in the nonlinear response of the substrate
obtained in §2.

5. Conclusions

Two dimensionless parameters characterize the solutions for the neo-Hookean bilayer system:
a measure of substrate pre-stretch, r0

S = λ0
2/λ

0
1 = 1/λ02

1 λ0
3, and a stretch-modified modulus ratio,

μR = μS/λ
0
3μF. For μR < 0.1, the compressive strain in the film at bifurcation is less than 0.1 and

the wrinkling bifurcation is stable, in agreement with the classical model for wrinkling of stiff
films on compliant linear substrates. However, when the film stiffness is more comparable to
that of the substrate, with 0.2 < μR < 0.5, bifurcation can be unstable, especially for compressive
pre-stretches having r0

S > 1. Over the entire range of bifurcations investigated here, the wrinkling
mode at bifurcation has a wavelength that is very long compared with the film thickness.
Moreover, the compressive strains in the film are well below both the short-wavelength Biot
surface wrinkling strain and the critical strain for existence of a finite amplitude surface crease
within the film. For compressive pre-stretch, r0

S > 1, in the modulus range 0.2 < μR < 0.5, the
compressive strain within the substrate can exceed the critical strain for a finite amplitude surface
crease. It remains an open question whether the bilayer will experience imperfection-driven finite
amplitude creasing modes below the bifurcation strain in this range.

The classical model for stiff films on compliant linear substrates predicts that the wrinkling
mode remains stable with no change from the sinusoidal shape under plane strain compression.
It is substrate nonlinearity that influences both the stability of wrinkling and the evolution
of the shape of the wrinkling mode as the compression is increased beyond the onset of
bifurcation. Substrate pre-stretch has been shown to have a strong effect on substrate nonlinearity.
Compression, with r0

S > 1, gives rise to nonlinearity which favours deflections into the substrate
over outward deflections, whereas tensile pre-stretch, with r0

S < 1, has the opposite effect. The
former favours evolution towards fold-like wrinkle shapes, whereas the latter favours evolution
towards ridge-like shapes. The details of these conclusions are based on the assumption of neo-
Hookean elasticity, but the general trends are likely to carry over to more elaborate nonlinear
elastic material models.

The initial post-bifurcation expansion does not reveal the unusual wrinkling modes observed
at compressive strains well above the bifurcation strain such as period doubling and folding
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[8,14,21,22] and ridging [13,20]. The transition of a periodic wrinkle pattern into a pattern that
alternates between highly localized undulations and relatively flat regions is also a consequence
of substrate nonlinearity [13,23,24]. The perturbation approach in this study which uses the
sinusoidal bifurcation mode as the leading term brings in the higher-order harmonics of this
mode. While it can reveal some effects of substrate nonlinearity, it is not able to capture
localization phenomena such as folding or ridging.

Appendix A

A.1. Nonlinear behaviour of pre-stretched neo-Hookean half-space

In the notation of (2.8), the solution to the linearized equations in (2.4)–(2.7) is

(U(1)
1 , U(1)

2 , λ1Q(1)) = ξk−1(f (ζ ) sin kx1, g(ζ ) cos kx1, k q(ζ ) cos kx1)

f = −c1erζ − c2r1eζ , g = c1erζ + c2eζ , q = c1(r − r−1)erζ

c1 = −(r − 1)−1(rû(1)
1 + û(1)

2 ) and c2 = r(r − 1)−1(û(1)
1 + û(1)

2 ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 1)

with k = 2π/� and ζ = kx2. From this solution, and using the linearized relation (2.7) for the surface
tractions, one obtains the relations of order ξ in §2.

The next step in the perturbation solution is to substitute an expansion in the general form
of (2.8) into the nonlinear equations (2.4)–(2.7) and require all terms of order ξ2 to vanish. The
second-order solution is

(U(2)
1 , U(2)

2 , λ1Q(2)) = ξ2k−1

2λ1
(0, G0(ζ ), k H0(ζ ))

+ ξ2k−1

2λ1
(F(ζ ) sin 2kx1, G(ζ ) cos 2kx1, k H(ζ ) cos 2kx1), (A 2)

where G0 = −fg, H0 = −(fg)′ − fq as well as F, G and H satisfy the fourth-order ODE system

F′′ − 4F + 2rH = g q′ − g′ q, G′′ − 4G − H′ = f q′ − f ′ q, G′ + 2rF = f ′ g − f g′, (A 3)

with ()′ = d()/dζ . The boundary conditions for the fourth-order system of ODEs (A 3) require the
functions to vanish as ζ → −∞ and (F(0), G(0)) = 2λ1(û(2)

1 , û(2)
2 ). The second-order surface traction

coefficients in (2.8) are determined from (2.7) as

t̂(2)
1 = (2λ1)−1(F′ − g q)ζ=0, t̂(2)

2 = (2λ1)−1(G′ − H − f q)ζ=0. (A 4)

The solution to the problem can be constructed as the sum of a homogeneous solution, with f =
g = q = 0 in (A 3) and (A 4), satisfying (F(0), G(0)) = 2λ1(û(2)

1 , û(2)
2 ) and a particular solution, with f ,

g and h as defined in (A 1), and F(0) = G(0) = 0. The homogeneous solution gives the contribution,
t̂(2)
α = 2Cαβ û(2)

β , in (2.9) while particular solution provides the other part. In principle, it is possible
to produce a closed-form analytical solution to the particular problem, but the algebraic effort
would be prohibitive. Instead, in computing the values of Cαβγ given in table 1, the ODE system
is solved numerically and the coefficients are identified using (A 4).

Given that the displacements decay exponentially to zero as ζ → −∞ and that the material
is incompressible, displacements imposed on the surface cannot change the volume of the half-
space. This condition can be expressed as

∫�
0(U2(λ1 + dU1/dx1))x2=0dx1 = 0. It is not necessary

to impose this condition as an extra condition, because the solution satisfies (2.4) ensuring
incompressibility to order ξ2. The second-order term in (2.8), ξ2û(1)

1 û(1)
2 /(2λ1), is a consequence

of the incompressibility constraint and it derives from G0(0) = −f (0)g(0).
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A.2. Initial post-bifurcation analysis of neo-Hookean bilayer

The nonlinear Euler equations, (2.4)–(2.7), listed in §2 and expressed in each of the two
layers render the energy functional (4.4) stationary. These govern the plane strain bilayer
problem, together with conditions that the tractions and displacements are continuous across
the film/substrate interface on x2 = 0 and tractions vanish on the film surface. The linearized
equations govern the bifurcation problem. Its solution is given by the following extended recipe:

(U(1)
1 , U(1)

2 , λ1Q(1)) = ξh(f (ζ ) sin kx1, g(ζ ) cos kx1, k q(ζ ) cos kx1), (A 5)

where k → kF = 2π/�F and λ1 → λF
1 in the film, x2 > 0, and where k → kS = 2π/�S and λ1 → λS

1 in
the substrate, x2 < 0. The coordinates xα are different in the film and in the substrate, as defined
in §4, and ζ = kx2 changes accordingly from film to substrate. The functions in (A 5) that satisfy
the linearized Euler equations are

f = −c1erFζ − c2r−1
F eζ + c3e−rFζ + c4r−1

F e−ζ , ζ > 0

= −c5erSζ − c6r−1
S eζ , ζ < 0,

g = c1erFζ + c2eζ + c3e−rFζ + c4e−ζ , ζ > 0

= c5erSζ + c6eζ , ζ < 0

and q = c1(rF − r−1
F )erFζ − c3(rF − r−1

F )e−rFζ , ζ > 0

= c5(rS − r−1
S )erSζ , ζ < 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 6)

with the ci to be determined.
Continuity of tractions and displacements across ζ = 0 and zero tractions on ζ = kFh provide

the eigenvalue equation, Mijcj = 0 (i = 1, 6; j = 1, 6), where M is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2rFerFkFh −(rF + r−1
F )ekFh −2rFe−rFkFh −(rF + r−1

F )e−kFh 0 0

−(rF + r−1
F )erFkFh −2ekFh (rF + r−1

F )e−rFkFh 2e−kFh 0 0

−1 −r−1
F 1 r−1

F 1 r−1
S

1 1 1 1 −1 −1
−2rF −(rF + r−1

F ) −2rF −(rF + r−1
F ) 2μRrS μR(rS + r−1

S )

−(rF + r−1
F ) −2 (rF + r−1

F ) 2 μR(rS + r−1
S ) 2μR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By (4.1) and (4.2), this matrix can be expressed in terms of r0
S, μR ≡ μS/(λ3μF), ε and �F/h.

(Note that kFh = 2πh/�F. While kS = λ0
1kF depends on λ0

1, it does not need to be specified in the
eigenvalue calculation or in the post-bifurcation calculations below.) The eigenvalue condition
for ε is |M| = 0. The critical eigenvalue and associated wavelength, εC and (�F/h)C, are obtained
by minimizing the eigenvalue with respect to the wavelength. The results plotted in figure 5 have
been obtained numerically. The associated eigenfunction is normalized by requiring g(kFh) = 1
such that on the surface U(1)

2 = ξh cos(2πx1/�F).
The problem for the second-order solution of order ξ2 is obtained in a manner similar to

that described for the substrate problem with the nonlinear equations (2.4)–(2.6) governing
in the respective regions. Now, however, nonlinear equations (2.7) governing continuity of
tractions across the interface and zero traction on the film surface must also be considered. The
second-order solution is

(U(2)
1 , U(2)

2 , λ1Q(2)) = ξ2kh2

2λ1
(F0(ζ ), G0(ζ ), k H0(ζ ))

+ ξ2kh2

2λ1
(F(ζ ) sin 2kx1, G(ζ ) cos 2kx1, k H(ζ ) cos 2kx1), (A 7)

where definitions switch from film to substrate in the same manner as in (A 5). The two ODE
systems are

F′′
0 = 0, G′′

0 − H′
0 = (f h)′, G′

0 = −(f g)′ (A 8)
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and

F′′ − 4F + 2rH = gh′ − g′h

G′′ − 4G − H′ = f h′ − f ′ h

G′ + 2rF = f ′ g − f g′.

⎫⎪⎪⎬
⎪⎪⎭ (A 9)

The traction-free boundary conditions on the film surface require (on ζ = kFh)

F′ − 2rFG − g q = 0, G′
0 − H0 − f q and G′ − 2rFF − H − fq = 0.

On the interface (ζ = 0), continuity of displacements requires continuity of F0, F, G0 and G,
whereas continuity of tractions requires

(F′ − 2rFG − g q) = μR(F′ − 2rSG − g q)

(G′ − 2rFF − H − f q) = μR(G′ − 2rSF − H − f q)

and (G′
0 − H0 − f q) = μR(G′

0 − H0 − f q)

with terms evaluated in the film on the left and those in the substrate on the right.
The solution to (A 8) satisfying all the boundary and continuity conditions is

F0 = 0, G0 = −f g, H0 = −(f g)′ − f q.

The solution to the fourth-order system of linear ODEs, (A 9), has been obtained numerically. The
numerical solution has been carried out using a standard ODE solver, and, in doing so, it has
been useful to recast the system using four dependent variables that are continuous across the
interface: F, G and the combination of variables in the two traction conditions above.

The final step in the calculation is the evaluation of the initial post-bifurcation stability
coefficient b defined in (4.6). One way to compute b would be to continue the perturbation
process by deriving the boundary value problem for terms of order ξ3, and then use b to suppress
the secular nonhomogeneous terms. In addition to providing a unifying framework, one of the
benefits of the general theory of initial post-bifurcation developed by Koiter [16] and Thompson &
Hunt [19] is that it yields a general expression for b in terms of the solution to the first- and second-
order perturbations without direct consideration of the third-order problem. Here, we present
this expression without derivation using a compact notation used by Cao & Hutchinson [9] in a
stability analysis of neo-Hookean half-space surface wrinkling.

With the dependence on pre-stretch, λ0
i , implicit, represent the energy functional (4.4) as

Φ(ε, U) with U ≡ (U1, U2, Q). The full solution (4.3) has the form

u = U(0)(ε) + U = U(0)(ε) + ξU(1) + ξ2U(2) + · · ·
with U(0)(ε) as the fundamental solution. The formula for b in this compact notation is

b εC
∂3Φ(εC, 0)U(1)2

∂ε∂2U
= −∂3Φ(εC, 0)U(1)2U(2)

∂3U
. (A 10)

Because Φ in (4.4) has no quartic terms in U, there is no contribution of terms proportional to
U(1)4 in (A 10), as would generally be present. Equation (A 10) is made explicit in the following:

∂3Φ(εC, 0)U(1)2U(2)

∂3U
= −

∫
V

2μ

λ1

{
λ1Q(1)(U(1)

1,1U(2)
2,2 + U(1)

2,2U(2)
1,1 − U(1)

1,2U(2)
2,1 − U(1)

2,1U(2)
1,2)

+ λ1Q(2)(U(1)
1,1U(1)

2,2U(1)
1,2U(1)

2,1)
}

dV

= −2πμFk2
Fh4

λF2
1

{BF + μRBS}, BF =
∫ kFh

0
FB(ζ )dζ , BS =

∫ 0

−∞
FB(ζ )dζ ,

with

FB = fq
(

G′
0 + G′

2

)
+ g′qF + f ′ qG + gqF′

2
+ H0(fg)′ + H(fg′ − f ′g)

2
,

 on May 20, 2013rsta.royalsocietypublishing.orgDownloaded from 



17
rsta.royalsocietypublishing.org

PhilTransR
Soc

A
371:20120422

......................................................
and

∂3Φ(εC, 0)U(1)2

∂ε∂2U
=

∫
V

∂λ1

∂ε

2μ

λ1
{λ1Q(1)(−2U(1)

2,2) + 2r(U(1)
1,1U(1)

2,2 − U(1)
1,2U(1)

2,1)}dV

= −4πμFh2

λF
1λ0

1

{AF + μRAS}, AF =
∫ kFh

0
FA(ζ )dζ , AS =

∫ 0

−∞
FA(ζ )dζ ,

with FA = −g′q + r(fg)′. The expression for b is

b = − (kFh)2

2λF
1εC

(BF + μRBS)
(AF + μRAS)

.

The four integrals in this expression are evaluated by numerical integration. In these formulae,
the stretches and wavenumbers are evaluated at ε = εC. As noted earlier, all parameters are
determined in terms of rS

0 and μR. The coefficient determining the evolution of the mode shape is

given by û(2)
2 = kFhG(kFh)/2λF

1 .
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